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Abstract-Thls paper presents an overv1ew on apphcatlons of artlflclal neural
networks. (ANNs) to robot control systems and outlines the.contributions of ANN.
Adaptlve neurocontrol archltectures are introduced - and ‘compared to. traditional
adaptive control methods e : :
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: 1. INTRODUCTION

The robotw systems are des;gned to behave under human authonty wzthout
representzng any threat [1]. The systems are hlghly non-linear and complex Systems
and their dynamic performances depending on the efflczency of computlng such. tasks,
For instances, co-ordinate transformation between the joint- ~variable space and the
Cartesmn space, generahsed forces/torques to drlve the joint motors, the mampulator
ineftia matrix for model based control schemes and the Jacobean ‘matrix that relates
the joint velocity in the joint: vanable space 1o the Cartesian space. These aré the basic
computauons for the control . of robot 'manlpulators Some of the intensive
computauons occur in calcuiatmg the robot kmematlcs, dynalmcs, Jacobean and their
corresponding i mverses These basic robotic computations require good modelhng for
robust control. Art1ﬁc1al neural networks (ANNS) are known to handle such
computat1ona1 bottlenecks.

This paper presents contributions of neural networks some robonc apphcatzons of
neural networks, tradluonal adaptlve control systems and neural network arch1tectures
for rebot control systems,

2. CONTRIBUTIONS OF NEURAL NETWORKS
ANNSs have demonstrated the capabxhaes of modellmg a large ciass of non«»lmear
systems and representing mput output relationships robustly. They can be tramed to
generate cofrect control signals and hence offer a great potent:lal for adaptive control
of non»hnear systems. Also, the paraliei processing nature of neural networks
prov1des the capability of processmg 1arge amounts of mformatxon in real- tlme once a
network has been trained.
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The literature describes many types of neural adaptive controllers, corresponding to
the conventional adaptive controllers outlined in section 4. Several adaptive control
schemes for ANN controls have been presented in [2]. Different types of neural
networks have been considered [3]. The major underiymg issue is how to train the
network robustly and reliably when the system is rapidly time varying. The popular
backpropagation (BP) algorithm has been the primary choice for ANN training.

3. NEURAL NETWORK APPLICATIONS TO ROBOT SYSTEMS

The solution of problems in robotics is difficult because even the snnplest desired
movement  requires “ sophisticated mathematics, which may = require more
computational effort. Common problets encountered in robotics are short intensive
computations with high level of data depéndency and on-line calculation.

ANNs are a great deal of potentials in many disciplinarians as well as in robotics
[4,5] because of the following features: generalisation through learning, fast
computatlonal capabllaty for  real-time applications, less priori information
requirement and ease of 1mplementatlon ANNSs have abzhty to prowde plausible
solutions for ill-posed problems in robotics such as kinematics, dynamics and contrél.

Most of the applications of ANNs in robot systems are in the areas of robot

dynamics, control, kinematics, inverse kinematics, trajectory and path plannmg [4-6].
For robotic applications, the popular neural networks are multilayered perceptrons
trained by backpropagation, genetic algorithms and Levenberg-Marquardt method
[30-32], Hopfield network, competitive and co-operative nets, Adaptive resonance
theory 1, Kohonen self—orgamsmg network (8], modified counter-propagation,
functional net [9} and dzstrlbuted assoe1at1ve memory for bin-picking, and their
modified versions {IO] _ '
" In the robot control systems there is currently i growmg mterest in using ANN
technology [5,6,11-15]. ANNs offer several potential advantages gver conventional
control methods. For example, calculations are in principle carried out in parallel,
y1eld1ng speed advantages, and programming can be done by training, rather than
defining explicit instructions. Almost all ANN applications in'robot control systerns
involve 1dent1fymg the robot dynarmcs or inverse dynazmcs and mcorporatxng this
knowledge into the robot controller [16-18]. The approaches used differ in the
methods of 1ncorporat1ng the ANN into the controller and of trammg and adaptatmn
The basic idea is to employ a neural network to learn repeatedly characteristics of a
robot and then use. this knowledge to generate control mputs A basic inverse model
control scheme for a robot is shown in Figure 1. The major advantage of the neural
control approach is that it can produce a learning controller for a robot that can
operate in an uncertain environment.

The use of neural network for controlling of a robot has béen dzscussed by Yildirim
[19]. A new neural network was proposed to model and control of a robot. The
proposed network was a modlflcauon of the original Elman network. A development
of a new adapuve recurrent neural network for control of a non-linear system
represented by two-link has been presented by Yildirim et al. [20]. Their proposed
control system consists of an inverse neural model of robot, a neural controller which
is copy of inverse neural model, a robust controller, a conventional PI controller and a
second order linear filter. An investigation on the trajectory control of a robot using a
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new type of recurrent neural network has been presented by Yildirim et al. [21]. A
three-layered recurrent neural network was used to estimate the forward dynamics
model of the robot manipulator. The standard BP algorithm is employed to update the
connection weights of a recurrent neural network controller with three layers using a
“stochastic gradient function. The use .of a new recurrent neural network employing
feedback error learning for control. of a robot has been presented by Yildirim and
Aslantas. [22] Their control system consisted of a feedback (PID) controller and two
‘recurrent neural-network-based. joint controflers. The. effectiveness of the neural
network was- tested using different parameters of the robot. The results have shown
the significant improvement of learning time and accuracy, which practxcally enables
the use of neural controller in robotics applications. :
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Figure 1. Inverse model control scheme

Among the five human senses; vision, hearing and touch are meaningful to robot
systems. -So, sensing devices are the only way of providing information to robots
about their environments. The problems in sensing come from the environmental
effects, temperature, noise, lack of light, fumes, humidity and componénts failures.
Recently there has been increasing interest in upgrading robot intelligence by using
multiple sensors [23- 32] Flgure 2 shows how ‘'sensors are used for robouc
apphcauons : v
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Figure 2. Multiple sensors used for robot control systems



106 S. Yildirim and S. Sagiroghu

In the figure cameras provide location information about the objects. The colour
camera helps selecting a particular object depending on the object's colour. The range
finder gives detail about the object shape and its range. Contact force sensor illustrates
the forces on the contacts and so on so worth. Multilayered neural networks trained
with different learning algorithms, BP, genetic algorithms, the Levenberg-Marquardt
method, have employed to determine. the location and orientation of object placed on
the platform of the inertia sensor [30-32]: Their methods involve training multilayered
neural networks using the backpropagation algorithm to model the ‘operation of the
sensor by mapping its natural frequency of vibration to part location information. In
their paper, an approach for increasing the accuracy of the computed orzentatxon was
also mvestzgated :

Robot vision is an important area in robotics for any movement and control, Most
of the applications of neural networks in sensing can be found in robot vision systems
[33-39]. As shown in Figure 2. A camera is mounted on the end-effector of a
manipulator. The visual information is processed and used to position and orientate
the end effector of the manipulator from image data obtained from the working place
through the camera. ANNs are used to learn the non-linear mapping between image
data and control signal for changes in the joint angles required to achieve the desired
position and orientation using a vision system to position and orlentate the end-
effector [33-36].

Okamoto et al. [33] presented a vision system which automatically generates an
object recognition strategy from a 3-D model, and recognises the object from this
strategy. A neural network approach to machine vision systems for automated
industrial inspection has been discussed by Drake and Packianather [34] for
ispecting the defects of the wood veneers. The system of Hashimoto et al., [35]
directly integrated the visual data into the control process without calculating an
inverse kinematics of manipulator. An ultrasonic 3-D visual sensor is devised multi-
layered perceptron neural networks. ANNs were used to improve acoustic images and
identify objects’ categories from low resolution images [37]. ANN systems can offer
superior and robust solutions to the filtering problems - encountered in the
enhancement of sonar signals and images for mobile robot applications [38]. A neural
network approach to the motion determination problem without any calibration has
been presented by Wei and Hirzinger [39]. In their investigation, two kinds of sensory
data, namely, camera images and laser range data, were used as the input to a
multilayer feedforward neural network to associate the direct transformation from the
sensory data to the required motions. This 1epresensatzon was used to develop a new
framework for robot control with active VlSlOIl

4. ADAPTIVE CONTROL METHODS

The last decades have seen some extensive research and major breakthroughs in
adaptive control [50]. The objective of adaptive control is to adjust the controller
parameters in order to achieve a desired response of an unknown or time-variant
system with or without an estimated model and/or reference model. If properly
implemented, it can reduce the variability of parts being produced and increase
productivity giving substantial economic benefits.
4.1. Traditional Adaptive Control Methods
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Adaptive control has been a major. topic. of. technical inquiry in the control
commumty since the mid - 1950s. Research in adaptive control was motivated by a
desire to perform real-time control of pamally or completely unknown systems. This.
attractlve idea led. to some early ingenious, but intuitive schemes. One of these initial
approaches was &muktaneously to estimate the unknown parameters of the system and
generate control signals [40]. However, these earlier schemes did not guarantee the
system’s stability. As system dynamics change such a %ystem can become unstable.or
lead to an unsatxsfactory performance. Recently, parametrlc addptxve control strategles'
based on rigorous stability theorems have been deveioped to overcome the limitations
of earlier schemes.

Current adaptive controi strategles can be dlvxded into two eategories mdlrect and
d1rec£ The indirect approach is based on on-line system : 1dent1fleat10n of the piant and
simultaneous  adjustment of control parameters. Seif—tunmg adaptwe control
strategies, which have become very popular, fall into this category Self~tumng
regulators Seek to generate control laws for unknown systems, which would converge_
to the optamai strategies if the dynamics of the system are known. . :

In general these adaptive controllers consist of three parts: a recurswe parameter
estzmator, a design calculator and a feedback controller with ad;ustable parameters :
Many different versions of self«»tumng control are now available, mamly differing in
controller design prlncxples and on-line parameter estimation method, Some of the
widely used deszgn principles in seif—tumng control entail pole-zero placement
minimum variance control and linear quadratic gaussian control. One important
requirement of the self-tuning control method is that on-line identification must yield
an accurate estimate of the locally linearized' process model, when the system is non-
linear, so that the control design strategy can generate accurate control parameters.

The Direct approach does not require explicit model identification. Instead, a
desired process model is specified and the controller parameters are adjusted so as to
minimise the error between the model and actual system outputs. Model reference
adaptive control falls into this category.

4.2, Adaptlve Neural-Control Architectures .

Psaltis et al. [41] proposed three different Ieammg architectures for adaptlve neural
controllers: indirect learning, generalised learning and specialised learning.

The indirect learning scheme provides a means of generating a feedforward control
law with the inverse model of the plant. A schematzc of this learning architecture is
shown in Figure 3. If a. correct inverse model is established, the output of the overali
system can track the mput commands closely The training is carried out to mmnmse
the error between the output of the neural controller T and the output of the inverse
neurai model of the plant t,. However this scheme aione cannot lead to a satisfactory
controller design, since the neural network model may not neeessanly represent the
actual system. This is because the network has the tendency of converging to a single
value of T when the input and output values of the plant are used for training.

.‘The generalised learning method attempts to produce. an inverse neural model for
the plant by adopting -a specified input space and generating corresponding output
responses. This learning architecture 1s schematically shown in Figure 4. A major
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difficulty of this architecture is that one must choose an input set ¢ during training to
generate outputs @, which are sufficiently close to the desiréd input @. This scheme,
if used for adaptive control, can lead to an improperly trained network and may
require persistent excitation, which can adversely affect the performance of a system.

The specialised learning method is an alternative method of training the network,
as depxcted Figure 5. Training involves using the desired responses @ as input to the
network The network then learns to find plant inputs 1 that drive the system outputs Q
a to the desired @4, by usmg the error between desired and actual responses of the
plant. This architecture addresses the main objectlons to the previous architectures; it
can specially learn in the region of interest and it may be trained on-line by fine tuning
itself, while actually performmg useful work. The weakness of this architecture is that
modifying the weights based on the total error must involve the plant, which normally
is only approximately known.

The spe(:lallsed leammg scheme can be represented as an adaptlve feedforward
control scheme as shown in Figure 6. This type of controller, however, wzll have little
ability to reject disturbances. If a feedback controller is used along with the
feedforward controller, as shown in Figure 7, disturbance rejecuon will be improved.
The feedback controller can be a conventional PID controller or a non-linear neural
controller and the feedforward controller is a neural controller. As learning proceeds,
the error SIgnal will be reduced and the role of the feedforward controller increases.

®, Neural-. T ‘?p" . T . . (pa.
= Network 1 ! Raobot Robot” >
;M
o Inverse
. Neural
; o : ) T Neural
Network 2 m Model
Y =
 Figure 3. Indirect leaming scheme o Fi_gure 4, Geilefal l'e_ar'n‘in'g scheme

A non-linear version of self-tuning control has been proposed that adopts a ANN as
a plant identifier [41], as shown in Figure 8.

Similarly, a non-linear model reference adaptive control architecture employmg a
ANN 'in place of the linear’ controller has been described {4]. In this case, the non-
linear ANN rep}aces the linear controllers. ‘While both direct dnd ‘indirect approaches
have been used for the linear case, only the indirect method ‘with a ANN has been
implemented so far. The non-linear plant dynamics is first identified by an ANN and
the parameters of the controller are then adjusted as shown in Figure 9

_ 5. DISCUSSION AND CONCLUSION
Recent studies have shown"that the effectiveness in robot control systems: have
been concerned with the design and experimentation with new sensors, materials,
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technologies and ‘methods to analyse data, process, signals ‘and.images. Artificial
neural networks are the methods-used successfully in many.robot control systems, ==
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Figure 9. Indirect reference adaptive control with neural network

ANNs enable many important advantages to robotic applications, The use of ANNs
in robot control system is very fascinating from both scientific and technological point
of views. The following features make the ANNs more attractive for robot control
system applications: adaptability and ability to learn, fast real-time operation to reduce
the depebdency for massive computation on serial computers, generalise to novel
conditions, tolerance to noise in the input information, less priori knowledge required,
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ease of integrating with other artificial intelligence techniques such as fuzzy logic,
expert systems and tabu search, and using several integrated structures or/and synergy
of the networks.

However, the traditional control schemes did not guarantee the system’s stability.
As system dynamics change, such a system can become unstable or lead to an
unsatisfactory performance. But adaptive control strategies based on neural networks
have been developed to overcome the limitations of earlier schemes successfully using
the architectures provided in this review.,

In general, MLPs, Hopfield and Recurrent Neural Networks are WIdely employed to
robot control systems.

Although the above properties make ANNs applicable to tackle most of the robotic
problems, ANNs in robot control systems have also some drawbacks that may be
encountered in, some applications. These drawbacks are siow convergence during
training, requiring large input data set for complex systems.
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