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Abstract—The problem of est;matmg the parameters of superzmposed damped smusmds
in noise is considered for both complex and réal data cases. It'is shown that for the
complex case, the Cramér-Rao bounds on the variance of unbiased estimators of the
signal parameters are independent of the phases of all the sinusoids, and that for the real
case, the bounds for the parameters of a particular sinusoid are dependent on the phase
of that sinusoid, but are independent of the phases of all the other sinusoids.
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1. INTRODUCTION

It is well known that the Cramér-Rao (C-R) bound specifies a lower bound on the
variance of any unbiased estimator. Accordingly, the C-R bound frequently is used to
quantify the goodness of the parameter estimators for time-series data models.

The C-R bounds for the data models consisting of complex damped sinusoids in
complex white Gaussian noise (the complex model) or real damped sinusoids in real
white Gaussian noise (the real model) were recently derived by Yao and Pandit [1].
However, the expressions for the C-R bounds given in [1] do not show the dependence
of the bounds on the phases of the sinusoids explicitly.

For the complex model, Hua and Sarkar [2] provided an interesting expression
which exposes the dependence of the bounds on some signal parameters including the
phases. But, the expression in [2] is not readily applicable to the real model. The real
model is probably more common in practice. For the real model, the dependence of the
C-R bounds on the signal phases is not emphasized in the current literature.

In this paper, we introduce an approach that reveals the dependence of the C-R
bounds on the phases of the sinusoids for both complex and real models. In Section 2,
we consider the complex model, and show that the bounds are independent of all the
phases of the smuscnds in the model In Section 3, we consider the real model, and show

that the bounds for the parameters of a particular sinusoid in the model are functions of
the phase of that sinusoid but are independent of the phases of the other sinusoids.
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2. THE COMPLEX MODEL

The complex data model consists of M complex damped sinusoids in complex
noise: -

() = Eoceﬁ'e"(mw')—l—e(t) =12, N 0
=1 .

where j=+~1, o is the amphtude ®; _1s the phase, B is the damping factor, ; is

the frequency of the zth smusmd e(t) is a complex whzte Gauss;an noise with rnean

zero and variance 02

) and N s the nurnber of data samples The szgnal parameter
vector SR , i

is to be estimated from the data vector ¥ — D), y(2) (N F (.Tile'.s'eperéeript' ‘ff-?’

denotes the transpose.)
The logarithmic likelihood function for the estimation problem in (1) and (2) is

N
L(¥,0)=-Nlog(n)~ N log(c52 )— --1~5~ Y et)e(t)"
| S A T
where " der.iotes:_.t.he ee'n}ugate Eand

‘—’(t) y(r) Ea e B: ej(wfﬂp,); _
zwl

The Fasher mformatwn matrlx for the problem is

J(e) E{SL(Y e)[aL(Y 9)) } : . o

00 9 I

where E{ } denotes the expectauon

The C-R bounds on 'the Varxance of unb1ased esumators of the parameters in 6 are
obtamed from the cerrespondmg dlagonal entries of the inverse of the Fisher
mformatmn matnx {3]
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The order of the parameters in the 8 vector is important, since different orderings
will result in J(8) matrices with different structures. Note that our, choice of the order in

(2) is different from that of [1]. We have tacitly changcd the order to reveai the phase
dependence of the C-R bounds. : \
It is easy to show that

76)= 2 $ Bl (7 + 2 (7]

g y=

b

where, .

eolt) = b O @ O PO [
"ae(r)/aoai [ ﬁi e](mi”q’:)
() delt)/ow; | — Joe G
) 'ae(if\)/aﬁf n OL re Bt ef(mm"')
De(t)ow; | | = o te P oIt

and &y (t)=Refeq (1)}, & (r)=Imieo (1)}

- Now, we introduce the following deco;nposl'itiqn of the vectors é"éf ) (t) and 'é'éi) (t):

[ B cos(w;z + ;) ]
()| e snlos o)

0 ocz-te_B"t cos(w;? *‘@i‘-);
oute P sin(o,r +¢;) |

1. © T cose; sing; 0 ) [—e P coswy |
| | |-singg cosgy | e P sinw,t
- o A . c'és(pi" ¥§i§i(pf te B cos ;

oc,.. bt o 8 sing; -.cosQ; | | re P sinwyt |

@)
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[ B sm(&)t-{-(pl) |

2 ~ e cos(o, t-i-cpz)
(t)" B

o te P sin(w,t + @)

- O te s cos(wit+(p,-)_

1 cosQ; sing; ~e P sin w;t
_ &; | —sing;  cosQ; —e Pt cos w;t
G cosQ; —sing; te ™ sin ;t
I o, sing;  cos@; | |—te B COS ;¢ |
— I
=D;-0; % {t)

Let

| D mdlag{DI’DZ::DM}
' Q_;_diag{QE:QZ"r-;QM}'

Then, the Fisher information matrix becomes

2

J®)=5-p0.010"D @)

g

where

1= SR +5 Rl ]
Eo(0)=ES O #2000 |
 BO=FPEr e T

Note that the entries of the matrix 7 do not depend on the amplitudes and the
phases; they are functions of the damping factors, the frequenaes the number of data
samples and the sampling instants.

Inverting (4) gives

-1 o’ -1 -1 AT . pl
J (G)=~—2~—~D 01107 .p (3)

where we have used the property that Q is orthogonal. (The superscript “—1” denotes
the inverse.)
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.".It. follows from (5) that the C-R bounds;qn the ‘pgramc_ter:estimatipn variances are
.-;CRB{OL }_ﬁ 0 {[(f;*ﬁ)ll +(Il‘1)22]+ {(511;-.1)”- .(I : )zz}cosfkpl +2( ) sm2(pz}
CRB{(?z}— 41 '{[(11—1)11'*;(!;;)221' [(IFI)I; (Iz 1)22]"032‘1’: : ( E) sz‘?z}
cra -2 {[(fz Yy )bl oz 2l sine)

CrBloy}= -2 {[(fz 1) 1o ) =) eos20: + 2017 )y sin2e
where I;! is the ith diagénal submatrix of 1! and (1;1 ),k 1s the (Jk)th éntry .of I

- We now show that the C-R bounds actually:do not depend on the phases ¢;. From
Theorem 1 in [1] we know that o

CRB{o,; }= CRB{g; }- o7
'C_R.B{Bi'}:CRB{wi} R
: )]

for all vaiues of the ;. Therefore, it must be true that

(If;)u =(1i_1)22‘

Replacmg these in (6) shows that the right»hand szdes in (6) are mdependent of the
phases @;. e

The dependence of the determmant of the inverse Fisher mformatlon matrix on

the signal phases is also important {4]. We note’ from (5) that this determmant is also
independent of all the phases.

Example 1: Consider two complex damped sinusoids with equal dampmg factors
(B, =B,) and observed by N =10 data samples. It can be shown that the C-R bounds
depend on the two sinusoid frequencies through their difference 6w = @, —®,. The C-R

amplitude bound CRB{o, } is illustrated in Figure 1 for-f; =B, =0.1, 0.5, 1 and 2.
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The vertical coordinate in the figure depicts the value of the product ¢+ CRB{a, }.
The horizontal coordinate in the figure depicts the value of 3w/Q where Q denotes
the Fourier resolution limit, Q= 2m/N . We see that the bound generally increases as
the frequency difference & decreases, and that the increase in the bound becomes
significant for dw below one Fourier limit (which is the range of separations for which
the two sinusoids are considered to be close). The bound also increases as the damping

factors increase. Similar conclusions can also be drawn for the bounds for the other
parameters of the smusmds : - -

- 3. THE REAL MODEL

The real counterpart of the previous data model consists of M real damped
sinusoids in real white Gaussian noise of mean zero and variance ¢2:

y(t)= S ose P cos(wt+ ¢, )+et), t=12,...,N. . . (8)
i=l .
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Figure 1: The C-R amplitude bound for two complex damped sinusoids observed by ten
uniformly spaced samples. The damping factors f§; =, =0.1, 0.5, 1 and 2.
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.. The Fisher: information matrix. for estimation of. the s1gnai parameters -in . (8)
reduccs to

J6)= izé% ko
where

ORI IO IO T
i —e Bf cos((oz‘+<P1)

| ae By sin(e,t + 9, )

oot B‘. COS(@it-.+'(pi) '

_aite"B"t Sln(ﬂt),t + (Pi)

e 0)=|

Since e(’)(z‘) D QI _(‘)( ) (c £, (3)), the Flsher mformauon matrix for the real modei
be_comqs Co :

J(B) --‘D QgD @
20% .
where the matrix: I is now:given by
SR o
S : . i S Lol .

Again, inverting-(9) to find the C-R bounds on the variance of unbiased: estimators
of the signal parameters, one similarly ends up with the:same expressions in(6) with -1-
replaced. by (10) and the right-hand sides multiplied by 4. It can be shown that 1n
generai the expressions in (7) are no longer valid in the real data case.

-Thus, for the real model, the C-R bounds for the parameters of the ith smuscnd

are functions of the phase of that sinusoid, @;, but are 1ndependent of the phases of the
other smusmds, ¢ i J#i. Note that the determinant of the inverse Fisher mformatlon

matrix is still independent of all the phases. .. . - .
. -.:Some further comments .on the results in (6) can be gwen IE follows from the
expresswns in (6) that the bounds for the parameters (¢, ¢;5f;; ;) are periodic in

@; with a period of 7, and it thus suffices to consider the bounds in the interval, e.g.;
A={p; :9; € (~n/2,m/2]}. From the expressions for the C-R damping factor bound
CRB{;} and the C-R frequency bound CRB{»;}, we see that the two bounds,
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considered as functions of the phase @,, are shifted versions of each other by an
amount of /2. In particular, their largest and smallest values are the same, i.e.

max CRB{B, }= max CRB{v, }
o ‘ i
min CRB{B; }= min CRB{w, }

i i

Also, when one bound takes its largest value, the other bound takes its smallest value,
ie. :

arg maf; CRB{B }u arg mm CRB{&) }
’ PE

arg mlﬁ CRB{B; }w arg max CRB{(D }
0 .

Similar relations exist between the C-R amphtude bound CRB{(x } and the C R phase
bound CRB{gp; }: ‘ -

Example 2: Consider a single real damped sinusoid observed by N =10 data
samples. The largest and the smallest values of the C-R amplitude bound CRB{w, } are

illustrated in Figure 2 for the damping factor BI_ equals 0:1, 0.5, 1 and 2. The vertical

coordinate in the figure depicts the value of o* -CRB{OLI }. The horizontal coordinate in
the figure depicts the value of §w/Q where 3w is the difference between the two signal
frequencies present in the real sinusoid, d0=2-w, and Q denotes the Fourier limit.

Note that the behavior of the bounds with respect to the changes in the 8o is the same
as in the complex case. Also, note that the difference between the largest and the
smallest values of the bound generally increases as 6@ decreases, and that this increase
is significant for 8w smaller than one Fourier limit. The difference between the two
limits of ‘the bound also increases as the damping factor of the sinusoid increases.
Similar conclusmns can also be drawn for the bounds for the other parameters of the
sinusoid. o :

. Note that the two data modeis cons;dered in the examples dxffer oniy in thelr noise
components; the imaginary part of the noise is absent in the real model. A comparison
of the two f;gures mdzcates that parameter estimation accuracy may be poorer in the real
case.

A recent paper {5] derived a fast algorithm for the ‘-c:omput-ation‘ of the Fisher
information matrix for time-series-datd models for the case of colored Gaussian noise. It
can-be shown that our results on the phase dependence of the C-R bounds are still valid
when the noise components of the models considered herein have a general covariance
matrix. :
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Figure 2: The largest and the smallest values of the C-R amplitude bound for a single
real damped sinusoid observed by ten uniformly spaced samples. The damping factor
B, equals 0.1, 0.5, 1 and 2.

4. CONCLUSIONS

We have studied the dependence of the C-R parameter bounds on the signal
phases for complex and real valued time-series data models consisting of damped
sinusoids buried in noise. For the complex model, we have shown that the bounds do
not depend on the phases of the sinusoids. For the real model, we have shown that the
C-R bounds for the parameters of a particular sinusoid depend on the phase of that
sinusoid but do not depend on the phases of the other sinusoids in the model. This
dependence has been examined for the case of a single real sinusoid via an example. It
has been observed that as the frequency separation between the two signal components
of the real sinusoid decreases or as the damping factor of the sinusoid increases the
dependence of the bounds on the sinusoid phase becomes stronger.

We have also shown that for the damped sinusoidal cases the C-R bounds can be
expressed explicitly as simple functions of the signal phases. It is known that for the
cases in which the sinusoids are undamped (or the damping factors are known), the
dependence of the C-R bounds on the phases is highly complicated [6].
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