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MOTION OF COMPRESSIBLE LIQUIDS IN PIPES

Hikmet Hassanov
Azerbaijan Petroleum Research and Project Institute
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Aga - Neymatullah str. 39, Baku 370033 - Azerbaijan

Abstract - The hydrodynamic problem of defining the velocity profile of liquid is resolved,
assuming for the liquid density to be compressed in accordance with exponential law along
coordinate z . The continuity equation for this liquid is concluded. Influence of barometric
index A on motion character is estimated. Flowrate decrease and coefficient of hydraulic
losses for the compressed liquid are found. Principle of quasi - isothermal approximation is
established, and the effect of temperature gradient on final result is qualitatively considered

1. INTRODUCTION

For solving most of hydrodynamic problems, liquid is taken incompressible as
simplifying factor. Mathematically, the last condition is expressed like div v = 0, which
from physical point of view means absence of any sources of potential motion of liquid
within volume involved, additional to already existing motion and caused by external
pressure drop dP/dz . However, such an approach is strongly idealized and is not valid in
enormous number of real problems, which are of practical interest, for example, for all the
technological operations in drilling, liquid motion in pipe with temperature gradient
different from zero etc. Finding the velocities profile in above mentioned cases requires
already knowledge of non - zero summand proportional to div v. The resolution of such
problems connects with mathematical difficulties and accordingly to current information
these questions have been studied for restricted cases , namely , in * Boussinesq
approximation “{ 1 ]. As a rule in this approach ones involve density small deviation from
certain permanent value only [ 2,3 ]. However, for practice it is natural to consider
essential variations of liquids ( or gases ) density by coordinate. In the paper offered we
consider motion of liquids, densities of which change along pipe by exponential law
available in a lot of practical cases [ 4,5,7].

2. CONTINUITY EQUATION

Typical example of such a liquid is drilling mud in borehole annulus. In [ 4 ] it is
stated, drilling mud density with account of cuttings not removed from borehole changes by
exponential law. Moreover, taking into consideration barometric index A allows us to
develop optimal drilling regime from both technological point of view, and economical that
[ 5 ). Except for all, barometric index different from zero essentially changes hydrodynamic
characteristics of moving liquid. It clearly follows from continuity equation. How it is

known
QB--i—div(pv)mO (1)
ot
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If A#0, then thefc is aggregation of sludge in well and, hence, dp /0 t is not equal to zero
also. Let’s take into account

p@)=pye” (2)
where pg is mud density in point z = 0 (in drilling terms this point is called bottomhole of
well ); relationship ( 2 ) is valid for liquid isothermal motion or limited drilling interval,

when temperature may be proposed as constant. Because p # const, equation ( 1 ) should
be transformed to next form

%—e»iﬁpdiv v+vgradp =0
I
Use of distribution (2 ) gives us

%‘—? = pAw, gradp=-Ap

hereafter it is taken for simplification of calculations , that penetration rate ( bit mechanical
velocity ) w = dz / dt is permanent and directed against the axis z in cylindrical
coordinates system as well as uniform radial distribution of sludge, i.e. dp/ dr = 0.
Ultimately, after non - complex mathematical transformations we yield
_ dvv=(v-w)i, (3)

that proves assumption about unique meaning of parameter A for description of
compressible liquid made above. Therefore, the summand characterizing hydrodynamic
properties of compressible liquid is found by formula ( 3 ). Now, ones are able to solve
equation for such a liquid. '

3. FINDING VELOCITY PROFILE FOR COMPRESSIBLE LIQUID

Let ‘s consider the simplest case - laminar flow of compressible liquid along
horizontal pipe with permanent pressure drop, that is described by equation

p@-=nArv+ﬁgmddivv+£, _ (4)
ot L
where next abbreviations are introduced
' 0> 19 n
A =eet—— B=—+
"9t ror B 3 ¢

€ - volume viscosity [ 6 ]; more general and complicated variant of problem with non -
permanent pressure drop oP/dz was resolved by us as well, for interested persons we
would like to recommend { 7 ].Taking into consideration relationship ( 3 ) as well as
condition
w#w (1), we obtain
graddivv=A il
: or
or ultimately for equation of liquid motion
dv dv AP
Pe=nA v+ AL —+— 5
P dt v+ p or L ()

that should be integrated under the following time and boundary conditions
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wr,t=0)=v, vr=R, =0, v(r=R, ,H)=0 (6)
R and Ry - radii of internal and external cylinders, respectively ( in drilling terms R | -
external radius of drill string, R, - radius of well ) . For solving the equation ( 5 ), let’s
make substitution of required function
vir,)=u(r,t)+AP-a(r)/Ln

here o (r ) - certain correlation function to be defined below. Having found expressions for
all the derivatives of v (r, t) from the last substitution and inserting them into the
equation (5), we get

02 —nla a)+ 2L A o b+ ;3/1m-  PAAPdo() AP
ot nL or n L dr L
Demand for correlation function o (r) to be justified the next equation
AP A AP da(r) AP
P 5 oy E2EP 4D AP (7
L n L dr L
in this case the following equation should be valid foru {r,t)
p & oA e O (8)
ot or

Under conditions ( 6 ) the equation ( 8 ) can be solved by variables division method.
Representing function u (r,{) as
u(r,t)=u,u,

we yield two independent equations

Lt (9a)

and
nA,u,~§~ﬁ/1-~CZ‘r+rur=0 (9b),
r

where T is accepted as empirical parameter showing relaxation properties of liquid
involved. Solution of ( 9a ), obviously, is the exponentially decreasing function of type
u, = C e—n.fp

Equation ( 9b ) is the confluent hypergeometric equation. For considered case it can be
proved, that solution of the last comes to cylindrical functions. Indeed, after appropriate
transformations solution of the equation ( 9b ) is expressed like [ 8 ]

u, =r 2y (-2 0.0 r)
26

r

where next notes are used
oc=pAIn, B=+c -4t/ ,
y (-—2% :0;6 r) - confluent hypergeometric function ( more detailly this function is consi-

deredin[91]).
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Analysis of liquid physical parameters gives that for any really relaxing liquid T is
sufficiently large magnitude; at least there is approximation &2 << 41/m. That's why, the
last solution may be written as

u, =2 V(0;0,20,ir); 6, =[T/n
that due to properties of hypergeometric functions {9 ] is substituted for
w, =(20,0)" 222 g (6,7) (10)

Solution u ; in the form ( 10 ) is complex; calculating its module, we ultimately get

u, =20, ¢’ J, (6,7

here Jo( O;r ) - Bessel function of the first kind. Hence, for non - stationary summand of
required velocities profile it can be written down

u(r,t)=CyJ26, " J,(0r) e™"'" (11)
4. FINDING THE CORRELATION FUNCTION

The solution of ( 11 ) is valid only, if for function o ( r) equation ( 7 ) is justified,
i.e.
ra"+(+o e +r=0
For solving the last, let’stake ra ' (r) =y (r), after that we get the differential
equation of the first order relative to y (r)

v (r) +ow (r )+r=0
Function w (r), obviously, have a form

ylry=e™ {Cz —'Ire"’dr}: C,e™™ — 1+or

O_?.

Accordingly to this , for function o (r) the next expression appears
a(r)zcl(lnr—m*)~li:———r—+cz; (12)

c° O

here C ; and C , - certain constants, that should be found from boundary conditions ( 6 ).

During calculation for function ( 12 ) the approach ¢ r << 1 was used, since for involved

motion process volume viscosity & is sufficiently small magnitude, so parameter [ is

approximately equal to 1 /3 ; under these conditions coefficient o value is close to that

of index A [ 4 ]. Because of this reason summands proportional to the second and higher

degrees of o are neglected. Constants C ; and C ; defined from conditions the ( 6 ) prove

to be
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InR

2R AR=R,-R,

(o} o

By physical matter correlation function gives stationary value of liquid velocity (at t ~» o )
as function of r. Analysis of ( 12 ) shows, d & (r)/dr undergoes sign change, i.e. in

dependence o.(r) there is maximum to be defined by the following relationship

C,=C,(0R,~InR))+

Feu - AR (13)

In Lk +0 AR
R,

As it follows from relationship the { 13 ) r o is not placed inevitably in geometrical
middle between radii R and R ; . Reason of this is, under compressibility condition of
liquid
( A # 0 ) additional velocity gradient connected with ¢ v /0 r arises. This gradient is
directed radially and naturally violates the symmetry of velocities profile in full accordance
to Segre - effect ( more detailly the effect is described in [ 10,11 ] ). Moreover, it can be
shown that for compressible liquid velocities profile will change sharper in dependence of
r than for incompressible one. The last circumstance leads ultimately to deterioration of
flow hydraulic characteristics. For instance, for statiopary flow regime, when liquid
velocity U gy is defined by
' AP
smlm —le(]’) ?

Ln
(since summand u ( r, t) in this case runs asymptotically to zero ) flowrate between two
cylindrical pipes will be equal to

174

R
O=A(R; ~R})+A, (R} -R}) - A, 1%%; (14)

1
where constant coefficients A ;, A, and A 3 are expressed through the moving liquid
parameters and equal to :

A=280 Lc0- 1,
Ln 3 o
A =AP-73'{

2

R 1
-CR,(l-o)+—L1+—
R, 1-0) o 20“2}
_AP-m-R;

A
3 Lno?

Relationship ( 14 ) is obtained at the next approach

Inr=r-1

higher - order terms in this expansion are neglected. Comparison of the formula { 14 ) with
appropriate expression for incompressible liquid allows to conclude, during motion of
compressible liquid in cylindrical pipe flowrate will be sufficiently less under otherwise
equal conditions.
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5. HYDRAULIC 1.OSSES AT MOTION OF COMPRESSIBLE LIQUID

Compressibility of liquid by law ( 2 ) leads to changing the coefficient of hydraulic
resistances K along coordinate z. How it is known
k=064/Re
and taking into consideration Re = pv d/n, for coefficient ¥ comp of compressible liquid
accordingly to distribution ( 2 ) we have

k., =koe™ (15)

comp
where K ¢ - coefficient of resistances for the same liquid, if it would be incompressible.
Naturally, head loss Ah by D’arcy determined like

v
Ah - kcom dz
'([ ¥ 2gd
increases also. We obtain
v & A kovz {}.H }
A=k ePdz =—m—3e™ —1 16
*2gd ;[ 2gdA (16)

in the last integrating v and d are assumed to be permanent as simplifying circumstances.

Comparison of formula ( 16 ) with known head loss for incompressible liquid
2

Ah, =k0-21’g—dff

exposes, that the losses arise by the value

Mo = j

Ah e 1=1+2(/1H)
=1

“ " Ah, G+D! )

Ah, AH
thereto, the greater compressibility degree, in other words, parameter A , the more essential
head loss on section H will be. Formulae ( 15 ) - ( 17 ) are valid for laminar section of
liquid motion only, when coefficient of hydraulic losses x depends on the liquid
theological characteristics. On turbulent section ¥ is proposed to be constant, and within
the last proposition head losses A h for compressible and incompressible liquids are
equivalent.

Strictly saying, in deducing formula ( 16 ), it would be necessary to keep in mind
dependence 1 = 1 ( z) because of solubility of solid phase in liquid. It is well - known, if
small solid particles are weighted in liquid ( like rock pieces in drilling mud }, then
coefficient of intrinsic friction increases due to this factor by value proportional to ratio of
full volume of solid phase to liquid general volume. In [ 12 ] it was obtained the formula
taking into account this correction with accuracy till the first degree of concentration
terms, assuming for mud to be homogeneous ( by radius ) disperse system - condition
available for us and taken in the beginning of this article, namely

n =n(1+25¢ ) (18)
here m * - solution ( mud ) viscosity, 1 - viscosity of pure solvent ( water, if drilling mud is
based on water, and/or oil for oil emulsion )}, @ - volume concentration defined as ratio of
drilled out rocks volume to liquid that ; the question is clearly considered in [ 10 ]. Since in
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real conditions ¢ = @ (z ), then the last aspect should effect on head losses determined by
the relationship ( 16).

Taking into consideration, that volume concentration alters with depth by law
identical to (2)
A
() =@ye™
@ - volume concentration on well-head, after calculations we get, using for simplicity A | =

A

2(M{(e ~1)- 2( 1/ Lo ‘”° (™ -1) }

Comparison with equivalent incompressible liquid gives

Ah ¢’ b
P D/ L (e -1 19
A 2 2 2( ) (e ) (19)
where @ is found by (17).

Calculated so far losses are justified at liquid motion in pipe. If liquid compressible
by (2 ) moves in borehole annulus, then pressure losses by D’arcy. will be respectively -
equal to

8,44-10% . g0 '
d; 20
= RIR)Y R, R fn(z)z (20)
for laminar flow, and
=0k 80 jp(z) . 1)

(R, ~R)*(R, +R)’
for turbulent one; herein Q - constant flowrate through cross - section ( more detailly this

question is investigated in [ 7 ]. Under known dependences 1) ( z ) and p ( z ) (see above )
calculations of integrals can be realized without problems.

6. SUPPLEMENTARY FACTORS EFFECTING ON
COMPRESSIBLE LIQUID MOTION

Law ( 2 ) and, naturally, all the computations made in previous chapters are
reasonable for isothermal liquid motion only. In this matter, they are available for
drilling ( in general , any liquid transportation ) within such intervals only, where
temperature is estimated to be constant. If the last condition is not valid, then instead of
above dependence
(2), we should use more general distribution listed in [ 4 ]

p(Z) = pee—f\‘le(z}
where T ( z } is known function

T(z)=T,+vz .
hereafter T ¢ - mud temperature on well-head, y - thermal coefficient for ascending liquid
flow. So, for mud den51ty we ultimately have

p(z) p* ol f+z (22)
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where next abbreviations are used

P =pae—uy La=AT, 1y?, B=Ty/ly
Taking into account distribution ( 22 ), from the continuity equation the following
relationship is concluded

div v =

ﬁ Y > (v—w) (23)

From ( 23 ) it should be noted, for term grad divv we get magnitude depending on z.

In other words, liquid velocity is function of coordinate z as well, i.e. 3 v/dz# 0 already,
hence we are not able to neglect non- linear summand connected to v (d v /d z) in Navier -
Stokes equation. So, for account of temperature during compressible liquid motion we
should resolve non - linear equation, Nevertheless, in some cases, when z << f§ { condition
of quasi - isothermal approximation ), div v does not depend on z , how it can be seen
from ( 23 ), and calculations made in chapters 2 - 5 are formally usable for mud (
liquid) moving in pipe with temperature gradient. Having used empirical values of T ¢ and
v: To =290K, y=0,015%m, for parameter B we have next estimation =2-10% m
That’s why, for middle -wells of depth h < 2000 - 2500 m present calculations may be
used, because z / B = 0,1. For deeper wells conclusions of the article are usable with
certain inaccuracy, that to be found in every separate problem. In realizing drilling process
during warmer season, this limit will increase due to higher temperature of surrounding
medium on well-head T o = 300 - 305 K, so the calculations may be used with the same
accuracy for wells with depth h < 3000 m. In other words, the higher temperature of
surrounding medium, the greater height drops for which results obtained here might be
used.

Another factor which able to change the result is so - called source function
charactemzmg sludge generation degree on bottomhole during bit action. It is generally
taken, in the equation of mass transfer in borehole annulus while drﬁhng (if dlffllSlOI} flow
is negligible in comparison with connective one )}

9(Ap)  0(Ap)
37 Fp —f( 1)

the right side is proposed to be zero. However, such an approach is not correct, because by
physical matter drilling process means continuous increment of sludge mass due to bit
functioning, so while drilling process f ( z , t ) can not be equal to zero in principle, but
should change by certain law determined with the process parameters. Undoubtedly, in
connection with this aspect the continuity equation obtained from mass balance should be
changed also. Now it is not clear, how it will be for drilling, but one circumstance
is obvious : this equation should consist of all the drilling parameters.

7. CONCLUSION .

In current paper it has been investigated the hydrodynamic changes, which can
appear during motion of liquid compressible by exponential law ( 2 } between two
cylindrical pipes. Described variant is available for drilling mud motion in borehole
annulus. However, it is absolutely obvious, that developed method may be used for motion
of liquid with any compressibility law along cylindrical pipe also, if integration limits
are changed to be
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0 £ r < R. In the indicated approach our calculations are usable for problem of liquid
transportation across dissected area with height difference no more , than & h = 2500 m.
Practical calculations made for real transportation pipeline [ 13 ] by R. Groombridge
initiative, Pipeline Manager - Kvaerner John Brown, show, that in this case
compressibility of transported agent ( first of all, oil and gas ) is estimated to be sufficient
and should be naturally taken into consideration. Question about compressibility of
transported liquid and/or gas is firstly concerned in present paper, so in the light of
hydrodynamic computations made here its resolving is greatly urgent.
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