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CALCULATION OF THE NATURAL FREQUENCIES OF A BEAM-
MASS SYSTEM USING FINITE ELEMENT METHOD

HR Oz

Department of Mechanical Engineering, Celal Bayar University, 45140 Manisa, Turkey

Abstract - In this study, the natural frequencies of an Euler-Bernoulli type beam with a
mass are calculated. The beam is supported with different end conditions. The mass is
located on different locations. The linear natural frequencies are calculated by using
finite element method for the first five modes. Results are compared with those of exact
and other approximate methods. '

i. INTRODUCTION

Beam-mass systems have been investigated by many researchers. The natural
frequencies of beam-mass systems, plates carrying concentrated masses under different
boundary conditions were calculated by using approximate and exact analysis [1-4] and

“two fundamental theories of beam vibrations were compared [5]. Chai and Low [6]
investigated the natural frequencies of a beam with a mass near the beam's ends. Low ef
al. [7] found that the results of experiments and the theory did not match well for beams
of large slenderness ratio for centre loaded beams. Chai ef al. [8] and Low ef al. [9]
presented both experimental and theoretical results using Rayleigh-Ritz procedure and
showed that the correlation between theory and experiments was much improved when
stretching effects were included [9]. Ozkaya ef al [10] analyzed non-linear free and
forced vibrations of a beam-mass system by considering five different sets of boundary
conditions. The authors investigated the effects of the location and the magnitude of the
mass on the natural frequencies. They used a perturbation technique in the analysis.
Low [11] used different assumed shape functions to obtain the kinetic and potential
energies of the three classical beams carrying a concentrated mass. Low and Dubey [12]
presented shape functions for calculating the frequencies. Low [13] compared different
models for simply supported beam. Ozkaya and Pakdemirli [14] obtained the
frequencies for the clamped-clamped beam with mass and searched approximate
solutions of free and forced non-linear vibrations using a perturbation method. They
compared the results with the solutions of artificial neural network method. Turhan [15]
considered the longitudinal and transverse vibrations of bars and beams with a mass and
torsional vibration of shafts with a disk. The natural frequencies were obtained using
Rayleigh method and were compared with the exact solutions.

In this study, an Euler-Bernoulli type beam carrying a mass on different
locations is considered. Transverse vibrations of the beam is investigated. For support
conditions, six different cases are discussed. These cases are simple-simple, simple-
sliding, clamped-simple, clamped-clamped, clamped-sliding, sliding-sliding supports. In
the analysis, finite element method is used to calculate the first five natural frequencies.
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Cubic interpolation function is assumed for the vertical displacement of the beam. Also
linear bending is assumed. Results are compared with exact, approximate closed-form
and Rayleigh's method solutions. It is found that the accuracy of finite element results
are very high and closer to the exact frequency values than closed-form and Rayleigh
solutions.

2. FINITE ELEMENT FORMULATION

In this part, the kinetic and elastic potential energies of the beam in transverse
vibration will be given. The equations for natural frequencies will be obtained by using
finite element method. Some assumptions are made in deriving the equations and in
search of the solutions. The beam is assumed to have only vertical displacement, no
elongation of neutral axis or movement in longitudinal direction is allowed. Cubic
interpolation function for vertical displacement is assumed. For the beam shown in
Figure 1, the kinetic and elastic potential energies without a concentrated mass are

T E%PAETWGX 0
U= %Ezﬂ” v"dx 2)

where p is density, A is cross-sectional area, Lt is total length, EI is flexural rigidity. x
and z denote longitudinal and vertical directions respectively and v denotes the

7
displacement in z direction. (') and () denote differentiations with respect to time t

and x respectively. Since the longitudinal velocity component is very small, it is
neglected in the kinetic energy equation. x,, is the location of the concentrated mass M..
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Figure 1. A beam with a concentrated mass on simple supports

For the finite element formulation, as a first step, one defines the degrees of
freedom for a bending element in Figure 2. vy, v, are the vertical displacements at the
nodes 1 and 2 of the beam element respectively. 8; and 8, represent rotations of the
nodes. L is the length of the beam element. o
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Figure 2. Beam bending element
Cubic interpolation function for the vertical displacement is
V=, o, X +0LX X (3)

Equation (3) can be written in matrix form as follows
{v}m[l x x? x° 4)

The nodal displacement vector for a bending element consists of vertical displacements
and rotations at nodes 1 and 2

v

91
wiko=1, (5)

2
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where rotation or slope of the beam is

0, =t ' r=1,2 (6).

After applying finite element formulation, the kinetic and elastic potential energies for
one element can be written as follows

T =}, M, | (7)
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U=Z 0TIk, ®)

where { | denotes transpose of the matrix and

12 6L -12 6L
6L 4L* -6l 217
K], = =

Ul-12 -6L 12 -6L ©)
6L 2L -6L 41’
is the element stiffness matrix between nodes 1 and 2, and
A 156 22L 54 -13L
M], = mL| 22L  4L*  13L  -3L° (10)

4201 54 3L, 156 ~22L
-13L -3L? -221. 417
is the element inertia matrix where m is mass per element length.
If the total length of the beam is considered, the element inertia and stiffness
matrices must be combined and only one inertia and one stiffness matrix must be
obtained. For the concentrated mass, a matrix with only one element is written for the

location and this matrix is combined with system inertia matrix. The equatlon of motion
can be obtained for free vibrations by applying Lagrange equation

[M]{VMK]{v}é {0} (11)

where [M] and [K] are the system inertia and stiffness matrices respectively, {v} is
system displacement vector. Assume a solution in the form of

= Ve | (12)

where j and @, denote +—1 and natural frequencies and {V} is displacement amplitude
vector. Substituting equation (12) into equation (11), one writes

[[K]-o02M] }{v}= 0} (13)
For non-trivial solution, the determinant of coefficient matrix must be zero. This gives

|[K]-oiM]|=0 | (14)
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Equation (14) is an eigenvalue problem and is to be solved for different end conditions
and mass locations in the next section. The boundary conditions used in finite element
analysis are as follows

Case 1. Simple-Simple Supports
vi=0, v¢=0 (15)

Case 2. Simple-Sliding Supports
vi=0, 80 _ (16)

Case 3. Clamped-Simple Supports .
vi=0, 8=0, v&=0 (17

Case 4. Clamped-Clamped Supports
vi=0, 870, vi=0, 6¢=0 | (18)

Case 5. Clamped-Sliding Supports ' .
vi=0, 8;=0, 80 (19)

Case 6. Sliding-Sliding Supports
6i=0, 6¢=0 (20)

where 1 and f denote initial and final nodes of the beam.

3. NUMERICAL SOLUTIONS

Numerical values for the natural frequencies for the first five modes will be
given in this section. Solutions of the eigenvalue problem (equation (14)) for different
end conditions (equations (15-20)) and mass locations are presented in Tables 1-6. The
dimensionless concentrated mass and its location can be written as follows

M

o= o (21)
PAL
X .
o UEL 22
n L _ (22)

In this study, the mass on the beam is assumed to have the same weight with the beam,
namely o=1. The analytical values (exact) were given by Ozkaya ef al. [10] and Ozkaya
and Pakdemirli [14]. The approximate closed form solutions were given by Low [13].
Rayleigh's quotient solutions were given by Turhan [15]. 40 elements are used in the
finite element analysis. As can be seen from the tables, the finite element solutions are
very accurate. If the number of elements are increased then the analysis will give better
resuits. In ref. [11,12,13] the natural frequencies for simply supported beams were given
but their accuracy are lower than the finite element analysis. Also, frequency values
obtained by Rayleigh's method in ref. [15] have less accuracy.
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4. CONCLUDING REMARKS

The transverse vibrations of an FEuler-Bernoulli type beam carrying a

concentrated mass is considered. Six different boundary conditions and eleven different
mass locations are assumed for the calculation of natural frequencies. The finite element
method is used in the analysis. Cubic interpolation function for the vertical
displacement is taken. The approximate results are compared with exact and other
approximate solutions. The finite element method results are very close to the exact
frequency values. Also increasing the number of elements in the analysis increases the
accuracy of the natural frequencies.
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