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Abstract- In this paper, we consider the generalized nonlinear variational
inclusions and develop Mann and Ishikawa type perturbed iterative algorithms
for finding the approximate solution of this problem. By using the definition of
multivalued relaxed Lipschitz operators, we discuss the convergence criteria
for the perturbed algorithms.
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1. INTRODUCTION

In 1994, Hassouni and Moudafi [3] have introduced a perturbed method
for solving a new class of variational inequalities, known as variational
inclusions. Very recently, this class of variational inclusions have been
extended and generalized for multivalued maps by Huang [4] and Chang et al
[2]. In this paper, we consider the generalized nonlinear variational inclusions
and develop Mann and Ishikawa type perturbed iterative algorithms. By using
the definition of multivalued relaxed Lipschitz operators, we prove that the
approximate solution obtained by these algorithms converges to the exact
solution of our variational inclusions.

2. PRELIMINARIES AND FORMULATION
Let H be a real Hilbert space with inner product {.,.) and norm ||. .
Let ¢ : H— R U{+ o} be a proper convex lower semicontinuous function and
dd be the subdifferential of ¢. Given a multivalued map T: H—2", where 2"
denotes the family of nonempty subsets of H, and f,g:H—H be single-valued
maps with Im(g) N dom (d¢) # ¢, then we consider the following generalized
nonlinear variational inclusions problem (GNVIP):
(GNVIP): Find xe H, we T(x), such that g(x) N dom(d¢) # ¢, and
(8(x) = f(w), y — gx) = ¢g(x)) - 6(y), Vy € H. 2.0
Inequality (2.1) is called generalized nonlinear variational inclusion.
When ¢ = d¢, the indicator function of closed convex set K in H,
defined by :
O(x) =0, xeK, and + oo, xgK,
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then (GNVIP) reduces to the following generalized variational inequality
problem (GVIP) considered by Verma {7]:
(GVIP): Find xe H, we T(x), such that g(x)e K and

(gx)~f(w),y~gx)»20,Vye H. (2.2)

3. ITERATIVE ALGORITHM
In this section, we first establish the equivalence of the generalized
nonlinear variational inclusion (2.1) to a nonlinear equation. Then we suggest
an iterative algorithm for finding the approximate solution of (2.1).
Lemma 3.1 [1]: Elements xe H and we T(x) are solutions of (GNVIP) if and
only if x and w satisfy the following relation
g(x) = Fnfg(x) -1 (g6 - £ (w))}. 3.1
For finding the approximate solution of (2.1), we can apply a successive
approximation method to the problem of solving
xe F(x) (3.2)
where  F(x)=x —g(x)+ % {gx) -1 (g(x) - (W)},
On the basis of lemma 3.1, we suggest the following iterative
algorithms.

Mann Type Perturbed Iterative Algorithm (MTPIA)

Let T: H—2" and f, g: H— H. Given x ¢ € H, the iterative sequences {X »} and
{w a} are defined by

Xna= (1= 0g) Xy + 0, [Xy— g(Xp) + J%n{g(x )~ N{gXn) - fwD} +eq,
forall w, € T(x,) and n 2 0, where {0t} is a real sequence satisfying cto= 1,
0 <ol forn>0and X700, =00, e,€H, for all n, is an error which is
taken into account for a possible inexact computation of the proximal point;
{¢+} 1s the sequence approximating ¢ and 1) > 0 is a constant.

Ishikawa Type Perturbed Iterative Algorithm (ITPIA)

Let T: H—2" and £, g: H— H. Given x , € H, the iterative sequences {x ,} and
{w ,} are defined by

Xna= (1= 0o Xn + 0 [yn= gy + I {gyn) ~ gy — fw* )] +eq,
Vo= 1=Bo)xn +BulXa~gxo+ J%n{g(xn) ~0(gxa) = (WD} +PBara,
for n 2 0 where e, and r, are the error terms which are taken into account the
possible inexact computation of the proximal points; x € H,w o€ T(X ),
w*, €T(yn); m> Ois a constant, and {¢t, } and {B ,} are the sequences in
[0,1] satisfy the following conditions:

i) do=1,0,51,B,51, fornz0,

(i) 27 a=0 0Ly diverges, and

(iii) >0 jmie1 (1= (1 — )ty ) converges, where 0 Sc< 1.
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4. CONVERGENCE THEORY
We need the following concepts and results to prove the main result of this

paper.
Definition 4.1: A mapping g:H—H is said to be

(1) strongly monotone, if there exists t > 0, such that
(gx ) -gx2),x1-x2t |[x;=x2[1?, forall x;,x,€H;
(ii} Lipschitz continuous, if there exists s > 0 such that

Hgx D —gxo) s s 1] x;=x,l1, forall x;,x¢H.

Definition 4.2 : Let f: H— H be a map. Then a multivalued map T:H—2" is
said to be relaxed Lipschitz with respect to f, if for given k £ 0,
(f(w)—1T(Wa),x1~x%2) <kllxi—=x!1% forall weT(x 1), wa& T(x,) and
forall x;,x.eH.

The multivalued map T is called Lipschitz continuous, if for m 21,

Hwi-—wallsm|lx,—x,l1, forall wieT(x 1), waeT(x,)

and forall x;,x,¢H.

A single-valued map f: H— H 1is said to be Lipschitz continuous with
constant p > 0, such that

| flw 1) —f(wa) |l <p |l W —wyl |, for all wie T(x 1), woe T(x2)
and forall x;, x,6H.
Lemnma 4.1 [5]: Let ¢ be a proper convex lower semicontinuous function,
Then J%=(1+ 7 30 ) is nonexpansive, i.e.,
|| J% (x)—1¢n (y) || < 1 x—y| ,forall x,yeH.

Now, we prove our main result of this paper.
Theorem 4.1: Let g:H—H be strongly monotone and Lipschitz continuous
with corresponding constant t > 0 and s > 0 and f : H—> H be Lipschitz
continuous with constant p > 0. Let T: H-»2" be relaxed Lipschitz continuous
with respect to { and Lipschitz continuous with corresponding constants k < 0
and m = 1, if there exists a constant 1 > 0 such that '

[n~(s (-1 p* m*=s*) " [<[ (k + s (1-)) *~(p* m” —s? )q(2-q) ][p" m" - §°]
k>s(@ -~D+[(p'm® - ") q 2-q)]'"*
s(g— D<pm 4.1)

and q=2(1-2t+s")"" <1,
then (x ,w) is a solution of GNVIP, Moreover, if
M gosee | 13020(y) = 3%(y) | = 0, for all ye H,
and {x ,} and {w,} are defined by I'TPIA with conditions
(@  limuellenll=0=tim |l r4]] and
(b) X0 ITjma (1= (1 —c)a; ) converges, 0 Sc< 1,
Then {x,} and {w,} strongly converges to x and w, respectively.
Proof: First we prove that the GNVIP has a solution (x , w). By Lemma 3.1, it
is enough to show that the mapping F:H~>2" defined by (3.2) has a fixed point
x.Forany x, y& H,ue F(x) and v ¢ F(y), there exist w, € T(x) and
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wo € T(y) such that
u=x—g(x) + 1% (800 ~n (g(x) — £ (W)} and
v=y - gy + 1% (el) - nle®) ~ £ (W)
By Lemma 4.1, we have
Hu-vll < 2llx~y=(gx) - gy H+nllge) - gl
+ilx—y+ n(f(wy-fwll. @2
By using the strong monotonicity and Lipschitz continuity of g , we obtain
Hx-y- (e —gon *= lIx-ylI*-2(gx) -g(),x~y)
+ g - gy |12
<(1-2t+s) {x-yli?, (4.3)
and
| gx)—g) |l < s lIx—yll, forallx, y e H. (4.4)
Again
lix—y+n(fwp-fwDIP=Ux=-yIP+2n{fw)—f(wa,x-y)
sl few) -t wall®
s +2nk+pmn) lix-yll2  @5s)
Since T is Lipschitz continuous and relaxed Lipschitz continuous with respect
to f, and f is Lipschitz continuous. Therefore, by (4.2), (4.3), (4.4) and (4.5), it
follows that
(). FyN<{2(-2t+sH M 2+ (1 +2nk+p m’n’) 2 +ms Ix
llx—yll
={q+pm+ns}lx-yll
=0 |Ix-yll, (4.6)
where q=2(1-2t+sH)"%, um = (1+2nk+p’m’n*)'*? and
8 =q+ w1 (m) +m s. By condition (4.1), we see that 0 < 6 <I. It follows from
(4.6). Thus F has a fixed point x € H.

Let xe H, weT(x) be a solution of GNVIP. Next, we prove that the
iterative sequences {X ,} and {w 5} define by ITPIA strongly converges to X
and w, respectively. Since GNVIP has a solution (x , w) then by Lemma 3.1,
we have

x=x - g(x) + I’ {gx) -1 (gx) - f (W)}
By making use of the same arguments used for obtaining (4.3) and (4.5), we
get
Ixa=x— (& -geN | s@=2t+sMH1? Hxo~xll,
Nxo-x+n(fwn)-f) < +2nk+pP?m®n®) ™ lx, x|l
Hya—x~(gyn-gonilc@-2t+"? llya=xll,

Hya—x+1m (fw)—fw) 1l S@+2nk+p?m®n®) ™2y~ x|l

By setting
h) =gx) -n{gx)—f(w)).
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and

h(yn) =g (yn-n(glys)—f(wn)), wehave
Hx s =x = 11 (1~00) X0+ 0a [y 5~ g (70) + PR (y )] + €0
— (1= 0n) X = O [ X~ g (x )+ T (G ]
<sU-o)xa=xll+o, lya—x—(g@)—~gonil
+ 0 I (h Gy ) = ) | +llen 1. @7
Now, since J®*; is nonexpansive, we have
(112 () = V% (b ) I < b (yn) —h ) 1]
+ P ) - )
<llyn-x-@oo-ge) +llya—x+n(fw)-f(w) ]
+n lgy-g@ I+ 130 ) -3 (el
<A-2t+sH)"V  lya—xll+ (1+2nk+pPPm®nH) 2 ||y —x]l
+ s llyn=xIl+ 13 Gy =18 (ol (4.8)
By combining (4.7) and (4.8), we obtain
Hxaa—xIl <@ -apxs—xll o [20-2t+s) "2+ (1 + 27k
+pPme ) 2en sy a—x I+ o H3%% 0 )= 1% (h e [+ ey 1
= (1) fxa=x1 + s 0 Hyn~x 1+ open+lle, I, (4.9)
where 0=2(1-2t+s)"™ 41 +2nk+pm*n®) '+ s and '
en = |11 (h(x)~ 30 (h ) Il
Next |
ll}’n"'xllﬁ H(}" Bn)xn + Bn[xn—g(xn)‘*'r%n(h(xn))]
+Bata= (1B x = Balx —g )+ T4 )N ||
< 1-Ba) Hxa=xl+Ba lIxp-x=(gGx)-g&xN!|
+Ba 13 B x) =T (h e ] +Ba s 1] (410)
By making use of the same arguments used for obtaining (4.8), we get
e (h (o) =3 (b {21 -2t+s)!"?
A +2nk+pmnH) M e s xn x|l + &5, @11
On combining (4.10) and (4.11), we get
HYn""xH < (I”Bn) Hxn—x““}‘ﬁne Hxn"x||+Bn8n+ Bn Ilrn ; !
<(1-PB,(1-06) Hxa=x|1+#Bate o+ Hra I D).
Since (1-P,(1-6)<1.
On combining (4.9) and (4.12), we get
||Xn+1“X|| < (lwocn)||xnwx|]+0tn9 “Xn""x”'f‘eanBn(8n+l|rn|])
ot nEnt |lenl]
=(1=0y(1=0) xa=x!] +00,Ba(en+llrall ) +anes+ lleall
STl — 0 (1= ) o= x 1+ B0 0 TP (1 — 03 (1 - 0)) €
+0 % o o B T (1~ 05 (1 =0 ) (g5 + |y )
+ 3N e (Lo (1- 0 lle;ll, (4.13)
where J['oi(1 -0 (1-6)) =1, whenj=n.
Now, Let B denote the lower triangular matrix with entries
baj=0j Mgl -0 (1-0)).
Then B is multiplicative, see Rhoades [6], so that
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M geseo &m0 O T (1=t (1~ 0)) €;=0
HIM s oo 8 Enj={} o7 Bj Hn'mjﬂ(l "&j(l - B)) (85 + Hl’j H): 0.
Since  liMpyose &n = 0 = limase || rall.
Let D denote the lower triangular matrix with entries
dpj= [T =0 (1-0).

Condition (b) implies that I is multiplicative, and hence

M g0 2 e [ imier (1 — 0y (1= 6)) lle;il=0,
since lim ;e [lenll =0.
Also, Hm g e o (1 -0 (1-0)) =0,
Since Enim{; Oli= o2,
Hence, it follows from inequality (4.13) that Bm o s« || %1 ~x[1=0, ic., the
sequence {X, } strongly converges to x in H. The inequality (4.12} implies that
the sequences {y,} also converges to x. Since w, € T(X ), w €T(X) and T is
Lipschitz continuous, we have

H Wy — W H <mij yn——xH,Wherem =1,

—0,asn — oo,

ie., {wj } strongly converges to w.
We remark that if B, =0, for all n >0, Theorem 4.1 gives the conditions under
which the sequences {X, } and {w } defined by MTPIA strongly converges to
x and w, respectively.
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