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ABSTRACT : The aim of this paper is to define the principle fi-
bre bundle and connections and point out the minimizing geodesics of the

taxicab geometry.

1. INTRODUCTION

Taxicab geometry is a non-Euclidean geometry. It is defined in 1975
by E. F. Krause by using the taxicab metric

dr(A, B) = lay — by| + lag — b|

for A ={a1,a2), B = (b1,bs) € R*.
It is very close to Euclidean geometry, only the distance functions are
different. It is a better model for urban world [4].

Let us denote taxicab plane by R3. . Considering R%, we will discuss the

idea of principal fibre bundle and connections of taxicab geometry. We first
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start with recalling the basic definitions. We note that the main reference

of this section is [1].

It is proved in [3] that the isometries of taxicab geometry are all trans-
lations, T(2), and thé orthogonal group Or(2) = SU Ry; consisting of four
reflections and four rotations, defined below.

TRANSLATIONS :

To:RE - REDT,(P)=a+ P forevery a € R, Pe R
REFLECTIONS :

S={{z,y) | =0, y=0, y=wzandy=—z} .
ROTATIONS :

RgI{Ag | 9mk1’2"'—’, km0,1,2,3;1rT_m4}

The main subject of this paper is to give relations between the geodesics
of taxicab plane which we call them di-piecewise segments and the connec-
tion which we call taxicab connection, defined below. Although there is
a metric, taxicab metric, on the taxicab plane, it is not induced from a
Riemannian metric {3]. Thus, taxicab connection is not a Riemannian con-
nection. However, taxicab connection, even defined on trivial bundle and

locally looks like the Euclidean connection, it is quite different from it.

Definition 1 Let M be a manifold and G o Lie group. A (differentiable)
principal fibre bundle over M with structure group G consists of a manifold
P and an action of G on P salisfying the following conditions:

(1) G acts freely on P on the right.

(2) M is a quotient space of P by the equivalence relation induced by
G, M = P/G, and a canonical projection n : P — M is differentiable.

(3) P is locally trivial.
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We denote the principal fibre bundle by P(M,G). We call P the total
space, M the base space, G the structure space, and 7 is the projection
mapping. For each x € M, n~%(z) is a submanifold of P, called the fibre

over z [1].

Example 1 (Trivial Fibre Bundle): Let G be a Lie group and M a mani-
 fold. Let P = M x G and define the right action on M as follows.

R: (MxG)xG — MxG
((z,0a),b) — (z,ab)

Then, we obtain a differentiable principal fibre bundle (M x @) (M,G)
over the base manifold M with structure group G which is called trivial fibre

bundle over M with the structure group G.

As in {1}, let P(M,G) be a principal fibre bundle over a manifold M
with the structure group G. For each u € P, let T,(P) be the tangent
space of P at u and G, the éubspace of T,,( P} consisting of vectors tangent
to the fibre through u. A connectz‘oﬁ I'in P is an assignment of a subspace

Qu of Tu(P) to each u € P such that

(a) Tu(P) = Gu @ Qu

(b) Que = (R4)+Qy for every u € P and a € G, where R, ié the
transformation of P (fight actioﬁ) induced by a € G, Rou = ua |

(¢} Q. depends differentiably on .

Conditjon (b) means that the distribution u - Q. is invariant by G.
We call G, the vertical subspace and @, the horizontal subspace of Ty, (P).
A vector X € T,,(P) is called vertical (resp.. horizontal) if it lies in Gy, (resp.
Q.). By (a), every vector X & Ty,(P) can be uniquely written as

X=Y+Z whereY €@, and ZeQ,.
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We call Y (resp. Z) the vertical (vesp. horizontal) component of X and
denote it by vX (resp. hX). Condition (¢) means, by definition, that if
X is a differentiable vector field on P so are v.X and hX. It can be easily
verified that this is equivalent to saying that the distribution u — @, is
differentiable.

2. TAXICAB LIE GROUP : (Rr(2)).

Consider A € Op(2) and define Uy = {f | f =Tc o A, T € T(2)}.
It is clear that K = {U4 | A € Op(2)} is a covering of taxicab isometries
-RT(Z). The function x4 : Bp(2) - R? such that z4(Tc 0 A) = (w,v) is a
chart of Ry(2) where C = (u,v) € R?. These charts x4, A € Or(2), define
a C structure on Rp(2) and therefore Rp(2) becomes a C°° 2-manifold
with this structure. On the other hand, the group operation on Rr(2},
denoted by ©,

© : Ry(2) x Rr(2) — Rr(2)

such that
G(T'cl oAy, Tg, 0 Ag) = Tei+Aicq © A14s

is differentiable since the coordinate representation ¥ : Rt — R? of © with

respect to the charts x4, zp and z4p can be written as

(ur, v, ug, va) — (u1 + auy + bvg, vy -+ cup + dvg)

a b
where the orthogonal isometry A; has the matrix form } where
c d

a,b,c,d € R are constants. With respect to the chart x4, the function

v: Rp(2) — Rp(2)
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such that

v(Te OA) = (”C' OA)m] =T _4-1c0 A7l

has the coordinate representation

(u, v} — fwm(du - by, —eu + av).

Thus, the function v is differentiable. As a result, we can give the following

definition.

Definition 2 We call the isometries group Ry(2) of tazicab plane with the

- Cstructure defined by the charts x4, A € Op(2) by Tazicab Lie Group.
Notice that the Taxicab.bie Group has eight connected components.
3. TAXICAB BUNDLE AND TAXICAB CONNECTION

Let M = R}, G = Rp(2) = T(2) - Or(2) PmeG‘mR%x_
R7(2) be the base manifold, the structure group and the fibre manifold,

respectively. Let us define an action on P
R : PxRr(2) — P
(({733 y) A) ) B} — ((J:a y)a AB)
It is easy to see that R acts from the right on P and is a free action. So,

we have the following theorem.

Theorem 1 R:x Ryp(2) (R%, Rr(2)) is a trivial fibre bundle over B3 with

the structure group Rp(2).

Definition 3 The trivial fibre bundle B2 x Ry(2) (R, Rp(2)}is called the

tazicab bundle over tavicab plane.
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Now, we will introduce a connection on the taxicab bundle. We begin
with determining the vertical subspaces of taxicab bundle. For this, let
f = Te, 0 A € Rp(2) be an isometry of R% and u = ((z,y),Tc, o A) € P.

So, we have
uG@ = uRp(2)
= {({=zy) ,(Tgo0A)o(Tc, 0 B)) | T oB e Rr(2)}
= {((as,y) y Tep+Ac o AB) l VBeOp(2), VG & R/zr}
= {@w} x Rr(2)

Since the equation
((z,9), (Tco 0 A) o (Tx © B)) = ((z,y), Toco H)

has a unique solution X € R%, B € Or(2) for arbitrary H € Or(2) and
C € T(2), we have
Gy = Ty (uG) = T;Ry(2)

Then, if we choose

Qu - T(:n,y)R{%‘ .
it follows that

T.P=G, & Qu _
Claim :

RgQu = ng
for every g =T, 0 A € Br(2).
Proof of Claim :
Since

R;,: P — P

w — ug
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it follows that

Ry: RZ x Rp(2) -—— R x Rp(2)
(z,9),Tc0oB) — ((m,y%(TcOB)O(TCOFA))

Thus, the restriction of Ry on R% is the identity map, that is
R, | R id

-and therefore

Ro(Qu) = Ry( ﬁ(zn,y)R%‘)

- (tpit)
= Teynk
Finaily; .
RyQu = Qug
as claimed. '

It is clear that « — @, is differentiable. As a result, we can conclude

that
iy —s Du) =Qy = T(my)R%

Is a connection on P = R% x Ryp(2). Taking account of the notations that

just introduced here, we can give the foHowing definition:
Definition 4 We call the connection

Frou—es Du) = Q, = T(x,y)R%

on the tazicab bundle R%. x Rp(2) (R%., Rr(2)) by the tazicab connection.
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4. MINIMIZING GEODESICS OF TAXICAB PLANE

Of course like for all connections, the taxicab connection satisfies that

the projection map
72 Qu — Tiog) BY

is & linear isomorphism which makes the horizontal spaces as the taxicab
plane {since T(m,y)R‘zr can be regarded as the taxicab plane R%) '

On the other hand, taxicab connection can be regarded as the restricted
Fuclidean connection since all connected components of the fibre bundle
" R2 x Rp(2) (there are eight of all} are diffeormorphic to B2 x T(2). Thus,
Christtoffel symbols are all zero with respéct to the local basis, Iﬁ this view
of point, the geodesics on the taxicab plane are line segments or broken
line segments. Therefore, the geodesics are the same as the geodesics of the
Euclidean plane. But there is a point that makes all things different from

the Euclidean case which is the answer of the following qﬁéstion.
“Which geodesics of the tazicab plane are length minimizing?’

. The answer comes up as a theorem by using the notion of di-piecewise

segments.

Definition & Lel o : [a,b] — R% be a curve. We call the curve a di-
piecewise segment if there exists a partition P = (1,2, ..., Zn) of the inter-
val {a, b] and all restrictions a; of a to the subintervals [x;, z:41], 1 £i < n,
are line segments satisfying the following property: If any oy, 1 <1 < m,
is increasing (decreasing), then all others are increasing (decreasing) in the
sense of the graph of a; is increasing (decreasing) as in the Euclidean plane
Jre



199

It is clear that if the points Aand B are on a given di-piecewise segment,
then the distance dr(A, B} is equal to the arc-length between the points A
and B of the given di-piecewise segment.

Theorem 2 Length minimizing geodesics of the taxicab plane are di-piecewise

segments.

Proof. It is clear that di-piecewise segments are geodesics on the taxicab .
plane. Let o : I — R% be a di-piecewise segment from the point a(0) = p
to the point a(l) = g. We can write, by {2], |
L) = Tl e la

= Lo Ipivi—pildt

= dr(p,9)
where o;(t) = p; + t{p;+1 — p;) is the segment of o . Thus, the arc-length
of di-piecewise segment between a given two points is equal to the djstande
between them.

We, now, must prove that there is no geodesic, 8, from a given point p
to 2 point ¢ such that the arc-length of 3 is less than the arc-length of any
di-piecewise segment. . . | ,

Suppose there is one such geodesic, say 5. Then, tht‘a'arc-length of B
from the point p to the point ¢, LI(5), satisfies the inequality

LE(B) < Li(a) = dr(p,q).

Since dr is a metric, it follows that

Ly(B) = Lg(a) = dr{p, q)-
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