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A TOPOLOGICAL APPLICATION OF THE MONODROMY GROUPOID ON
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Abstract-The idea of monodromy groupoid we deal here is due to Pradines [1] . An
application of the monodromy groupoid on principal bundles was earlier given in [2]. In
this paper, a topological version of this application is given. ‘
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1. INTRODUCTION

A groupoid is a small category such that every morphism has an inverse. A
topological groupoid is a groupoid in which both sets of objects and morphisms have
topologies such that all maps of the groupoid structare are continuous.

Let G be a topological groupoid and W an open neighbourhood of the identities in
G. Then we have a groupoid M (G,W) called monodromy groupoid as given in Definition
3.10.

In the case where G is a topological group, which can be considered as a
topological groupoid, this problem was studied in [3]. The monodromy groupoid of a
locally trivial topological groupoid was also studied by Mackenzie in [4]. He constructed
the monodromy groupoid directly from the universal covers of the stars G, 's.

"As an example if X is a topological space then G =X XX becomes a topological
groupoid. Further if X is semilocally simply connected then we can choose a suitable open
subset W of G - such that the monodromy groupoid M (G,W) of the pair (G,W) is the
fundamental groupoid 7, X . If G is a topological group which is semilocally simply
connected then the monodromy groupoid M(G,W) of (G,W) for a suitable
neighbourhood W of the identity is just the universal cover of G.

In this paper we prove that if p:E — X is a principal bundle in the sense of
Definition 3.1, then the topological monodromy groupoid M (G,W) with G =X xX acts
topologically on the topological space E.

2. GROUPOIDS AND TOPOLOGICAL GROUPOIDS
Definition 2.1 A groupoid consists of two sets O, and G called respectively the set of

objects and the set of elements or morphisms of the groupoid together with two maps
a,f:G->0,;, called respectively the source and target maps, a map

£:0; ~> G,x+> €(x)=1, called the object inclusion map, where 1_ acts as identity at x,
and a partial multiplication G, X; G — G, (b,a)> ba defined on



196 | Q. Mucuk

G, %; G={b,a)e GXG:a(b)= Pla)}.
These maps are subject to the following conditions:
(i) a(ba)=afa) and B(ba)= B(b) for each (b,a)e G, %, G ;
(ii) c(ba)=(cb)a for all c,b,ae G such that a(p)= fa)and alc)= B();
(i) (1, )= B(1,)= x foreach x& O, where 1_ is the identity at x;
(v) al,,y =
(v) each ae G has an inverse a™ such that a(a“‘)= Bla), B(a"f): afa) and a™'a =1,

-1
ad e ].ﬁ(a).

=a and lﬁ(a}a =g for all xe€ O, and;

If (G,0, ) is a groupoid we say G is a groupoid on O, . For a groupoid G, we write
G, for &' (x) and G{x, y) for a™'(x)na'(y), where x,y€ O,.

In a groupoid G, the set O, is mapped bijectively to the set of identities
bye:0, — G. So we sometimes write O, for the set of identities.
Example 2,2 Let p: £ — X be a continuous map. Let S , denote the set of all bijections
fiE, > E for x,ye X, where E_ = p"(x). Then S becomes a groupoid on X with
respect to the following structure: For a bijection f:E, — E, the source and target of f
are defined by o{f)=x, B(f)=y. The identity at x& X is the identity map 1, and the
partial multiplication is the composition of the maps. The inverse of fe& § » 18 Just inverse
map. This groupoid S, is called symmetry groupoidof p:E — X

Definition 2.3 Let G and H be groupoids. A local morphism from G to H is a map
f:W — H from a subset W of G containing all the identities in G such that for ac W,

a, (fa)= flega), B,(fa)= f(Bsa), and f(ba): f(b)f(a) whenever bac W, ba is
defined and belongs to W.
A morphism from G to H is a pair of maps f:G— H and O,:0, — OH such
that @, o f =0, 00tg, Pyof =0, 0P, and flba)= f{b)f{a) forall (b,a)@ G,x, G.
For such a morphism we simply write f:G - H . | .

The following notions of subgroupoid, normal subgroupmd and quotlent groupmd
are from [5] and [6].
Definition 2.4 Let G be a groupoid. A subgroupoid of H is a pair of subsets H C G and

0, € O, such that a(H)c 0y, BH)O, ,1,€H forall x€ 0, and H is closed

under the partial multiplication and the inversion in G.
A normal subgroupoid of G is a subgroupoid N of G such that O, = O, and for

each x,ye O, and ae G(x,y) we have aN(x)=N(y).Let G be a groupoid and N a
normal subgroupoid of G such that N(x,y)=@ if x # y. Define a groupoid G/N on O, by
G/N(x,y)={aN(x):ae G(x,y)} for any x,ye O, with the multiplication that if



A Topological Application of the Monodromy Groupoid on Principal Bundles 197

ae G(x,y) and be G(y, z) then BN(y)aN(x)=baN(x)N(x)=baN(x). This groupoid is
called quotient groupoid of G by N.

The construction of the free groupoid is as follows ([6]): Let W be a directed graph.
Let p=(a, .-, } be a sequence of the edges such that the target of a; is equal to the

source of a,,,. Such a p is called directed path. Write ( )x for the empty path associated to
x. The composition of two paths p=(a,,.,q,) and g=(b, ,...,b,) is defined
bygp = (bm,...,bl,an,...,al) if the target of a, is the source of b,. Then we have a category

P(W). Let @ denote the converse path of @ in W. Define an equivalence relation on P(W )

as follows: Two directed paths p, g are equivalent if we can obtain one from the other by
adding or deleting a number of @d or da. This is an equivalence relation. The set of

equivalence classes [p] is denoted by F (W) A groupoid multiplication on F (W) is
defined by [g][p]=[gp]. So F(W) becomes a groupoid which is called free groupoid on the
graph W.

Let G be a groupoid and R a subgroupoid of G. By the normal subgroupoid
N(R)generated by R we mean the smallest normal groupoid including R. A direct

construction of N(R) is given in [5] as follows: Let G be a groupoid and R a subset of G
such that O, =0, and R{x,y)=@ if x#y. Let N(x) be the set of all elements
r=a,'ra,.a ra for ¢,€ G(x,x,} and 7, or r,”' an element of R(x,x,). Let N(x) be
the family of N(x) for all x€ O,. Then N (R) is a normal subgroupoid of G such that
Oy =0 and NR(x,y)=@ if x#y. N(R) is called the normal subgroupoid
generated by R. :
Definition 2.5 ([4]) A topological groupoid is a groupoid G in which the both sets of
objects and morphisms have topologies such that the following maps are continuous:

(1) the partial multiplication G, x, G — G, (b,a)r-> ba where G, x s G has the relative
topology;

(ii) the inverse map G — G, a+> a™;

(iii) the source and target maps o, :G — Og;

(iv) the object inclusion map €: 0, = G, x> 1.

For example a topological group can be thought as a topelogical groupoid with only
one object. An other example is that if X is a topological space then X X X 1is a topological
groupoid on X in which each pair (y,x) is a morphism from x to y and the groupoid
multiplication is defined by (z,¥)(y,x)={z,x). The inverse of (y,x) is (x,y) and the
identity 1, at xe X is (x,x). This groupoid G = X x X is called trivial groupoid.

3. TOPOLOGICAL ACTION AND PRINCIPAL BUNDLE
The following definition comes from [7].
Definition 3.1 Let E and X be topological spaces and let p:E— X be a continuous

surjective map and G a topological group acting effectively on E by
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GxrxE—=E, (a,e)km} ae. By effectively we mean that if b,ae G, and for all eec E ,
ae=be then a=b. Then the triple (£, X, p) is called a principal G-bundie if the following

conditions are satisfied.
(i) The fibres of p are equal to the orbits of G, that is, for e,¢’c E the statement

ple)= ple) is equivalent to that there is an element a € G such that ¢’ = ae.
(ii) The map & : E X p' E—G, (e, ae)H a is continuous, where
EX, E ={(e,e’)e ExE: ple)= ple)}.
(iii) There is an open cover {U, :ie I'} of X and for each x€& X there is a continuous map
s;:U, — E such that ps, is the identity at U,. Such a map s, :U; —» E is called local
section.
We call the set of these local sectionss, : U, — E atlas of sections and the maps

55U, NU; — G defined by s, (x)s,(x)=s ; {x) are called transition functions.

Example 3.2 ([4]) Let p: E— X be a principal G-bundle. Then G acts on EXE by the
action GX(EXE)— EXE with ale,,e, )= (ae,,ae,) induced by the action of G on E.

xFE ExE

Denote the orbit of (e,,¢,) by [ez,el] and the set of orbits by ET Then isa

groupoid on X with respect to the following structure: The source and target maps are
defined by ale,.e,|=ple,), ale,.e,]= ple,), the object. inclusion map is defined by

ExFE

£:X - s x> 1 :{e,e], where e is any element of p'l(x) and the partial

multiplication is defined by

|:e3,82 }o le,.e, 1= [83,815(62 R H .

Here 6:E X,E—G is the map defined by (e,ae)Ha. The condition

(x([es,ez D = B(le,,e, ]) ensures that (ez ,ez)e-:— Ex, E. Note that one can always choose

’

representatives so that e, =e, and the multipliéation is then simply

ExE is called

[.23,32 I [ez,el]m [ea,ex]. The invérse of [ez,el] is [el,ez] . The groupoid

the groupoid associated to the principal G-bundle p:E— X . Then Ex

E  with the

ExE (ez,e;)b-) [ez,e1 ] becomes a topological

identification topology from EXE —>

groupoid.
Example 33 Let p: E - X be a principal G-bundle and for xe X, E, = p™ (x) Let us
consider the symmetry groupoid S, of p:E->X. Then there is an isomorphiSm
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¢ EZE — S, of groupoids defined by (ole, e'])(e")me"(e'e_l), where e’e™ represents

the element a€ G such that ae=¢".So S , becomes a topological groupoid.
The following concept of locally trivial topological groupoid is due to Ehresmann

71.

;)ifinition 3.4 Let G be a topological groupoid on X =0, . Then G is called locally
trivial if there exists a point x and an open cover {U, :ie I'} of X and for each i € I there is
a continuous map s, : U, — G, such that B(s,(y))=y, forall ye U,.

Example 3.5 ([4]) Let p: F — X be a principal G-bundle. Then the topological groupoid

associated to the bundle p: E— X is locally trivial. For if s:U — E is a local

section of the principal G-bundle p: E — X , then

U%[EXE] X [s(x),eﬂ]
G ple)

is a local section of E. So the symmetry groupoid § of p:E-» X, which is

isomorphic to ExE , becomes a locally trivial topological groupoid.

Definition 3.6 Let G and H be topological groupoids. A local morphism of topological
groupoids is a continuous map f:W > H defined on an open neighbourhood of the
identities in G such that

for aeW, ay(fa)=floga), By(fa)=f(Bsa). and flba)=f(b)f(a) whenever
b,ac W, ba is defined and belongs to W.

A morphism from G to H is a pair of continuous maps f:G—>H and
0,:0;, — 0, such that 0y o f =0, o0tg, Byof=0,0P; and f(ba)=f(b)f(a) for
all (b,a)e G, %, G.

Example 3.7 Let G be a locally trivial topological groupoid with an atlas of sections
{s,:U, > Gx}m which has the property that each tramsition map s5,:U,NU; -G
defined by Sy (x)s,. (x)= §; (x) is constant. Let
w=|JW,xU,)
ief
and define f:W —G by f(y,x)=s5(»(s(x))" whenever (y,x)e U, xU,. Since the

transition functions are constant, fis well defined and so is a local morphism of topological
groupoids (see [4] for details). .
Definition 3.8 ([6]) Let G be a topological groupoid with O; = X , F a topological space

and p:E — X acontinuous function. Let G,X,E denote the subset
{la,e)e GXE :ala)= ple)}
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of GXE. A topological action on E via p is a continuous function
G,X,E—E, (a,e)— ae such that

@) plae)=Bla) for all (a,e)eG,x,G;

(ii) b(ae) = (bae forall (b,a)eG,x,G;

(i) (1, p=e forall e€ E.

We recall the following definition which is due to Ehresmann [7].

Definition 3.9 Let G be a groupoid and O, = X a topological space. An admissible local
section of G is a function s:U — G from an open subset of X such that

(i) as(x)=x forall xe U;

(ii) Bs(U) is open in X; and

(iii) fs maps U homeomeorphically to SBs{V).

Let G be a groupoid, W a subset of G such that O, =X cW and let W have the
structure of topological space. We give X the subspace topology. We say that (oc,ﬁ,W)
has enough continuous admissible local sections if for each a€ W there is an admissible
local section s:U — G of G such that
(1) sala)=a;

i  sU)ew;
(iii}  sis continuous from Uto W.

For the concepts of free groupoid, normal subgroupoid and quotient groupoid we
refer to [5] (see also [6]).

Let (7 be a topological groupoid and W an open neighbourhood of the identities in
G. So W has a directed graph structure inherited from the groupoid multiplication of G.
Hence we have a free groupoid F (W) on W. Let N be the normal subgroupoid of F (W)
generated by the elements of F(W) in the form [ba]"”1 [b][a] for a,be W such that ba is
defined and bae W . Let M(G,W) be the quotient groupoid F (G,W)/N of F(W) by N.
So we have an inclusion T:W — M(G,W) and by the universal property of F(W) we
have a projection map p:M(G,W)— G induced by the inclusion map i:W — G . The
inclusion map 7 :W — M(G,W) has the universal property that if f:W ~» H is a local
morphism of groupoids as defined in Definition 2.3, then we have a morphism of groupoids
¢:M(G,W)~ H such that¢7 = f. This groupoid M(G,W) is called monodromy
groupoid of the pair (G;W). In [8] the monodromy groupoid M (G,W) was given a
topological groupoid structure such that the projection map p:M(G,W)— G is reduced
to a universal cover on each fibre M(G,W), . Lie groupoid version of this problem is

given in {9] and [10]. We give this construction as a definition.
Definition 3.10 Let G be a topological groupoid and W an open subset of G such that
Oy cW. Let F(W) be the free groupoid on W and let N be the normal subgroupoid of

F (W) generated by the elements in the form [pa]”[b]la] for a,be W such that ba is
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defined and bac W . Then the quotient groupoid F[G,Wl/N is called monodromy
groupoid of G for W and denoted by M (G, W)
Theorem 3.1% ([8]) Let G be a topological groupoid and W an open subset of G such that
(i) O; ¢ W, thatis, W contains all the identities;
() W =W, that is, ifac W, then we have a™ e W ;
(i) (aW » By ,W) has enough continuous admissible local sections.
Then the monodromy groupoid M (G,W) has a structure of topological groupoid such that
W=T(W) is an open subset of M (G.W) and for any continuous local morphism
f W > H there exists a morphism of topological groupoids¢ . M (G,W)—» H such that
f=0T

We now give our main theorem.
Theorem 3.12 Let p:E— X be a principal G-bundle such that X is a topological
manifold and each  transition map s,:U,N\U, > G defined by s; (x)s,(x)=s j(x) Is
constant. Then an open subset W of the topological groupoid G =X x X can be chosen
such that the monodromy groupoid M (G,W) is a topological groupoid and acts
topologically on the topological space E via p.

Proof: Let G=XXxX be the trivial topological groupoid defined above and
{s,:U, - E}ie , an atlas of sections of the principal bundle p: F — X . Let

w =], xU,).
el
We now prove that the pair (G, W) satisfies the conditions of Theorem 3.11:
(i) Since (x,x)e W forall xe O; =X , wehave X =0, CW CG .
(i) If (y,x)e W, then (x,y)e W, thatis, W =W,
(iili) To show that the pair (o, 8,W) has enough continuous admissible local sections let
(y,x)e W. Then afy,x)=x and B(y,x)=yand by the definition of W, we have
(y.x)e W for an ie I. Choose open neighbourhoods U, and V, of x and y respectively
such that h:U, — R" and k:V, > R" are manifold charts. Let U=U,_NU, and
V =V, nU,. Choose neighbourhoods U” and V’ of h(x) and k(y) respectively in A(U)
and (V) such that V' =U" - h(x)+k(y) and define a homeomorphism
fU =V, ar> a-h(x)+k(y).

in which A(x)r k(y). Since h:U — h(U) and k:V — k(V} are homeomorphisms the

sets ' (") and k™'(V*) are open neighbourhoods of x and y respectively in U and V. Then
themap f:h~ (U)— k™ (V)2 (k7 h)z)

is a homeomorphism and f (x)z y. Now define a continuous admissible local section
s:U =W,z (fz).z). So (&, B,W) has enough continuous admissible local sections.
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So by Theorem 3.11 the monodromy groupoid M (G,W ) is a topological groupoid. On the
other hand by Example 3.5 the symmetry groupoid S, of p:E — X is a locally trivial

topological groupoid on X and by Example 3.7 there exists a local morphism f:W — § ,
of topological groupoids. Again by Theorem 3.11 for this local morphism f:W — § , We
have a morphism ¢ : M (G,W) ~>§, of topological groupoids. This gives a continuous map
M (G,W)a X, E~>»E, which means that the topological groupoid M (G,W) acts
topologically on E.
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