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Abstract-A method is used to solve the Fredholm-Volterra integral equation of the
first kind in the space 1,(Q) x C(0, T), Q = {(x,y) eQ:yx*+y* <a,z= 0} and

T < . The kernel of the Fredholm integral term is considered in the generalized
potential form belongs to the class C ([€2] X [Q]), while the kernel of Volterra integral
term is a positive and continuous function belongs to the class C{0,T). Also in this
work the solution of Fredholm integral equation of the second and first kind with a
potential kernel is discussed. Many interesting cases are derived and established from
the wok.

Keywords-Fredholm-Volterra integral equations - generalized potential kernel -
logarithmic kernel - Carleman kernel - Jacobi polynomials.

LINTRODUCTION _

Many problems of mathematical physics, theory of elasticity and mixed
problems of mechanics of continuous media reduce to an integral equation with a
kernel that have either of the following form

o
Kon(x,y) = WL (X, 9)

g+y—-1

WL (6 y) = [AST, T, () dh (.1
0

where J,(x) is a Bessel function of the first kind of order n. Arutyunyan [1] has shown
that, the plane contact problem of the nonlinear theory of plasticity, in its first
approximation, can be reduced to Fredholm integral equation of the first kind with
Carleman kernel

1 ea
K7, oy =[x=y =y [0, LI, oMdh L =0, 0<a<])
272 0 2 2

(1.2)

(for the symmetric and skew symmetric cases respectively)

In [2,3] Mkhitaryan and Abdou obtained the general formulas, even and odd, of the
potential analytic function, using Krein's method [4], for the Fredholm integral
equation of the first kind with Carleman kernel [2] and logarithmic kernel {3].

H o0
G~
thii (x,y) = --1nlx~yl = XY J‘Jil (x?&)]+1(y?u)d7» , (g=0) (1.3)
272 o 2 2
(for symmetric and skew symmetric, respectively)

Kovalenko [5] developed the Fredholm integral equation of the first kind for the
mechanics mixed problems of continuous media and obtained an approximate
solution for the Fredholm integral equation of the first kind with an elliptic kernel
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ki = 2P 28 ) By s gman @0 a
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Abdou in [6] obtained the solution of Fredholm integral equation of the second kind

with potential function kernel, | K(x &,y —1) = L X
Y-8+ y-m)?
1 oa
K2, (9) =X [ 1, 00T, dh , (e =0) (L.5)
i

Also, in {7], the structure resolvent for the Fredholm integral equation of the second
kind with potential function kernel is obtained by Abdou. The potential theory method
is used in [8,9] to obtain the eigenvalues and eigenfunction for a system of Fredholm
integral equation of the first kind with Carleman kernel in [8] and logarithmic kernel
in [9]. Abel's theorem is used in [10] to obtain the general solution of Fredholm
integral equation of the first kind with a kernel in the form of Gauss hypergeometric
function

1 1 2xy )

K(X,Y);WF[D,H+—2",HI,(?$] ] (16)
The solution in Matheiu function form is obtained in [9], where the potential
theory method is used for the contact problem, where the domain of integration € is
represented as € : (x,y,2) € Q! v < X,y < o, z > 0, of mechanics of continuous
media between a finite system of stamps varying width and an elastic half-space in a

three dimensional formulation.
' In this paper, the solution of Fredholm-Volterra integral equation of first kind

is obtained in L,(€2) x C(0, T) where Q = {(x,y)e Q:Jy*+y*=r<ga,z= O} and
the time t € [0,T], T< c. The problem is investigated from the three dimensional
semi-symmetric contact problem in the theory of elasticity of frictionless impression
of a rigid surface (G,v) having an elastic material occupying the domain &, where the
external forces are neglected. Assume a function f(x,y) € Ly() which describing the
surface of stamp, such that, this stamp is impressed into the elastic layer surface
(plane) by a variable force M(t), whose eccentricity of application e(t), that cases a
rigid displacement 8(t) € C(0,T). The integral equation, in this case, becomes [6]

[[—E&n.0ddn [EP(x,y,0dr = 78[8(1) ~ £05, )] = £(x,y,0)
8 fx-82 + (y-m?F
O=G1-vhH (1.7)
under the consdition
[[Pex.y.0dxdy =M(t) , 0StST<o. (1.8)
Q

Here F(t) is a positive continuous function belongs to the class C(0,T) and represents
the characterized resistance of the elastic layer, P(x,y,t) is the unknown potential
normal stress function between the surface of stamp and the elastic layer, G is the
displacement magnitude and v is poisson's coefficient.

In this work, the Fredholm integral equations of the first and second kind with
a generalized potential kernel are established and their solutions are discussed the
kernel is represented in the Weber-Sonin integral formula. Many interesting spectral
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relationships are derived from the problem. Finally a numerical example is considered
for the solution of Fredholm integral equation of the second kind.

2.BASIC EQUATIONS

Here, in this section, a method is used to obtain a finite system of integral
equation in three dimensional, then by using the method of separation of variables we
represent the integral equation to a system of Fredholm integral equation of the
second kind in one dimensional. Also the kernel of Fredholm integral equation is
represented in the Weber-Sonin integral formula.

S0, we divide the interval [0,T], 0t T<was0=ts<t) <ty ... <ty=T,
where t = tx € [0,T], k = 0, 1, ... N; then by using the quadratic formula [11] u;,
1=0,1, ... k, in the Volterra integral term of (1.1), we have

i

f F) Py, Ddr= Su B P (y) + 06™)  (he—0,p>0) (1)

0 j=0
where i, = eizlkas)z{w h, , hh=tu-t , PRyt =Pxy) , Kt)=F ,and
—11 =0k
U, = 2
h j= 0k

The number values of u; and p, p ~ k depend on the number of derivatives of
B(t) (see [11]).
Using (2.1) in (1.1), we have
uka Pk(an)‘f'Jf Pk(g’n)dgdn i + iquj PJ- (X,y)
alx-e + y-mp P
=70, ~ f(x,y)]=1f,(x,y) (2.2)
O, =o(t,) , k0,1,.N)
Also the condition (1.2) becomes
[[P.yydxdy =M, M) =M,). 23)
Q

The solution of the integral equation (2.2) depends on the kernel and the
values of Fy at the two points ty and ty, for example if F(ty) = Fy = 0 the first equation
of the linear integral system of (2.2) represents an integral equation of the first kind,
then for all values of k > 1 we have a linear system of integral equation of the second
kind, while for ty = 0, the formula (2.2), for 0 <k £ N-1, represents a linear system of
integral equation of the second kind and the final equation, at k = N, represents an
integral equation of the first kind.

To separate the variables, one assume

cosmbo cosm0
Pxy)=P, 1, s f(x,y) = fkm ()4, (2.4)
sinm® sinm®
Using (2.4) in (2.2) and (2.3), we have
a 1 k-1
u, E P () + J'p”\?\f,,f1 (r,p)P, . (p)pdp + 2111. Fj P ()=1,,(0 2.5)
0 j=0

and
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Mi(
¢ — m=0
[pP,. (mdp =1 2m (2.6)
¢ 0 m =1
where
o k cosm¢dd 1 1
w ? = 3 = - f 2 E y 2.7
n (0:0) _Jﬂ{r2 +p? —21p cos]® @ 2 i < 2) @7

For writing the integral (2.7) in the Bessel function form, firstly we use the
following relations [12, pp. 81]
T cosmpdd  2m(o), z"

= Flo,,m+a,m+1,z* 2.8
o [1-22 cos¢+2*)* m! ( ) 28

and

1 1 4z
F ) +o — > . ? =1 NZYF 3 ;2 ;
S 26ﬁ+2 2')=(1+2z) [YB B*—-——-—sz]

[IZ¥ <1,Rey>0, (1), = F(I‘,?;”} @9

Hence Eq. (2.7) takes the form
We(r,p) = 22L+e)  GRT gl g met 2mel 2 2.10)
2 (r+p)*

ml(o) (r+p)*™

where F(ab,c;z) is the Gauss hypergeometric function, and I'(x) is the Gamma
function. Formula (2.10) is symmetric and does not depend on the relation between p

and r.
Secondly, using the relation [13]

TJQ (ax)J (bx)xPdx =
¢

2P 3% p® r(m—z—ﬁ]

F a+t—,a+l,2a+1, 4ab ,
2 2 (a+b)?

(a+b)2P P(1+0) I“( 1‘*’"26]

(Jo(x) is the Bessel fnction) (2.11)
equation (2.10) takes the form '

i =
W2 (r,p) =21 [2271,(, 0T, (A, )dA, (2.12)
0

Using (2.12), and the following notations
au
AL ak, ,

Jau
. f.,(au M
¢ =a"2m gkm(u)-— R‘/(_) \2[@ -f _(aw)], Q, :—27:—};1’

k=0,1,..N ; m=20) (2.13)
the integral equation (2.5) and the condition (2.6) become

u==,v=L @ _(u=
a a
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[ k-1
U@y (@) + [K2 W,V @, (A + Y @, (1) = g, (W) (2.14)
0 =0
and
H
_1Qy m=0
!W ®km(v>dv-{ o . (2.15)
where
K& (u,v) = 2ma Jfuv [T, (lu)T, (Av)dA (2.16)
0

which represents a Weber-Sonin integral formula.
It is easy to prove the following relation

3 3 !
(5;2“ 542 )Ki(u,V) = ((h(w) - h(v)) K2 (u,v) (2.17)

where
=| m? - L~ +E~
h{x) (m 4]){ (m# + 2) (2.18)

The integral equation (2.14) represents a linear system of Fredholm integral
equation of the first or second kind depending on the values of Yy , k € [O,N]. The
general solution of (2.14) can be obtained using the recurrence relations for values of

k and the mathematical induction. For this aim, let k = 0 in (2.14) and (2.15), we
obtain

Lol
Mo o (W) + [ K2 (1, V) By, (VA = g, (u) (2.19)
a9
under the condition
£ Q, m=0
[Vve,, ndv= , (2.20)
5 0 otherwise

The kind and solution of (2.19) depends on the values of [, for this, we go to obtain
the solution of (2.19), firstly when po — 0 and secondly when g satisfies the relation

1L 1
Mo > [[K2(u,v) dudv m:O,i%,iL ....... 2.21)

00

3.FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND

In this section, we will obtain the general solution of Fredholm integral
equation of the first kind when the kernel takes a Weber-Sonin integral formula and
for any continuous values of g, _(u). Also many spectral relationships are established
here.

When Fy = 0, we have pg =0 and Eq. (2.19) becomes

i i

[KZ(0,v)®,, (v = g, (1) (3.1)
o

Abdou in [8] used potential theory method [14], to solve a linear system of Fredholm

integral equation in a form of (3.1) under the condition (2.20) where the given

function s represented in the Jacobi polynomials form. Here, we go to obtain the

solution of (3.1) under (2.20) for given continuous function g,,, (u) . For this, rewrite

(3.1) and (2.20) as an integral equation of the Wiener-Hopptype [15,16]. For setting
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u=e®, v=el, e Bu(ed) = Wn(®), and g, (e7)e™ = hn(£) in (3.1) and (2.20),
we have

[ME-m¥, = h,,® 0<E<eo (3.2)
0
and
T - . Q() m=0
;{ e ¥y () dn {0 otherwise 3-3)
where
ME-1) = e VKT (e7,e ™) (3.4)

Popov [16] stated that in order to obtain the solution of (3.2) under the
condition (3.3), it suffices to obtain the most simple equation

[ME-y,, (mdn=e** & Imz>0 3.5)
0
Now, making use of the formulae

7, =5 [6CDv,, @,

G(z) = [h,(E)e™ d& (3.6)
0
The solution of (3.5) (see [1, 16]) is given by
! L _Wal?) (g oy o[
Vi (0) = =V, (=) = =2 (1 -u?) +(m+£+1z)f—————ldt} 3.7
u u T(Z) u(t2_u2)z
where
1 . . _E
Y, (~z) = V2 F(—z- (m+—§—1z)) (F(m+é—-1z)) (3.8)

After obtaining the solution of (3.7), we can derive the general solution of Eq.
(3.2). It is easy to see that the function Ju vy, () is a solution of Eq. (3.1) when

g, (u) = u™"7* Therefore the general solution of the integral equation

11 1
IK;(u,v)qi(v,l)dv =] 0cuxl (3.9
a
is given by
1
Q2D = Vuly,, @],., (3.10)

By using the principal of Krein's [4], with the aid of (3.10), the general
solution of (3.1) takes the form

J2u™h XM X' (v)dv

3 1 l-{ 1
CwHT(w#) [A-u®)* ¥ (vi—u?)*
ORI B Lies POL

b
¢ du r
4] (u2_s2)4

Y, (u)=

" =2na)  (3.11)
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Now, we can obtain many interesting cases, for example:
Replacing g, (wyin (3.11) by a Jacobi polynomial 1ie. let

g, (1) = P;m'_z} (1-2u?), then Eq. (3.1) is transformed to become

g i
1. 14w g3 w2 2 ;
K2 (u, )P ¢ (1-2u%)du A v“‘P;m'WE)(IMZVZ) ,

1
0 (1-u®)*
\ 2 3 3 "
w =2 I‘(m+Z)I‘(2m+Z)[m!F(1+2m)] (3.12)

In terms of Gauss hypergeometric function of formula 8 of [3] pp. 715, we can
obtain the following important property '

K¢u™,v™)y = uv)* K} (u,v) (3.13)
Using in (3.12) the substitution u = x, v = vy, and making use of property (3.13), we
obtain spectral relations of the semi-infinite interval

1 3
Z+m

: v (y* ~1)* 2 (3.14)

H ___1_ m.wl
TK;(x,y)P; P-2ytdy AP @ (1-2x7)

(z:%+m,1$x<oo)

4. FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

In this section, the general solution of Fredholm integral equation of the
second kind is obtained. Also the mathematical induction is used to obtain the general
solution of Eq. (2.14) under the condition (2.15).

Now, our attention comes to obtain the solution of Fredholm integral equation
of the second kind (2.19) under the condition (2.20), where its solution depends on the
kernel (2.16) and the surface f,(r). When the initial and the tangent points of the
surface are in contact with the origin 0, we can expand f,(u) in Macklorien expansion
near u =0

» " (n}
() = B2 2 IO s i @y (4.1)
2! 3! n!
The last equation gives the degree of displacement of the surface for any
_ i
degree. For example, if the displacement is very small and En_;!gl =A, #0, we
obtain fm(u) = Au’
In general, we write
. f(Zm)
f (u)=A, u™ A, =2 (m 2 0) (4.2)
(2m)!

where m is the order harmonic of the contact problem.
Hence, the function gom(u) takes the form

g, (1) = (A, ~BA, u*™)u (A, =BS, ., P=m0) (4.3)
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Equation (4.3) represents a polynomial of degree 2m +é- and the solution of Eq.

(2.19) under the condition (2.20) depends on the kernel (2.16) and the function (4.3).
So, rewrite (2.19) and (2.20) to take the following forms

w,Z._(u)+ j K(u,v)Z, (v)dv =u ™3 (4.4)
and

Aoj'JE zn(u)du—AijJE Z_ (wdu = Q, (4.5)
where 0

D () = A, Z,(0)~A,, Z, (W) (m=1) (4.6)

To solve Eq. (4.4), we use the formula (7.3911) of [13] and with the aid of
[8,10], we can write the kernel (2.16) in the form

1 I (}+m+m)Pm(u)Pm(v) .
K;(u,v) = VZan™y @.7)
30 Tz(j+1+m)(2j+m+z)'

where
i
Pr(w) =P, ¥ (1-2u) (4.8)

1
Here Pj( & (x) is the Jacobi polynomial.

Hence, the solution of (4.4) with the kernel of (4.7) is equivalent to the
solution of the linear system

WX, +¢ Y AB X, =1, (4.9)
=0
where
f. = (2] 3 ?l? | mHpm g d
j—(J+m+Z E[ (wu " (u) du
3 1
I‘z(j+m+-~)(2j+m+m)‘*
1 4 4
Ay =—= 2.
J2 T2 (j+m+1)
and
3 3.
B, = (2j—|-m+z-)(2i+m+z) [ u™ P (u) P (u) du (4.10)
[¢]

The infinite linear system of (4.9) is solvable under the condition

2[0 ABy| < i, , (" =2ma) (4.11)
3.«
Using the orthogonality of Jacobi polynomial, the general solution of (4.4)
takes the form :
. V2 T (j+m+ )umP‘“(u)X“‘
RoZ, () = u"™ —¢* T (4.12)
=0 (j+m+1)(2j+m+z) K
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Hence by the mathematical induction, the solution of Eq. (2.14) can be obtained.

5.NUMERICAL COMPUTATIONS

InTable 1 forj=2,m=3, uo=c =1, we have the following results

121

2m+l

u pi Z(a)
0.1 0.00000 0.00000
0.2 (.0007 0.0009
0.3 0.0044 0.0045
0.4 0.0162 0.0156
0.5 0.1442 0.0415
0.6 0.1004 0.0937
0.7 0.2001 0.1883
0.8 0.3270 0.3096
0.9 0.6224 0.6070
1.0 1.0 1.03

6. CONCLUSIONS

From the above results and discussions, the following may be concluded:

(1) The three-dimensional semi-symmetric contact problem for a stamp impressed
into a layer surface, which made of material according to the power law G; = Kgg;,
j =1,2,3, by a variable force N(t) represents a Fredholm-Volterra integral equation

of the first kind.
(2) The generalized potential kernel represents a Weber-Sonin integral formula

K(u,v) = Juv TJm(tu) J, (tv) dt
0

which represents a non homogeneous wave equations and the kernel can be
written in the Legender polynomial form as follows

1 N
Kﬁl(u,v):w}_w(uv) 2 E
2 U@ m o+ D20+ m o+ 2)7

. T+ m PR PP (Y

where P"(u)is Legendre polynomial,
(3) The Fredholm-Volterra integral equation of the first kind can be reduced to a finite

linear system of Fredholm integral equation of the second kind.

3

(4) This paper is considered as a generalization of the worker of the contact problems
in continuous media for the Fredholm integral equation of the first and second
kind when the kernel takes the following forms: Logarithmic kernel, Carleman
kernel, elliptic integral kernel, and potential kernel. Moreover the contact
problems which leads us to the integro-differential equation with Cauchy kernel is
contained also as a special case of Eq. (2.19). Also in this work the contact
problems of higher-order (m = 1) harmonic are included as special cases.
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