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Abstract - This paper is concerned with a thermal elastic-plastic stress analysis on a
steel fibre reinforced thermoplastic matrix composite beam fixed at its to ends.
Temperature varying linearly is chosen at the upper and lower surfaces to be zero and
Ty, respectively. The solution is performed at 0, 60, 75 and 90° orientation angles.
Plastic yielding does not occur at 30 and 45° orientation angles. It is found that the
intensity of the residual stress component of oy and the equivalent plastic strain are
maximum at the lower surface of the beam. The intensity of the residual stress is
maximum at 0° orientation angle. The intensity of the eguivalent plastic strain is found
to be the greatest at 60° orientation angle.

1. INTRODUCTION

Thermal stress problems occur in many branches of engineering design and research:
Internal combustion engines, jet engines, and the power generation industry including
nuclear power stations, pressure vessel and piping welds, etc. Finding engineering
materials which satisfy the requirements of strength, rigidity, fracture toughness,
resistance to fatigue and environment, acceptable creep rates at the operating
temperature, as well as those of cost and density is often one of the main design
limitations. Also the thermal efficiency of heat engines depends on the operating
temperature.

Timoshenko and Goodier [1] gives elastic solutions of plane, cylindrical and spherical
structures. Hellen et al. [2] described one early exercise in thermal stress analysis that
compared the result from a finite difference program and two different F.E.M. programs
with results from a theoretical elastic solution for a thick spherical shell under
axisymmetrically radiated thermal loading. Yeh et al. [3] investigated the mean values
of the through-thickness coefficients of hygrothermal expansion in the randomly-
oriented laminate.

Because of leading to premature failure, residual stresses in composites are particularly
important. Kfouri and Wong [4] compared theoretical and finite element stress analysis
solutions for a bimaterial strip and plate under thermal loading. Ho and Saigal [5]
investigated thermal residual stresses developed during casting SiC/Al particulate-
reinforced composites. Akay and Ozden {6] measured the thermal stresses in injection
moulded thermoplastics by removing thin layers from specimens.
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Domb and Hansen [7] developed a numerical model for prediction of the process—
induced thermal residual stresses in the thermoplastic composite laminates. Unger and
Hansen [8] presented a method which accounts for the effect of process-induced thermal’
residual stresses on the free-edge delamination behavior of the reinforced laminates,
(+352/-35,/0,/90,), graphite-reinforced PEEK.

Jeronimidis and Parkyn [9] found residual stresses in carbon-fiber thermoplastic matrix
laminates. Sayman and Kayrici [10] investigated residual stresses in a thermoplastic
composite cantilever beam loaded by a single force. Zhou et al. {11] studied mechanical
properties and damage evolution of short-fiber-reinforced metal-matrix composites
under a micromechanics model accounting for the history of cooling and thermal
cycling. Yoon and Kim [12] measured elastic properties and coefficients of the thermal
expansion of Carbon/Epoxy laminates in the material principal directions for
temperature variation, and characterized as functions of temperature,

In this study, a thermal elastic-plastic stress analysis is carried out on a steel fibre high
density polyethylene matrix composite beam. The distribution of residual stress and
deformations are found, analytically.

2. ELASTIC SOLUTION

A thermoplastic matrix composite beam fixed by two rigid planes is shown in Figure 1.
It is assumed that stress components at 0 °C are zero at the fixed ends and in the beam.
The length of the beam is chosen as 120 mm for preventing buckling of the beam, The
governing differential equation for the plane stress case is given as [13],
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Fig. 1. Thermoplastic composite beam.
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There is corresponding equation for the strain-stress relation [14]

€, ay G G || O
E,\=1dy Gy by {0, (2).
£ Qg Qos  dgg T,

2 2 2

and &; are the components of the compliance matrix. If thermal expansion coefficients

for an orthotropic material are known in the principal material directions, they are
obtained in the direction of x and y axes as follows [15]

o, =0, cos’ 0+, sin’ 0

o, =¢,sin’ 6 + ¢, cos’ @ (3)
a,, =2a, -a,)sinfcosd

The boundary conditions for this beam can be written as,

oy=0 aty=tc
Ty=0 aty=tc (4)

The stress function Fm%y:‘5 +—§ y?is chosen for both satisfying the differential

equation and the boundary conditions. The stress components from this stress function
are determined as:

o, =dy+e, o,=0, 7,=0 5

¥ xy

oy and Ty satisfy all the boundary conditions. The strain component in the direction of
the x axis is written as,

gx = Ello.x + axT (6)

where T is given to be a linear function of y which is zero and Ty at the upper and lower
surfaces, respectively,

T:%‘—(l+-§} ™)

gx 15 zero at the boundaries. Using the boundary conditions at the upper and lower
surfaces gives the unknown parameters as,

oy %l e (8)

d =t £
2a,,c 24,
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o, in the elastic region can be written as,

o, T, T
0, =-ityZro ©)

2a,,¢c”  2a,
2.1. Displacement Components
Strain components with thermal strains for a plane stress case are written as,
g, =a,0, +aTl
£, =a,0, +ta,T (10)

'—16
€, o, +a,T
where oy and ¢, are the same in each section due to the same loading and the same
structure of the beam. As a result of this, & and u are not function of x
e = _g (11)
ox
integrating it, gives
u=C(y) (12)
and writing &, gives v
o, T
e =¥z (@y+do+20q4+2) (13)
Y gy 2 c
2 o T 2
v:Elz(gzm+dcy)+y—0(y+}~)+cz(x) : (14)
2 2 2c

Putting them in &,, and using boundary conditions at the fixed ends (u=v=0 at x=0;y=0
and x=L; y=0) results the displacement components as,

_ Elm:sd)’;a + axyT

0 2 =
u 5 e +adey+a T,y

(15)
_ . dy? T, T,
V=a;2(—§—+dcy)+ay(39~y+ﬁy2)
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3. ELASTIC-PLASTIC SOLUTION

The Tsai-Hill theory is used as a yield criterion in this solution. X, Y and Z are the yield
points in the first, second and third principal material directions, respectively. S is the
yield point for pure shear in the 1-2 plane. The yield criterion for the beam can be
written as [14],

2 2 2
o o] 1 1 1 T
Xy “(xz *F"?}’l"z o as)

multiplying it by X* gives the equivalent stress in the first principal material direction
as, ‘

2y 2 24r2
0 =0=,0"-p0o,c +62X Ty X
eq — - CJ'] P0G, Yz Sg

a7

1 1 1
where p = Xz(F-k?{—%«?)

In the plastic region, the equations of equilibrium for the plane stress case are written as,

do. 0T

dx dy

dz,, 0d0,
0x ¥ 0y (1%

oy and T,y are both zero and those satisfy the second equation.' From the first equation
o, is obtained as C(y). Subsequently, it is seen that at any section o, is a function of y.

For a linear strain-hardening material, the yield stress is given by the Ludwik equation
as,

o,=0,+Ke, (19

where Gy is equal to X which is the yield point in the first principal material direction, K
and €, are the plasticity constant and the equivalent plastic strain, respectively. The
stress components in the principal material directions are obtained by using the
transformation formula as '

0,=0,c08’0, 0,=0_sin’ 0 , T, =—0, cosO sinb. (20)
Putting them into Eq.(17) gives the yield point for the orientation angle 9,

o, X
X =—0-= 21
"N N @b
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where,

2 .4 2 .9 2
N*\/COS %9 psinBcos 0+ ;lf 0 X SmS?cos 6

(22)

The strain increments in the Frincipal material directions can be found by using the

potential function f =& ~o,(g,) [16] as,
9f i
de? %61
def =4 s dA} (23)
oy do,
12 b f JA
197,

The total strain increments in the principal material directions are written as,

20— po
del=dgf+d8f=a“dc7,+a§2d02+~—;'%idk+ald1”
Y
72
de,=de+del =a,,do, +a,,do, + 5 dA+o,dT (24)
G‘Y
X’Z
. a dr.. 2T 57
de,, =de), +def =812 dA
- 20,

where dA =dg,. For the orientation angle 0, the stress component o, can be written as

- _Oy _ o, +Kg,
* N N

Substituting ¢, 62 and 7,, into Eq. (24) and infegrating them gives the total strain

components as, ' '

2cos’0—psin’ O
2N

£=a,0,+ta,0,+ €,+o,T+C;5

2
— pcos?’0 +23in28—}%~

2N

£€,=0,0,+a,0,+ €, + o, T +C (25)
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2
2sinf cos@ w)%»
_ Yes

812"'—5'712“ N 8p+C7

By using the boundary conditions on boundary of the elastic and plastic regions and
writing £,=0 give the integration constants as,

C;=X, [(Eﬂ ~a, )cos’ 8+ (@, ~ a,, )sin® 0 + &, sinf COSBJ
C, = X,|(@, ~a,,)sin® 0+ (@, — a,, )cos’ 0~ sinfcosd) (26)

C, = )9:'1[(21’”12 —&,, )sinf cos@ +%§-c0529 +E§—Gsin9 cos@}

The strain components in the direction of x and y are obtained by using the
transformation formula as,

€, cos’6 sin >0 ~2sinf cosf | g,

. 2 2 .
g, =| sin"@ cos” 8 2sin@ coslO £, @7
€, | |sinBcos@ ~—sinBcosd cos’d —sin’@ | |,

By using this matrix, the strain components in the plastic region can be written,

g,=a,; 0, +B €, +a,T
E,= A O, + Bhe, + ocyT (28)
£,=—2o +Be,+a,T
where
X? X?
2c0s ‘-2 pcos’Psin’ 6 +2sin® @ -—-+4sin’0 cos’6 —-
B = Y s
2N
X‘2 . XZ
2cos’sin’ G—psin® 0 —pcos* 6 + 2sin” B cos® O ——4sin 6 cos’0
- Y S 29
B,= N (29)
Xl X2
p+2)cos’ @sinf — psin®0 cosd —2sin’ @ cos@ =+ (~2¢cos’ & sin O + 2sin’ O cos @) -
B . Y? N
:” 2N

Writing o,=-X; and €=0 at the boundary of the elastic and plastic regions give the
expansion of the plastic region (h) as,
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_ 2ayc

h

o T,
(X, - =22

a1, 2a;, (30)

3.1. Displacement Components

The stress components and the displacement are the same at each section of the beam
due to the same loading and the same structure of the beam. Subsequently &, is obtained
as zero at any point in the beam. At the lower side of the beam, oy is negative. By using
these relations, €, is determined as,

£, =g—z =0, 4, +B e, +al
or
0'0 -+ KEP _ TO y
8)‘:—"—-——1\1— a11+316p+06x?(1+—£)=0 (3D
£,=a+by (32)
where
— 25120-0 —a):TON - .—axToN . (33)
2(-a,K+BN)’ 2¢(-@, K + B,N)
Displacement components are obtained as,
Ju . . .
g, = ™ ={), after integration u is found as, u=Cs(y) (34)
x
oV _
£, = > = a0, + Bye, +a,T
a a : afTly Ty
v*"alj\?o y+ (“alzK + B, ay + b}j_:, )+ yzoy = ;y + Cy (%) (33)

and putting u and v in the relation of g, gives the following displacement components:

— — K 4 o T 2
uﬁ—ﬁ"l“ig“(‘}“y*‘(“alé ‘E'ZBs)(aJ?‘*‘b}; )+ xyziy +axyT0y+Cn
(36)
i a : qf,y a.T
vm—f-‘—%&y+(—ﬁi—r£+82)(ay+bz )+ y4°cy + ‘;"wcm

The displacement components on the boundary of the elastic and plastic regions are
equal. At the lower side of the beam, they can be written as
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u,=u,,v,=v, and ) (9] 4 (x=0.y=h) and (x=1, y=h) (37)
Bx ox ,

By using these conditions, they are obtained as,

_ - ' 2 dI?
Ty @K by &1y a,qdh alﬁdo
W= + +2B Yay+—)+ +o Ty y +-— ===l
N y+( N L ay ) " oY 2 N
7
—(—“16 +2B3)(ah+?-’21~)+amdch

(38)

N N 2 4c 2
c‘me bhz @0, ,

a a : aTy aT 2
NP B/ S Y P i c X' B 1(%+d6h)

4. RESIDUAL STRESS COMPONENT

In the previous section, the elastic-plastic solution is obtained. To find the residual
stresses it is necessary to superpose on the stress system in the elastic-plastic solution a
completely elastic system due to the same external forces applied in the opposite
directions. The resultants of the stresses at the fixed ends for the elastic and plastic
regions are F; and P, respectively. If F) and F, are reduced to the middle axis of the
beam, they produce a force F=F;+F; and a bending moment M=M;+M; as shown in
Figure 2. The elastic stress component of oy according to the Saint-Venant’s principle
can be obtained under the external forces of —F and —-M. The axial force and the bending
moment are obtained as,

| + K, — 2 K

F=F +Fym X,t(c+h) + t(o, + Ka)(c—h) N Kbt(c® ~h*) 39)

2 N 2N

M=M+My= X tlc+h)(2h-c) I(O‘ + Ka) ( h 4 Kbt Kbt 2 5 h3) “0)
6 N 3N

where t is the thickness of the beam.

o ‘
\ = l * M ‘ M=zM *MZ
(F ] . 'F=F1+F2‘>
F - - F
X 3
F—/~—“' 27 o ‘-—‘r;,.z

2
Plastic region

Fig, 2. External forces for the elastic solution.
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The stress component Oy can be written as,

g’x :miw& (41)
2ct 1

where I is the inertia moment of the cross section of the beam.

5. A SAMPLE AND DISCUSSION

A steel fibre reinforced thermoplastic matrix composite beam is used for the analytical
solution. Its mechanical properties and yield strengths are given in Table 1. The stress
component of Gy is compressive in the beam. Plastic yielding begins at the lower
surface of the beam. If the beam is fixed to the rigid planes at the 0 °C without any
stress, the temperature (Tp) causing plastic yielding of the beam at the lower surface is
given in Table 2. As seen from this Table, It is maximum at 60° orientation angle as
7748 °C. It is 69.55 °C at the 0° orientation angle. The temperature starting plastic
yielding depends on the stiffness and the yield point of the beam.

Table 1. Mechanical properties and yield strengths of the composite beam.

Ey Ez G;z Via X Y
MPa MPa MPa MPa MPa
38000 1300 360 0.25 37 5
Z S K Ol Gl Melting
MPa MPa - MPa 1/°c 1/°c Point
16 13 99 14.10° | 122.10° | 190°C
Table 2. Temperature starting plastic yielding in the beam and yield strength of the
beam.
0 0° 60° 75° 90°
To (°C) 69.55 77.48 40.48 31.52
Xi(MPa) 37.00 7.72 5.51 5.00

Elastic-plastic, elastic and residual stress components of oy are given in Table 3. It is
seen that the residual stress components of Oy is maximum at the lower surface. It is
positive at the lower and upper surfaces. The residual stress component of oy is the
greatest at the 0° orientation angle and h=1mm as 8.88 MPa. If the orientation angle is
increased it becomes smaller. The residual stress component at the lower surface is
greater than that at the upper surface.

The displacement components in the elastic and plastic regions and equivalent plastic
strain are given in Table 4. As seen from this Table, the displacement components are
not large in the beam. The intensity of the axial and transverse displacements at the
lower surface are maximum at 75 and 60° orientation angles (h=1mm) as 682.0 10* and
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-1728.3 10"* mm, respectively. The intensity of the equivalent plastic strain at the lower
surface is maximum at 60° orientation angle (h=1 mm) as -10.3 107 It is ~7 10 4.9
10* and -3.7 10 at 0, 75 and 90° orientation angles (h=1mm), respectively.

Table 3. Elastic, elastic-plastic and residual stress components at the upper and lower
surfaces of the beam.

At the lower surface At the upper surface

6 To H (Ox)p (Ox)e (Ox)r (Cp (Ox)e (Ox):
(°C) |(mm)| (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa)
7587 | 5 | -37.01 | 3983 | 282 0 | 026 | 026
83.46 | 4 | -37.02 | 4213 | 5.11 0 103 | 1.03

0o | 9273 | 3 | 3703 | 4392 | 6.89 0 232 | 232
10432 | 2 | 3705 | 4520 | 8.15 0 | 412 | 412
11923 | 1 | -37.07 | 4595 | 888 0 6.44 | 644
8453 | 5 | -7.73 | 824 | 051 0 | 013 | 013

o | 9298 | 4 | 173 | 866 | 093 o | 035 | 035
10331 | 3 | 774 | 898 124 | 0 | 067 | 067
11623 | 2 | 774 | 920 146 | 0 1.10 | 1.10
13283 | 1 | 775 | 931 156 | 0 162 | 1.62
4416 | 5 | 551 | 588 | 037 0 0.09 | 0.09

| 4857 | 4 | 552 | 619 | 067 0 025 | 025
TV 5397 | 3 | 552 | 642 | 090 0 048 | 048
6072 | 2 | 552 | 658 106 | 0 078 | 0.78
6930 | 1 | 552 | 666 114 | 0 115 | 115
3439 | 5 | 5.00 | 534 | 034 | 0 0.08 | 008
1378 | 4 | 500 | 5.6l 0.61 0 022 | 022
0°1 4203 | 3 | 500 | 58 | 083 0 | o042 | 042
4729 | 2 | 500 | 597 0.97 0 069 | 069
5404 | 1 | -500 | 605 1.05 0 1.03 | 1.03

The distribution of the residual stress component of o along the sections of the beam at
the 0° orientation angle is shown in Figure 3. As seen from this Figure the intensity of
the residual stress component of o, is maximum at the lower surface. It is 8.88 and 6.44
MPa at the lower and upper surfaces, respectively.

5 4 3 2 1

A
[ [ {4

':\ - .4 3 ‘.
5@ 5 10 5 g & W -5 gy 5 o

h{mm)*

. -
-10 -5 @x)r 5

Fig. 3. The distribution of the residual stress component oy at the 0° orientation angle.

The distribution of the residual stress component of o, along the sections of the beam at
60, 75 and 90° orientation angles is shown in Figure 4, 5 and 6. As seen from these
Figures, when the orientation angle is increased the intensity of the residual stress
component becomes smaller. It is the smallest at the 90° orientation angle per h.
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When the plastic region is increased further, the intensity of residual stress component
of o, becomes greater, ‘
4. 3 2 i -_hirmm}

/ /7

| 4 4 <

7 P N

Fig. 4. The distribution of the residual stress component Oy at the 60° orientation angle.

Table 4. Displacement components and equivalent plastic strain in the beam.

At the elastic-plastic At the lower surface
6 h sp.(10'4) boundary (x; y=h) (x; y=¢)
(mm) | Atthelower | 1. (10" | vo(10% | uw,(10%) | v, (10
surface (mm) {(mm) (mm) (mm)
5 0.9 0.0 307.1 0.0 287.9
4 2.0 0.0 252.0 0.0 184.6
0° 3 -3.3 0.0 193.9 0.0 48.0
2 4.9 0.0 131.4 0.0 -173.0
1 7.0 0.0 63.0 0.0 -504.2
5 1.3 -491.3 -124.1 -470.5 221.0
. 4 2.9 -399.2 -130.6 364.4 -353.4
60 3 48 3017 -138.3 2572 | -542.9
2 7.2 -197.1 -147.6 -132.3 -869.6
1 -10.3 -82.0 -159.2 111.5 -1728.3
5 0.6 -56.1 27.6 -13.9 -52.1
. 4 1.4 -33.8 29.7 59.0 -87.3
s 3 23 938 32,1 152.4 -138.6
2 3.4 16.4 -35.0 301.1 226.6
1 -4.9 45.6 -38.5 682.0 -449.5
5 0.5 0.0 14.3 0.0 12.4
. 4 -1.0 0.0 11.5 0.0 5.5
90 3 1.7 0.0 8.6 0.0 4.7
2 2.6 0.0 54 0.0 -20.2
1 -3.7 0.0 2.0 0.0 -47.0
5 1.7 3/ 2/ 1/ hmm)
-1 i L1 (e -1 -1 e -1 @i W

Fig. 5. The distribution of the residual stress component oy at the 75° orientation angle.



An Analytical Elastic-Plastic Stress Analysis 135

5 4 3/ 2/ 1 h{mm)

[ 4 <

\ N N N

-1 foxdr i R bx)r ) -1 (o 1 A lox)r 1 a gk ¥ —
MPa

Fig. 6. The distribution of the residual stress component oy at the 90° orientation angle.

6. CONCLUSION

The following conclusions are deduced from the elastic-plastic thermal behavior of the
beam:

1) Thermal stresses are important in the design because they lead to plastic yielding or
failure of the material.

2) When material stiffness is increased, it produces higher residual stresses.

3) The intensity of the residual stress component of Oy assumes a maximum at the
lower surface, and its greatest value is at the 0° orientation angle.

4) The intensity of the equivalent plastic strain is found to be maximum at the 60°
orientation angle.

5) Plastic yielding does not occur for all the orientation angles. For instance, it is
determined that 30 and 45° orientation angles do not have a plastic yielding.
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