A TOPOLOGICAL APPLICATION OF THE MONODROMY GROUPOID ON PRINCIPAL BUNDLES

Osman Mucuk Erciyes University, Faculty of Science and Art, Department of Mathematics Kayseri 38039, Turkey

Abstract-The idea of monodromy groupoid we deal here is due to Pradines [1]. An application of the monodromy groupoid on principal bundles was earlier given in [2]. In this paper, a topological version of this application is given.

Keywords-Monodromy groupoid, principal bundle, groupoid action

1. INTRODUCTION

A groupoid is a small category such that every morphism has an inverse. A topological groupoid is a groupoid in which both sets of objects and morphisms have topologies such that all maps of the groupoid structure are continuous.

Let G be a topological groupoid and W an open neighbourhood of the identities in G. Then we have a groupoid M(G,W) called *monodromy groupoid* as given in Definition 3.10.

In the case where G is a topological group, which can be considered as a topological groupoid, this problem was studied in [3]. The monodromy groupoid of a locally trivial topological groupoid was also studied by Mackenzie in [4]. He constructed the monodromy groupoid directly from the universal covers of the stars G_r 's.

As an example if X is a topological space then $G = X \times X$ becomes a topological groupoid. Further if X is semilocally simply connected then we can choose a suitable open subset W of G such that the monodromy groupoid M(G,W) of the pair (G,W) is the fundamental groupoid $\pi_1 X$. If G is a topological group which is semilocally simply connected then the monodromy groupoid M(G,W) of (G,W) for a suitable neighbourhood W of the identity is just the universal cover of G.

In this paper we prove that if $p: E \to X$ is a principal bundle in the sense of Definition 3.1, then the topological monodromy groupoid M(G, W) with $G = X \times X$ acts topologically on the topological space E.

2. GROUPOIDS AND TOPOLOGICAL GROUPOIDS

Definition 2.1 A groupoid consists of two sets O_G and G called respectively the set of objects and the set of elements or morphisms of the groupoid together with two maps $\alpha, \beta: G \to O_G$, called respectively the source and target maps, a map $\varepsilon: O_G \to G, x \mapsto \varepsilon(x) = 1_x$ called the object inclusion map, where 1_x acts as identity at x, and a partial multiplication $G_\alpha \times_\beta G \to G$, $(b,a) \mapsto ba$ defined on

$$G_{\alpha} \times_{\beta} G = \{(b, a) \in G \times G : \alpha(b) = \beta(a)\}.$$

These maps are subject to the following conditions:

- (i) $\alpha(ba) = \alpha(a)$ and $\beta(ba) = \beta(b)$ for each $(b, a) \in G_{\alpha} \times_{\beta} G$;
- (ii) c(ba) = (cb)a for all $c, b, a \in G$ such that $\alpha(b) = \beta(a)$ and $\alpha(c) = \beta(b)$;
- (iii) $\alpha(1_x) = \beta(1_x) = x$ for each $x \in O_G$, where 1_x is the identity at x;
- (iv) $a1_{\alpha(a)} = a$ and $1_{\beta(a)}a = a$ for all $x \in O_G$ and;
- (v) each $a \in G$ has an inverse a^{-1} such that $\alpha(a^{-1}) = \beta(a)$, $\beta(a^{-1}) = \alpha(a)$ and $a^{-1}a = 1_{\alpha(a)}$, $aa^{-1} = 1_{\beta(a)}$.

If (G, O_G) is a groupoid we say G is a groupoid on O_G . For a groupoid G, we write G_x for $\alpha^{-1}(x)$ and G(x, y) for $\alpha^{-1}(x) \cap \alpha^{-1}(y)$, where $x, y \in O_G$.

In a groupoid G, the set O_G is mapped bijectively to the set of identities by $\varepsilon:O_G\to G$. So we sometimes write O_G for the set of identities.

Example 2.2 Let $p: E \to X$ be a continuous map. Let S_p denote the set of all bijections $f: E_x \to E_y$ for $x, y \in X$, where $E_x = p^{-1}(x)$. Then S_p becomes a groupoid on X with respect to the following structure: For a bijection $f: E_x \to E_y$ the source and target of f are defined by $\alpha(f) = x$, $\beta(f) = y$. The identity at $x \in X$ is the identity map 1_{E_x} and the partial multiplication is the composition of the maps. The inverse of $f \in S_p$ is just inverse map. This groupoid S_p is called *symmetry groupoid* of $p: E \to X$

Definition 2.3 Let G and H be groupoids. A *local morphism* from G to H is a map $f:W\to H$ from a subset W of G containing all the identities in G such that for $a\in W$, $\alpha_H(fa)=f(\alpha_Ga)$, $\beta_H(fa)=f(\beta_Ga)$, and f(ba)=f(b)f(a) whenever $b,a\in W$, ba is defined and belongs to W.

A morphism from G to H is a pair of maps $f:G\to H$ and $O_f:O_G\to O_H$ such that $\alpha_H\circ f=O_f\circ\alpha_G$, $\beta_H\circ f=O_f\circ\beta_G$ and f(ba)=f(b)f(a) for all $(b,a)\in G_\alpha\times_\beta G$.

For such a morphism we simply write $f: G \to H$.

The following notions of subgroupoid, normal subgroupoid, and quotient groupoid are from [5] and [6].

Definition 2.4 Let G be a groupoid. A subgroupoid of H is a pair of subsets $H \subseteq G$ and $O_H \subseteq O_G$ such that $\alpha(H) \subseteq O_H$, $\beta(H) \subseteq O_H$, $1_x \in H$ for all $x \in O_H$ and H is closed under the partial multiplication and the inversion in G.

A normal subgroupoid of G is a subgroupoid N of G such that $O_N = O_G$ and for each $x, y \in O_G$ and $a \in G(x, y)$ we have aN(x) = N(y)a. Let G be a groupoid and N a normal subgroupoid of G such that $N(x, y) = \emptyset$ if $x \neq y$. Define a groupoid G/N on O_G by $G/N(x, y) = \{aN(x) : a \in G(x, y)\}$ for any $x, y \in O_G$ with the multiplication that if

 $a \in G(x, y)$ and $b \in G(y, z)$ then bN(y)aN(x) = baN(x)N(x) = baN(x). This groupoid is called quotient groupoid of G by N.

The construction of the free groupoid is as follows ([6]): Let W be a directed graph. Let $p = (a_n, ..., a_1)$ be a sequence of the edges such that the target of a_i is equal to the source of a_{i+1} . Such a p is called directed path. Write ()_x for the empty path associated to x. The composition of two paths $p = (a_n, ..., a_1)$ and $q = (b_m, ..., b_1)$ is defined by $qp = (b_m, ..., b_1, a_n, ..., a_1)$ if the target of a_n is the source of b_1 . Then we have a category P(W). Let \hat{a} denote the converse path of a in W. Define an equivalence relation on P(W) as follows: Two directed paths p, q are equivalent if we can obtain one from the other by adding or deleting a number of $a\hat{a}$ or a. This is an equivalence relation. The set of equivalence classes [p] is denoted by F(W). A groupoid multiplication on F(W) is defined by [q][p]=[qp]. So F(W) becomes a groupoid which is called free groupoid on the graph W.

Let G be a groupoid and R a subgroupoid of G. By the normal subgroupoid N(R) generated by R we mean the smallest normal groupoid including R. A direct construction of N(R) is given in [5] as follows: Let G be a groupoid and R a subset of G such that $O_R = O_G$ and $R(x,y) = \emptyset$ if $x \neq y$. Let N(x) be the set of all elements $r = a_n^{-1} r_n a_n ... a_1^{-1} r_1 a_1$ for $a_i \in G(x,x_i)$ and r_i or r_i^{-1} an element of $R(x,x_i)$. Let N(x) be the family of N(x) for all $x \in O_G$. Then N(R) is a normal subgroupoid of G such that $O_{N(R)} = O_G$ and $NR(x,y) = \emptyset$ if $x \neq y$. N(R) is called the normal subgroupoid generated by R.

Definition 2.5 ([4]) A topological groupoid is a groupoid G in which the both sets of objects and morphisms have topologies such that the following maps are continuous:

- (i) the partial multiplication $G_{\alpha} \times_{\beta} G \to G$, $(b,a) \mapsto ba$, where $G_{\alpha} \times_{\beta} G$ has the relative topology;
- (ii) the inverse map $G \rightarrow G$, $a \mapsto a^{-1}$;
- (iii) the source and target maps $\alpha, \beta: G \to O_G$;
- (iv) the object inclusion map $\varepsilon: O_G \to G, x \mapsto 1_x$.

For example a topological group can be thought as a topological groupoid with only one object. An other example is that if X is a topological space then $X \times X$ is a topological groupoid on X in which each pair (y,x) is a morphism from x to y and the groupoid multiplication is defined by $(z,y) \circ (y,x) = (z,x)$. The inverse of (y,x) is (x,y) and the identity 1_x at $x \in X$ is (x,x). This groupoid $G = X \times X$ is called *trivial groupoid*.

3. TOPOLOGICAL ACTION AND PRINCIPAL BUNDLE

The following definition comes from [7].

Definition 3.1 Let E and X be topological spaces and let $p:E \to X$ be a continuous surjective map and G a topological group acting effectively on E by

198 O. Mucuk

 $G \times E \to E$, $(a,e) \mapsto ae$. By effectively we mean that if $b,a \in G$, and for all $e \in E$, ae=be then a=b. Then the triple (E,X,p) is called a *principal G-bundle* if the following conditions are satisfied.

(i) The fibres of p are equal to the orbits of G, that is, for $e, e' \in E$ the statement p(e) = p(e') is equivalent to that there is an element $a \in G$ such that e' = ae.

(ii) The map $\delta: E \times_p E \to G$, $(e, ae) \mapsto a$ is continuous, where

$$E \times_{p} E = \{(e, e') \in E \times E : p(e) = p(e')\}.$$

(iii) There is an open cover $\{U_i:i\in I\}$ of X and for each $x\in X$ there is a continuous map $s_i:U_i\to E$ such that ps_i is the identity at U_i . Such a map $s_i:U_i\to E$ is called *local section*.

We call the set of these local sections $s_i: U_i \to E$ at a sof sections and the maps $s_{ij}: U_i \cap U_j \to G$ defined by $s_{ij}(x)s_i(x) = s_j(x)$ are called transition functions.

Example 3.2 ([4]) Let $p: E \to X$ be a principal G-bundle. Then G acts on $E \times E$ by the action $G \times (E \times E) \to E \times E$ with $a(e_2, e_1) = (ae_2, ae_1)$ induced by the action of G on E.

Denote the orbit of (e_2, e_1) by $[e_2, e_1]$ and the set of orbits by $\frac{E \times E}{G}$. Then $\frac{E \times E}{G}$ is a

groupoid on X with respect to the following structure: The source and target maps are defined by $\alpha[e_2,e_1]=p(e_1)$, $\alpha[e_2,e_1]=p(e_2)$, the object inclusion map is defined by $a \in X$, $a \in$

 $\varepsilon: X \to \frac{E \times E}{G}$, $x \mapsto 1_x = [e, e]$, where e is any element of $p^{-1}(x)$ and the partial multiplication is defined by

$$\left[e_3,e_2'\right] \circ \left[e_2,e_1\right] = \left[e_3,e_1\delta\left(e_2',e_2\right)\right].$$

Here $\delta: E \times_p E \to G$ is the map defined by $(e,ae) \mapsto a$. The condition $\alpha(\left[e_3,e_2^{'}\right]) = \beta(\left[e_2,e_1\right])$ ensures that $\left(e_2^{'},e_2^{'}\right) \in E \times_p E$. Note that one can always choose representatives so that $e_2^{'} = e_2$ and the multiplication is then simply $[e_3,e_2] \circ [e_2,e_1] = [e_3,e_1]$. The inverse of $[e_2,e_1]$ is $[e_1,e_2]$. The groupoid $\frac{E \times E}{G}$ is called the groupoid associated to the principal G-bundle $p:E \to X$. Then $\frac{E \times E}{G}$, with the identification topology from $E \times E \to \frac{E \times E}{G}$ $(e_2,e_1) \mapsto [e_2,e_1]$ becomes a topological groupoid.

Example 3.3 Let $p: E \to X$ be a principal G-bundle and for $x \in X$, $E_x = p^{-1}(x)$. Let us consider the symmetry groupoid S_p of $p: E \to X$. Then there is an isomorphism

 $\phi: \frac{E \times E}{G} \to S_p$ of groupoids defined by $(\phi[e,e'])(e'') = e''(e'e^{-1})$, where $e'e^{-1}$ represents the element $a \in G$ such that ae = e'. So S_p becomes a topological groupoid.

The following concept of locally trivial topological groupoid is due to Ehresmann [7].

Definition 3.4 Let G be a topological groupoid on $X = O_G$. Then G is called *locally trivial* if there exists a point x and an open cover $\{U_i : i \in I\}$ of X and for each $i \in I$ there is a continuous map $s_i : U_i \to G_x$ such that $\beta(s_i(y)) = y$, for all $y \in U_i$.

Example 3.5 ([4]) Let $p: E \to X$ be a principal G-bundle. Then the topological groupoid $\frac{E \times E}{G}$ associated to the bundle $p: E \to X$ is locally trivial. For if $s: U \to E$ is a local section of the principal G-bundle $p: E \to X$, then

$$U \to \left(\frac{E \times E}{G}\right)_{p(e_0)}, x \mapsto [s(x), e_0]$$

is a local section of $\frac{E \times E}{G}$. So the symmetry groupoid S_p of $p: E \to X$, which is isomorphic to $\frac{E \times E}{G}$, becomes a locally trivial topological groupoid.

Definition 3.6 Let G and H be topological groupoids. A *local morphism* of topological groupoids is a continuous map $f:W\to H$ defined on an open neighbourhood of the identities in G such that

for $a \in W$, $\alpha_H(fa) = f(\alpha_G a)$, $\beta_H(fa) = f(\beta_G a)$, and f(ba) = f(b)f(a) whenever $b, a \in W$, ba is defined and belongs to W.

A morphism from G to H is a pair of continuous maps $f:G\to H$ and $O_f:O_G\to O_H$ such that $\alpha_H\circ f=O_f\circ \alpha_G$, $\beta_H\circ f=O_f\circ \beta_G$ and f(ba)=f(b)f(a) for all $(b,a)\in G_\alpha\times_\beta G$.

Example 3.7 Let G be a locally trivial topological groupoid with an atlas of sections $\{s_i: U_i \to G_x\}_{i \in I}$ which has the property that each transition map $s_{ij}: U_i \cap U_j \to G$ defined by $s_{ij}(x)s_i(x)=s_i(x)$ is constant. Let

$$W = \bigcup_{i \in I} (U_i \times U_i)$$

and define $f: W \to G$ by $f(y,x) = s_i(y)(s_i(x))^{-1}$ whenever $(y,x) \in U_i \times U_i$. Since the transition functions are constant, f is well defined and so is a local morphism of topological groupoids (see [4] for details).

Definition 3.8 ([6]) Let G be a topological groupoid with $O_G = X$, E a topological space and $p: E \to X$ a continuous function. Let $G_{\alpha} \times_p E$ denote the subset

$$\{(a,e)\in G\times E:\alpha(a)=p(e)\}$$

of $G\times E$. A topological action on E via p is a continuous function $G_{\alpha}\times_{p}E\to E,\,(a,e)\mapsto ae$ such that

- (i) $p(ae) = \beta(a)$ for all $(a,e) \in G_{\alpha} \times_{p} G$;
- (ii) b(ae) = (ba)e for all $(b, a) \in G_{\alpha} \times_{\beta} G$;
- (iii) $(1_{pe})e = e$ for all $e \in E$.

We recall the following definition which is due to Ehresmann [7].

Definition 3.9 Let G be a groupoid and $O_G = X$ a topological space. An *admissible local section* of G is a function $s: U \to G$ from an open subset of X such that

- (i) $\alpha s(x) = x$ for all $x \in U$;
- (ii) $\beta s(U)$ is open in X; and
- (iii) β s maps U homeomorphically to β s(U).

Let G be a groupoid, W a subset of G such that $O_G = X \subseteq W$ and let W have the structure of topological space. We give X the subspace topology. We say that (α, β, W) has enough continuous admissible local sections if for each $a \in W$ there is an admissible local section $s: U \to G$ of G such that

- (i) $s\alpha(a) = a$;
- (ii) $s(U) \subseteq W$;
- (iii) s is continuous from U to W.

For the concepts of free groupoid, normal subgroupoid and quotient groupoid we refer to [5] (see also [6]).

Let G be a topological groupoid and W an open neighbourhood of the identities in G. So W has a directed graph structure inherited from the groupoid multiplication of G. Hence we have a free groupoid F(W) on W. Let N be the normal subgroupoid of F(W) generated by the elements of F(W) in the form $[ba]^{-1}[b][a]$ for $a,b\in W$ such that ba is defined and $ba\in W$. Let M(G,W) be the quotient groupoid F(G,W)/N of F(W) by N. So we have an inclusion $\tilde{\iota}:W\to M(G,W)$ and by the universal property of F(W) we have a projection map $p:M(G,W)\to G$ induced by the inclusion map $i:W\to G$. The inclusion map $\tilde{\iota}:W\to M(G,W)$ has the universal property that if $f:W\to H$ is a local morphism of groupoids as defined in Definition 2.3, then we have a morphism of groupoids $\phi:M(G,W)\to H$ such that $\phi\tilde{\iota}=f$. This groupoid M(G,W) is called monodromy groupoid of the pair G(G,W). In [8] the monodromy groupoid $G(G,W)\to G$ is reduced to a universal cover on each fibre G(G,W). Lie groupoid version of this problem is given in [9] and [10]. We give this construction as a definition.

Definition 3.10 Let G be a topological groupoid and W an open subset of G such that $O_G \subseteq W$. Let F(W) be the free groupoid on W and let N be the normal subgroupoid of F(W) generated by the elements in the form $[ba]^{-1}[b][a]$ for $a, b \in W$ such that ba is

defined and $ba \in W$. Then the quotient groupoid F[G,W]/N is called *monodromy* groupoid of G for W and denoted by M(G,W)

Theorem 3.11 ([8]) Let G be a topological groupoid and W an open subset of G such that (i) $O_G \subseteq W$, that is, W contains all the identities;

- (ii) $W = W^{-1}$, that is, if $a \in W$, then we have $a^{-1} \in W$;
- (iii) (α_w, β_w, W) has enough continuous admissible local sections.

Then the monodromy groupoid M(G,W) has a structure of topological groupoid such that $\widetilde{W} = \widetilde{\iota}(W)$ is an open subset of M(G,W) and for any continuous local morphism $f:W \to H$ there exists a morphism of topological groupoids $\phi: M(G,W) \to H$ such that $f = \phi \widetilde{\iota}$

We now give our main theorem.

Theorem 3.12 Let $p: E \to X$ be a principal G-bundle such that X is a topological manifold and each transition map $s_{ij}: U_i \cap U_j \to G$ defined by $s_{ij}(x)s_i(x) = s_j(x)$ is constant. Then an open subset W of the topological groupoid $G = X \times X$ can be chosen such that the monodromy groupoid M(G,W) is a topological groupoid and acts topologically on the topological space E via p.

Proof: Let $G = X \times X$ be the trivial topological groupoid defined above and $\{s_i : U_i \to E\}_{i \in I}$ an atlas of sections of the principal bundle $p : E \to X$. Let

$$W = \bigcup_{i \in I} (U_i \times U_i).$$

We now prove that the pair (G, W) satisfies the conditions of Theorem 3.11:

- (i) Since $(x,x) \in W$ for all $x \in O_G = X$, we have $X = O_G \subseteq W \subseteq G$.
- (ii) If $(y, x) \in W$, then $(x, y) \in W$, that is, $W = W^{-1}$.
- (iii) To show that the pair (α, β, W) has enough continuous admissible local sections let $(y,x) \in W$. Then $\alpha(y,x) = x$ and $\beta(y,x) = y$ and by the definition of W, we have $(y,x) \in W$ for an $i \in I$. Choose open neighbourhoods U_x and V_y of x and y respectively such that $h: U_x \to R^n$ and $k: V_y \to R^n$ are manifold charts. Let $U = U_x \cap U_i$ and $V = V_y \cap U_i$. Choose neighbourhoods U' and V' of V' and V' of V' and V' respectively in V' and V' such that V' = U' h(x) + k(y) and define a homeomorphism

$$f': U' \to V', a \mapsto a - h(x) + k(y).$$

in which $h(x) \mapsto k(y)$. Since $h: U \to h(U)$ and $k: V \to k(V)$ are homeomorphisms the sets $h^{-1}(U')$ and $k^{-1}(V')$ are open neighbourhoods of x and y respectively in U and V. Then the map $f: h^{-1}(U') \to k^{-1}(V'), z \mapsto (k^{-1}f'h)(z)$

is a homeomorphism and f(x) = y. Now define a continuous admissible local section $s: U \to W$, $z \mapsto (f(z), z)$. So (α, β, W) has enough continuous admissible local sections.

So by Theorem 3.11 the monodromy groupoid M(G,W) is a topological groupoid. On the other hand by Example 3.5 the symmetry groupoid S_p of $p:E\to X$ is a locally trivial topological groupoid on X and by Example 3.7 there exists a local morphism $f:W\to S_p$ of topological groupoids. Again by Theorem 3.11 for this local morphism $f:W\to S_p$ we have a morphism $\phi:M(G,W)\to S_p$ of topological groupoids. This gives a continuous map $M(G,W)_{\alpha}\times_p E\to E$, which means that the topological groupoid M(G,W) acts topologically on E.

REFERENCES

- 1 J. Pradines, Théorie de Lie pour les Groupoides différentiables, relation entre propriétés locales et globales, Comptes Rendus Acad. Sci. Paris 263, 907-910, 1966.
- 2 O. Mucuk, An application of the monodromy groupoid, Tukish Journal of Math. 21, 227-234, 1997.
- 3 L. Douady and M. Lazard, Espaces fibré en algébres de Lie et en groupes, Invent. Math. 1, 133-151, 1966.
- 4 K.C.H. Mackenzie, *Lie groupoids and Lie algebroid in differential geometry*, London Math. Soc. Lecture Notes Series 124, Cambridge University Press, 1988.
- 5 R. Brown, Topology: A geometric account of general topology, homotopy types and the fundamental groupoid, Ellis Horwood, Chester, 1988.
- 6 P.J. Higgins, Categories and groupoids, Van Nostrand, New York, 1971.
- 7 C. Ehresmann, Catégories topologiques et catégories diférentiables, Coll. Géom. Diff. Glob. Bruxelles, 137-150, 1959.
- 8 O. Mucuk, Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, Bangor 1993.
- 9 R. Brown and O. Mucuk, *Monodromy groupoid of a Lie Groupoid*, Cah. Top. Géom.Diff. Cat. **36**, 345-370, 1995.
- 10 R. Brown and O. Mucuk, *Foliations, Locally Lie groupoids and Holonomy*, Cah. Top. Géom.Diff. Cat. 37, 61-67, 1996.