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ELASTIC-PLASTIC STRESS ANALYSIS IN THERMOPLASTIC COMPOSITE
CANTILEVER LOADED BY A SINGLE FORCE

R. OZCAN
Department of Mechanical Engineering, Uludag University, Goriikle, Bursa, Tiirkiye

Abstract- In this investigation an elastic-plastic stress analysis is carried out in a steel fiber
reinforced thermoplastic composite cantilever. The beam is loaded by a single force at its free
end. An analytical elastic-plastic solution is found by satisfying both equations of equilibrium
and boundary conditions. Orientation angles are chosen as 0°, 30°, 45°, 60° and 90°. Yielding
starts at upper or lower surfaces of the beam at different distances from the free end for 30°, 45°,
60° orientation angles. Maximum residual stresses are obtained at the upper and lower surfaces
of the beam. For the shear stress, maximum stress component is found around the x-axis.

1. INTRODUCTION

Thermoplastic matrix composites are gaining popularity due to many high advantages. They
offer high specific stiffness, and specific strength, improved interlaminar fracture toughness,
increased impact resistance, and higher solvent resistance. In addition to their competitive
mechanical properties, thermoplastic composites do not require complex chemical reactions to
be processed and can be formed without lengthy curing processes. Experimental investigations
on the forming of advanced thermoplastic composites can be found in References [1,2,3,4].

Residual stresses are particularly important in composites, because they can lead to premature
failure. Jeronimidis ef al. [5] obtained residual stress in carbon-fibre-thermoplastic matrix
laminates. Owen ef al. [6] carried out an elasto-plastic stress analysis of anisotropic plates and
shells, undertaken by means of the finite element method. Domb ef al. [7] developed a numerical
model for prediction of the process induced thermal residual stress in thermoplastic composite
laminates.

Chung et al. [8] used the same potential function as in the finite element method to obtain
plastic flow and time-dependent creep deformation in thermoplastic composites.

Elasto-plastic stress analysis was carried out for the case of in-plane mechanical loading [9].
Finite element method is used to determine elasto-plastic stress in composite plates [10, 11, 12].

Karakuzu and Ozcan [13] carried out an elasto-plastic stress analysis in metal-matrix
composite beam loaded uniformly or by a single force at the free end by using an analytical
solution. In that solution they found the stress components by using static equilibrium,

In this study, an exact elasto-plastic stress analysis is carried out in a thermoplastic composite
cantilever beam loaded at its free end by a single force. Stress components are determined by

using equations of equilibrium and boundary conditions. Finally, residual stress components and
the expansion of the plastic zone are obtained.

2. ELASTIC SOLUTION

In a plane stress problem, the governing differential equation is given by Lekhnitskii [14] as,
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where F is a stress function. The reduced stress-strain relationship for an orthotropic material is
given as [15],
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where a; are the components of compliance matrix as,
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~where m = Cos, n = 8in6, 81;=1/E,, $2=1/Ey, S17=-v12/Ey, 86s=1/Gyz .
A polynominal chosen for the solution of the governing differential equation (1) is given as:
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Placing in the equation (1) gives,
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from this equation ¢ is found as,

e=rd (6)

where r = ajs / an . The stress components for a plane problem are obtained from the stress
function as;

o, =dxy+rdy’ +a
o, =0 N
d

- 2
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Boundary conditions in this beam are written as, (as shown in Figure 1.)
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Figure 1. Composite cantilever loaded at its free end.

where t is the thickness of the beam. For satisfying the boundary conditions the unknown
parameters are found as,

bm_é(;z’ am-—riczj d:-—ﬁ | (9)
2 3 !

where I is the inertia moment of the cross section of the beam. Putting them in the stress
components give

_ £( 2 _F 2)
o, =~y -3
o, =0 | (10)
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The stress components satisfy both the differential equation and all of the boundary conditions.
3. ELASTIC-PLASTIC SOLUTION
During the elastic-plastic stress analysis, it is assumed that the composite material is perfectly

plastic. That is, strain hardening is neglected. The equations of equilibrium for a plane-stress
case ignoring body forces are written as
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Substituting o, =0 in the second equation gives Ty, = f{y). Tsai-Hill theory is used as a yield
criterion in this solution, it is given as,

XY XY
o’ - 0,0, +(0“; ) +[T]§ ] =X° | (12)

where X and Y are the yield points of the composne beam in the principal material directions, 1
and 2, respectively. The yield point in the 3™ principal material direction is assumed to be equa}
to Y in the 2 direction because of the same alignment of the fibers in thése directions. S is the
yield point in a pure shear test. By using the transformation formula, stress components in the
principal material directions are written as;

o, =0,c08’ @+27,_sin@ cosb
o, =0,sin"0-2r_sin@ cosd (13)

T, =-0,s8in0 cosf+7,, (0032 6 —sin? 0)
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By using —Ef— =0 and the derivation of the Equation (12) with respect to x gives _éj =0.

Putting this in the first differential Equation (11) gives that 1,y is a constant or zero. But yielding
begins at the upper or lower surfaces of the beam. It is also known that ., is zero at those
surfaces. Therefore, in the plastic zone T,y is equal to zero and o, is a constant. For an orientation

angle 0, the stress component oy causes the material to yield for a perfectly plastic material it is
found as,

X
X2sin®®  X°sin® @cos® 6
I 57

o =X, =

(14)
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In the plastic zone o, and Txy are equal to X, and zero, respectively.
During the elastic-plastic solution of the thermoplastic beam, the beam is divided into two parts,
as seen in Figure 2.

For a general case, the yielding begins at the upper and lower surfaces at different
distances. Yielding usually starts at the upper surfaces earlier than that at the lower surface.
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Figure 2. Elastic-plastic zones.
Part L. It is shown in Figure 2a, the boundary conditions are given as,
7, =0 at y=-h

xy

T, ldy=-P (15)

o, =X, at y=-—h,
where t is the thickness of the beam, and the resultant of &, across the cross section is zero.

X(e-mY+[ otdy=0

also the moment of o, , across the cross section is equal to bending moment as,
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Positive o, gives a negative moment, therefore the integration has a negative sign.
The stress function is chosen to satisfy both the boundary conditions and governing differential
equation as, '
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Stress components for this stress function are,

o, =dxy+rdy’ + f+kx +a
o, =0 (17)
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where 1 = a6/ a11. The constants are found from the boundary conditions as,
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The solution of the last equation gives h; and subsequently the other parameters can be
calculated.

Part L. In this part (As shown in Figure 2b), plastic zone expands both at the upper and lower
surfaces. The boundary conditions in this region are given as,

7, =0 at y=-h,
7, =0 at y=h,

J‘h; 'Z‘xyf aiv = "_"*P

o, =X, at y=-h

19
o, ==X, at y=h, (19)
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The resultant of o, along the cross section is equal to zero as;
Xt (e=h)-X,fc—h)+[" o1dy=0

The moment of oy along the cross section is equal to Px as,

Xt e -n?), xe 2 -n7)
2 2

- E o tydy = Px

The stress function is chosen as to satisfy both the governing differential equation (1) and the
boundary conditions as,

d , e , a , f , k |,
N L N SN S AR, 2 20
PRARETS S Al e + bxy (20)
Stress components are obtained from this stress function as,

o, =dxy +rdy’ + fy+kx +a
o, =0 (21)
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where r = a;5 / a;;. From the boundary conditions the unknown seven parameters are found as
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From the last relation h; can be calculated and subsequently the other constants can be
determined, easily.
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4. PRODUCTION OF THE COMPOSITE BEAM

The thermoplastic composite material consists of low density polyethylene as a thermoplastic
matrix and steel fibers. The raw material of the polyethylene is put into the moulds and the
temperature is increased up to 160°C by using electrical resistance. Then the material is held for
five minutes under 2.5 MPa pressure at this temperature. The temperature is decreased to 30°C
under 15 MPa pressure in three minutes. Steel fibers are then placed between the two
polyethylene layers and processed in the same way defined above, as shown in Figure 3.
Mechanical properties and yield points of the composite layer are given in Table 1. The beam
material is manufactured with the same procedure by using two composite layers bonded
together, The thickness of the beam is produced as 4.8 mm.

NEREENN

74 ..—mould

Thermoplastic 4 2 ‘ ?itgf,}.s
layers ~R '

\\\‘\,\\\\‘\\. \\\\\\\\

Figure 3. Production of a composite layer
Table 1. The measured mechanical properties and yield points of a layer.

Mechanical properties.

E, 4300 MPa
E, 960 MPa
G12 240 MPa
Via 04
Yield strengths.
Axial Strength X 21.0 MPa
Transverse Strength Y 5.2 MPa
Shear Strength S 5.8 MPa

3. RESULTS AND DISCUSSIONS

The cantilever beam is loaded by a load of 20 N at its free end. Points at which plastic
yielding begins at the upper and lower surfaces from the free end are given at Table 2. It is seen
from this Table that when the orientation angle is increased, the distance between the yield point
and the free end becomes smaller. The first yield points at the upper and lower surfaces are at the
same distances for 0° and 90° orientation angles. However, the distance between the yields points
at the upper surface and the free end is smaller than that at the lower surface for 30° and 45°
orientation angles. The yield points from the free end for the beam of 30° orientation angle are
259.20 mm and 275.76 mm at the upper and lower surfaces, respectively.
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Table 2. First yield points at the upper and lower surfaces.

Orientation angles
: 0° ‘ 30° 45° 60° - 90°
First yield point o
at the upper 525.00 259.20 191.02 - 156.23 130.00
surface (mm)
First yield point
at the lower 525.00 275.76 196.15 153.31 130.00
surface (mm) '

5.1. Elastic-Plastic Stresses in Part L

The plastic zone is thin in this part. It expands first at the upper surfaces for 30° and 45°

orientation angles. The residual stress component of o, and the expansion of the plastic zone at
the upper surface are given in Table 3. For the orientation angle of 60°, yielding starts first at the
lower surface of the beam.

Table 3. Residual stress component and expansion of the plastic zone for 30° and 45° orientation

angles.
Orientation | Distance from the hy (mm) h; (mm) (ox) residual
Angle free end (mm) at upper surface
: [MPa]
259.20 12.50 12.50 0.00
30° 263.34 12.31 12.50 -0.17
267.48 12.12 12.50 -0.33
271.62 11.93 12.50 -0.50
191.02 12.50 12.50 0.00
45° 192.30 12.42 12.50 -0.05
193.59 12.34 12.50 -0.10 .
194.87 12.25 12.50 -0.15
In this case, the distance between the x axis and the plastic zone is found as;
y - —PBx+or)+aXct
= _ (23)
rP+2Xct

_The residual stress component and the expansion of the plastic zone is illustrated in Table 4.
It 1s seen from this table that when the distance from the free end is increased the plastic zone
spreads only at the upper or lower surfaces.
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Table 4. Residual stress component and the expansion of plastic zone for 60° orientation angle.

Orientation | Distance from the h; (mm) hy (mm) (oy) residual
Angle free end (mm)} at the lower surface
[MPa]
153.31 12.50 12.50 0.60
60° 154,04 12.50 12.44 0.04
154.77 12.50 12.38 0.08
155,50 12.50 12.32 0.12

5.2 Elastic-Plastic Stresses in Part I1.

In this case, the plastic zone expands both at the upper and lower surfaces. The expansion of
the plastic zone and o, are given for all the orientation angles in Table 5. As seen from this
Table, the plastic zone expands the same at the upper and lower surfaces for 0° and 90°
orientation angles. It spreads at the upper surfaces more than that at the lower surfaces for 30°

and 45° orientation angles; however, it spreads more at the lower surfaces for 60° orientation
angle.

Table S. Expansion of plastic zone and residual stress components (MPa) at the upper and lower

surfaces.
(Gx)p o)y (ox)e (Ox)e (Oxh (Ox)r
x (mm) | hy (mm) | hy (mm) | at upper | at lower | at upper | at lower | at upper | at lower
surface | surface | surface | surface | surface | surface

530 12.38 12.38 21.00 | -21.00- | 21.20 -21.20 -0.20 0.20

0° 540 12.14 12.14 21.00 21.00 21.60 -21.60 -0.60 0.60
550 11.89 11.89 21.00 -21.00 22.00 -22.00 -1.00 1.00

560 11.64 11.64 21.00 -21.00 22 .40 -22.40 -1.40 1.40

280 11.52 12.29 10.67 -10.67 11.50 -10.84 -0.83 0.17

30 260 11.02 11.79 10.67 -10.67 11.90 -11.24 -1.23 0.57
300 10.49 11.27 10.67 -10.67 12.30 ~-11.64 -1.63 0.97

310 9.04 10.72 10.67 -10.67 12.70 -12.04 -2.03 1.37

200 11.91 12.25 7.74 -7.74 8.10 ~7.89 -0.36 0.15

45 210 11.23 11.56 7.74 -1.74 8.50 ~-8.29 -0.76 0.55
220 10.49 10.83 7.74 -7.74 8.90 -8.69 -1.16 0.95

230 9.71 10.04 7.74 -7.74 930 -9.09 -1.56 1.35

160 12.1¢9 11.95 6.19 -6.19 6.34 -6.46 -0.15 0.27

60 170 11.32 11.09 6.19 -6.19 6.74 -6.86 -(.55 0.67
180 10.38 10.14 6.19 -6.19 7.14 -7.26 -0.95 1.07

190 9.34 9.11 6.19 -6.19 7.54 -7.66 -1.35 1.47

The distribution of the residual stress component of o for the beam of 0° orientation angle is

shown in Figure 4. As seen from this Figure the intensity of the residual stress component of oy
is the same at the upper and lower surfaces. The distribution. of the shear stress at the section of .

x = 390 mm is represented. Maximum residual stress component of 1, is found for any section
at the x axis.
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Figure 4. Distribution of the residual stress components for 0° orientation angle.

The distribution of the residual stress component of o, along the sections is shown in Figure 5
for the beam of 30° orientation angle. The intensity of the residual stress at the upper surface is
greater than that at the lower surface. The intensity of the residual shear stress component is
maximum at any section around the x axis.

280 290 0 39 320 330 340 XN L w=340mm
( ( \ _
o1 W, 1

s . S Fimy
-1 Ga, 1 [ Gy, 1

A
"

s o+ o+

plastic

< < etostic

———

= G + 1 G, -l G, ! 2Py T ¢ 2 (HPo)

Figure 5. Distribution of the residual stress components for 30° orientation angle

The distribution of the residual stress component of o, and 14y for the 45° orientation angle is
illustrated in Figure 6. As seen from this Figure that the intensity of the residual stress
component of o, at the upper surface is greater than that for the lower surface. It is also seen that
the plastic zone expands at the upper side larger than that at the lower side. The residual stress
component of 14, of the distribution of the residual stress component of o, for the beam of 60°
orientation angle is shown in Figure 7. As seen from this Figure, the intensity of the residual
stress component at the lower surface is greater than at the upper surface. Again the residual
stress component of Ty, is maximum around the x axis.
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Figure 6. Distribution of the residual stress components for 45° orientation angle.
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Figure 7. Distribution of the residual stress components for 60° orientation angle.

The distribution of the residual stress component of o, for the beam of 90° orientation angle is
shown in Figure 8. The intensity of the residual stress components of o, and 1y, is symmetric

with respect to the x axis at any section. Plastic zone spreads rapidly in the beam of higher
orientation angles. '
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Figure 8. Distribution of the residual stress components for 90° orientation angle.
6. CONCLUSIONS

In the present study an exact solution is given for the elastic-plastic solution of a composite
cantilever loaded at its free end by a single force.

1) The plastic zone starts first at the upper surfaces of the beam for 30° and 45° orientation
angles. However, it begins earlier at the lower surface for 60° orientation angle also it expands
at the same distances at the upper and lower surfaces for 0° and 90° orientation angles.

2) If the plastic zone expands at one of the upper and lower surfaces, the plastic zone is thin.

3) When the orientation angle is increased, the plastic zone spreads rapidly.

4) The intensity of the residual stress component of o is maximum at the upper and lower
surfaces.

5) The intensity of the residual stress component of Txy IS maximum around the x axis.
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