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Abstract-In this study an elastic-plastic stress analysis is carried out in an orthotropic
composite cantilever beam loaded uniformly at the upper surface. An analytical solution is
found satisfying both the governing differential equation in two dimensional case and
boundary conditions. In this solution, the intensity of the uniform force is chosen small,
therefore oy is neglected in comparison with the other stress components. The angles between
the first principal axis and x axis are chosen as 0°, 30°, 45°, 60° and 90°. The plastic region
begins first at the upper surface of the beam for 30° and 45° orientation angles. However, it
starts earlier at the lower surface for 60° orientation angle. The intensity of the residual stress
component of 6, is maximum at the upper and/or lower surfaces in the beam. The intensity of

the residual stress component of Ty is maximum on or around the longitudinal axis of the
beam.

1. INTRODUCTION

Residual stresses in the composites are particularly important because they may lead to
premature failure. Prediction and measurement of residual stresses are therefore important in
relation to production, design and performance of composite components. Akay ef al [1]
measured the thermal residual stresses in injection moulded thermoplastics by removing thin
layers from specimens and measuring the resultant curvature or the bending moment in the
remainder of the specimens. Jeronimidis and Parkyn [2] investigated residual stresses in
carbon fibre-thermoplastic matrix laminates. The finite element technique gives an excellent
elasto-plastic stress analysis in composites structures [3,4,5,6].

Karakuzu ef al [7] carried out an elasto-plastic stress analysis in an aluminum matrix
composite cantilever beam loaded by a single force or uniformly distributed forces by using
an exact analytical solution. They determined the expansion of the plastic zone and residual
stresses in that beam.

Sayman ef al. [8] carried out an analytical solution for a composite cantilever beam loaded
by a single force at its free end.

In the present study, an elastic-plastic stress analysis is carried out in an orthotropic
composite beam loaded by a uniformly distributed force on the upper surface. A closed form
solution is performed by satisfying both governing differential equation for an anisotropic
system and boundary conditions.

2. ELASTIC SOLUTION

The elastic solution of an orthotropic cantilever beam loaded uniformly, as shown in
Figure 1, is given by Lekhnitskii [9]. The governing differential equation of a plane stress
case is written as,
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Figure 1. Composite beam.
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where F is a stress function and a;; is the component of the compliance matrix [10],

a, =8,m* +(28, + S ym’n* + S, n*

a, =8, (m* +n*Y+ (8, +S, - S )m’a’

ay, =8, + (28, + S m*n’ + 8, m*

s = (25, ~28,, — Si)mm® = (28,, — 28, -8, )n’m
Gy = (28, =28, =S W’m—(28,, —28,, ~ 8, nm’
Ao = 228, + 28, ~48, — S )m’n’ + 8, (m* +n*)

)

where m = COS@, n= sine, Sumle;, Sm:l/}:‘a, 8122-\)12/5;, SgsﬁliGn.

The polynomial for the elastic solution of the problem is chosen as,

d ok b
F—ngy +—-xy «%iy + xy +§y3+5x2y+g-x2 (3)

Substituting in Equation (1), gives,

x(-4aigd+2ear; yry(4aipd+2assd-4a;6e+6fa;;)=0

For satisfying the equation, every term that is a function of x and y must be equal to zero as,
-4ajed+2ea;; =0, e=gsd )]

where s=2a5/ ar;

2a1pd+agsd-2a6e+3fa;; =0, f=rd
where
o zalss B 2“12 " s : (5)

3a

1
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Now, the stress components become

_azF__‘ixZ 2 3 kx
o, = pY =dx’y+sdy” +rdy’ +hke+gy
O*F d ‘
oc,= P =-§-y3+by+a (6)
O'F . sd
= =— — v ky—b
Ry dhxy 3 ky — bx

The boundary conditions are:

o =—= at y=-c
o,=0 al y=+c¢
(7)

7, =0 at y=tc

J._c o tdy=0 atthe free end

,’: o tydy=0 atthe free end
where t is the thickness of the beam and q is the intensity of the uniform load given as
Newton/mm.

By solving the above equations, the unknown parameters are determined, and the stress
components become,

q( 2 3 2 1 2 3 2)
e .,.{... e Jp—
o, S\ YAy sy etk - ety

q(lg 2) q
R - 8
» T Ta\3” T Ty ®)

m_i(m S D | )
Ty ST\ "W Ty 97 Heixosety

where I is the inertia moment of the cross section of the beam.
- 3. ELASTIC-PLASTIC SOLUTION
In this study, it is assumed that the material in the plastic region is perfectly plastic for the

simplicity of the investigation. In the plastic region stress components have to satisfy the
equations of equilibrium for a plane-stress case as:

ﬁo‘x 5’Txy

4 ={)
& 07,% ©
ot fo
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The uniform force q is chosen as a small value, therefore o, can be neglected in
comparison with the other stress components. Putting 6,=0 in the second equation gives the
shear stress component T,y as a function of y or a constant.

The Tsai-Hill Theox(‘ly is used as a yield criterion in this solution. X and Y are the yield
points in the 1% and 2" principal axes, respectively. $ is the yield point in the 1-2 plane for
the simple pure shear. For this condition it can be written as,

o' o0 o, Y (¢ T
O %% _2j I 2N T
xX* X ¥ Ay
2 2
5,=0-00,+ 72X + X
Y S

where o, is the equivalent stress, and o;, o2 and T are the stress components in principal
material directions as,

(10)

i
2

=X

o, =0,c08" §+27,,sin6 cosd
o,=0,8n%0-2r,_sinb cosd (1)
T, =—0, sinf cosd+ rxy(cos2 8 —sin’® @)

Substituting the stress components in equation (10) and deriving it with respect to x, gives
Jo ‘

= = (. Putting in the first equation of equilibrium, it is obtained 1., as a constant. Yielding

begins at the upper or lower surfaces of the beam, 1., = O on these surfaces. From this
condition it is found that 1.y is equal to zero in the plastic region. From the yield criterion, the
stress component ¢ which causes the material to yield is determined as,

X
X%sin*@ X%sin?Ocos* @
YZ . + S2

X = (12)

\/cos;4 @ —sin® Ocos® O +

where 0 15 the angle between the first principal material direction and the x axis. As a result of
this, in the plastic region the stress components ox and 1y are equai to X; and zero,
respectively.

3.1..Elastic Part

If the plastic region expands at the upper and lower surfaces of the beam, consider a
section from the free end x, as shown in Figure 2. The boundary conditions for this section are
written as,

7, =0 at  y=-h
.rlym(}l at y=nh

[ ety =-
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Figure 2. Expansion of the plastic region.
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where the positive Tyy is in the opposite direction of qx, therefore qx takes a ﬁegative sign.
o =X at y=-h

X 1 y i (1 3)
o =-X at y=h,

x 1

The resultant of o at this section is equal to zero:
h
Xe=-m)-X(e-m)+[ otdy=0

The moment in this section is equal to,

2

qx
2

C+h1 t+X;(c~h2)c+h2

Xs(c"hl) 5 2

hy '
- L:, o tydy =
where positive o, produces an opposite moment of qx*/2. -

For satisfying both the differential equation (1) and the boundary conditions (13) in the elastic
part of the elastic-plastic zone, the stress function is chosen as:

d e f
F=2y2y3 4 & ot p L
s Y T2 T

b k
5+£_ 2+~g_ S lxty 4=yt 14
Y How 63» S XYY (14)

- The stress components from this polynomial are found as,

2 L ‘
o*x:t;fmdxzy+sdyzx+rdy3+px+gy+k
(15)
A'F Y
SR SRR
ey Y TR

q is chosen as a small value, therefore oy can be neglected in comparison with the other stress
components.



134

The stress function satisfies both the governing differential equation and the boundary
conditions. From the boundary conditions the seven unknown parameters are determined as,

d
px—dx(hz ”h:)_%(hiz ~hh, '*'hzz)

b=—dnh, + M, _p )
3x |
g= _hzf]h - dx? —nci(hf—h;h2 +h22)+ sdx(h, ~h,)
i Z
ki )= St o) D
H 2
_9
d= 4
‘E(hl +-h2)3 +%(hl +h2)3(h2 'h;) (16)
_ 3qur +2X1xt~—~\/(3qxr ~1—2X]Jct)2 ~8qX 1s*x’
‘e 2X, st
h =h +u

:—0 {»»(:zh2 + u)[s(h2 +u) +8h," + 20, (h, +u) +2h,>(h, +u)— 1282 (B, +u)’ ]- Ssxu(2h, +u)
2
—{l[(h2 +u) +h," —hy{h, +u)]-- %+ X,c*=0

u is determined by using the given constants. Subsequently, solving the last equation by using
the Newton-Raphson method gives h, and subsequently the other parameters are determined.
h; is found to be equal to h, for the 0° and 90° orientation angles.

4, A SAMPLE

The mechanical properties of an orthotropic composite beam are given in Table 1. The
thickness and the height of the beam are chosen as 4,8 mm and 8 mm, respectively.

Table 1. Mechanical properties and yield strengths of the composite beam.

E; E; Giz | vyp | Axial strength | Transverse strength | Shear strength
[MPa] | [MPa] | [MPa] (X) [MPa] (Y) [MPa] (8) [MPa]
4300 960 240 0.4 21.0 52, . 58

S. RESULTS AND DISCUSSION

The composite cantilever beam is loaded uniformly. The intensity of the uniform load is
chosen as q=0.04 N/mm. The yield points at the upper and lower surfaces of the beam from
the analytical solution are given at Table 2. As seen from this Table; yielding occurs first at
upper surface for 30° and 45° orientation angles. However, it starts earlier at the lower surface



for the 60° orientation angle. The yield point has the same distances from the free end for 0°

and 90° orientation angles because of the symmetry of the material properties.

Table 2. The distance between the free end and yield points.

Orientation angles 0° 30° 45° 60° 90°
At the upper surface 232.00 162.90 140.00 126.40 115.50
(mm)
At the lower surface 232.00 168.20 141.70 125.50 115.50
(mm)

The expansion of the plastic region and the stress component of o, are given in Table 3, for
0°, 30°, 45°, 60° and 90° orientation angles. As seen from this Table, the intensity of the
residual stress of oy at the upper surface is greater than that at the lower surface for 30°, 45°
orientation angles. It is the same for 0° and 90° orientation angles. However the intensity of
the residual stress on the lower surface is greater than that on the upper surface for 60°
orientation angle. When the orientation angle is increased, the plastic region spreads rapidly
as seen for the beam of 90° orientation angle. Also the residual stress component of 1, is
given on the x axis, because it is maximum on or around this axis.

Table 3. Expansion of the plastic region and the residual stress component of oy at the upper
and lower surfaces and the residual stress components of ., on the x axis.

At the upper surface (MPa) | At the lower surface (MPa)
X hy hy (ox)p (Ox)e (ox)r (o) (Ox)e (ox)r (T
0 | (mm) | (mm) | (mm)
240 371 1371 2100 | 2249 | -149 | -21.00 | -22.49 1.49 «0.03
0° 250 3291329 2100 | 2440 | -340 | -21.00 ] -2440 ] 340 -0.09
260 279 1279 | 21.00 | 2639 | -539 | -21.00| -2639 | 539 -0.17
270 2151215 2100 | 2846 | ~746 | -21.00 | -2846 | 746 | -0.27
170 1365 {391} 1070 | 1164 | -0.94 | -10.70 | -10.94 | 0.24 -0.01
180 311 13397) 1070 | 13.03 233 1 -10.70 | -12.29 1.59 -0.07
30°1 190 1.54 1 284 1 1070 | 1450 | 380 | -10.70 | -13.71 3.01 -0.14
200 1.94 12251 1070 | 16.04 | -534 | -10.70 | -15.21 4.51 -0.29
150 | 340 | 3.50 | 7.74 888 | -1.14 | -7.74 | -8.69 | 095 -0.04
160 277 | 3.87 T.74 10.10 | -2.36 -7.74 | -9.89 2.15 -0.10
45°1 170 20012201 774 11.39 | -3.65 774 | -11.18 3.44 -0.23
180 1371149 774 | 1277 503 | -7.74 | -12.54 | 480 | -0.51
130 3771 3.71 6.19 6.55 -0.36 -6.19 | -6.65 0.46 -0.02
- 140 3.09 | 3.03 6.19 7.60 -1.41 -6.19 -7.71 1.52 -0.06
60°| 150 | 237|230} 6.19 8.73 -2.54 -6.19 | -8.84 2.65 -0.15
160 | 1,60 1.52 | 6.19 994 | 375 | -6.19 | 10.06 | 3.87 | -0.39
120 3661|366 520 5.62 042 | 520 @ -562 0.42 -0.01
90° | 125 323 | 3.23 520 6.10 090 | -520 1 -6.10 0.90 -0.04
130 272 2.72 5.20 6.60 ~1.40 -520 | -6.60 1.40 -0.10
135§ [ 2052051 520 7.12 | -1.92 | -5.20 1 -7.12 1.92 | -0.20
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The expansion of the plastic region and the residual stress distribution of oy along the
sections of the beam are given in Figure 3, for 0° orientation angle. As seen from this Figure,
the plastic zone expands slowly along the beam and the intensity of the residual stress of oy is
maximum at the upper and lower surfaces.
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Figure 3. Distribution of the residual stress component of o, and expansion of the plastic
region for 0° orientation angle.

The distribution of the residual stress component of o, and the expansion of the plastic
zone are given in Figure 4, for 30° oriented beam. As seen from this Figure, the intensity of
oy at the upper surface is maximum along the sections of the beam.
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Figure 4. Distribution of the residual stress component of c, and expansion of the plastic
region for 30° orientation angie

The expansion of the plastic zone and the distribution of o are given in Figures 5, 6 and 7
for 45°, 60° and 90° orientation angles, respectively. As seen from these Figures, the intensity
of oy is maximum at the upper surface for 45° orientation angle and it is maximum at the
lower surface of the beam for 60° orientation angle at the sections of the beam. The
distribution of the residual stress component of oy is symmetric for 90° orientation angle.
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Figure 5. Distribution of the residual stress component of o, and expansion of the plastic
region for 45° orientation angle,
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Figure 6. Distribution of the residual stress component of oy and expansion of the plastic
region for 60° orientation angle.
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Figure 7. Distribution of the residual stress component of oy and expansion of the plastic
region for 90° orientation angle.

6. CONCLUSIONS

In the present study, an elastic-plastic stress analysis is given for the orthotropic composite

cantilever beam loaded uniformly on its upper surface.

1.

2.

The plastic region begins earlier at the upper surface of the beam for 30° and 45°
orientation angles. However, it starts first at the lower surface for 60° orientation angle.
The plastic region begins af the upper and lower surfaces at the same distances from the
free end for 0° and 90° orientation angles.

The plastic region expands rap;dly on the upper side of the beam for 30° and 45°
orientation angles. However, it is contrary for 60° oriented beam.

The intensity of the residual stress component of Gy is maximum at the upper or lower
surfaces in the beam. It is greatest at the upper surface for 30° and 45° orientation angles,
The intensity of the residual stress of 1y, is maximum on or around the x axis. It is
maximum on the x axis for 0° and 90° orientation angles due to symmetry of the matenai
properties of the beam, with respeci to x axis.

The intensity of the residual stress component of o, is much greater than that of .
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