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Abstract~Using free simplicial algebras, it is shown that a free or totally free 2-crossed module can be constructed
on suitable construction data in {2]. In this paper 2-crsossed complexes and freeness conditions for 2-crossed
complexes are introduced and similar freeness results for these are discussed.

1. INTRODUCTION

Andre [19] uses simplicial methods to investigate homological properties of
(commutative) algebras. Other techniques that can give linked results include those using the
Koszul complex. Any simplicial aigebra yields a crossed module derived from the Moore
complex [6] and any finitely generated free crossed complex C —R of commutative algebras was
shown in [14] to have C=RYd(A% R", ie. the 2™ Koszul complex term modulo the 2-
boundaries.

Higher dimensional analogues of crossed modules of commutative algebras have been
defined: 2-crossed modules by Grandjean and Vale [15] and crossed n-cubes of algebras by Ellis
[13]. It would not be reasonable to expect a strong link between free 2-crossed modules or free
crossed squares and Koszul-like constructions since the former record quadratic information,
which is less evidently there in the Koszul complex. Nevertheless it seems to be useful to try to
define what freeness of such “gadgets” should mean - for instance, to ask “free on what?”. Arvasi
and Porter [2] solution goes via free simplicial algebras as used by Andre. ,

It is a logical step to introduce an intermediate concept, namely 2-crossed complexes.
These use a 2-crossed module plus a chain complex of modules and we will show how to derive
such a thing from a simplicial algebras. We have therefore included a purely algebraic treatment
of 2-crossed complexes giving explicit formulae for the structure involved in the passage from
simplicial algebras to 2-crossed complexes and an explicit direct proof of a freeness result due to
Baues in [12]. _

There is an alternative way of storing the information from a 2-crossed complex, namely
as a “squared” complex as introduced by [8].

2. PRELIMINARIES

All algebras will be commutative and will be over the same fixed but unspecified ground
ring. .

2.1 Truncated simplicial algebras
Denoting the usual category of finite ordinals by A, we obtain for each £20 a

subcategory A%, determined by the object [j] of A with j <k. A simplicial algebra is a functor
from the opposite category A% to Alg, a k-truncated simplicial algebra is a functor from
A%, > Alg. We denote the category of k-truncated simplicial algebras by TrSimpAlg. Recall
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cosky ! TrSimpAlg —> SimpAlg
called the k-coskeleton funcior, and a left adjoint
ski: T SimpAlg -» SimpAlg,
called the A-skeleton funcior.
We recall that ideal chain complex from [2]. By an ideal chain complex of algebras,
(X, d) we mean one in which each Imd;.; is an ideal of X;. Given any ideal chain complex (X,d)
of algebras and an integer n the truncation, t,X, of X at level n will be defined by

X;  if i<n,
&) =qX; i i=n
0  ifi>n

The differential d of tyX 1is that of X for i< n, dy is induced from the n™ differential of X and all
others are zero.

Recall that given a simplicial algebra A, the Moore complex (NA, 8) of A is the chain
complex defined by ' R :

-1
(NA)y= ) Kerd]",

i=0
with 9, : NA, — NA,_, induced from d” by restriction.

The n'* homotopy module r,(4) of A is the n™ homology of the Moore complex of A,
ie.,

7, (4) = H (NA,3) = (\Kerd] /2 (\Kerd]).
i=0

n+l
js)

We say that the Moore complex NA of a simplicial algebra is of length k if NA.=0 for all
nzk+1 so that a Moore complex is of length k also of length r forr=k.

Lemma 2.1 Let tri(4) be a k-truncated simplicial algebra, and cosky(trif4)), the algebra-
theoretic k-coskeleton of tri(4) (i.e. calculated within Alg). Then there is a natural epimorphism
Jrom Nicosky(tri(4))} to tg NA with acyclic kernel. Thus coskyf trifd)) and

1y NA) have the same weak homotopy type. ‘

Proof: Following Conduche [16], the Moore complex of cosk(try(A)) is given by:
N(COSkk(trk(A))h =0 if Pk+i,
N(cosk(tri(A))+1= Ker (8 : N4, — NA, ),

N(coske(tr(A)), = NA,if £< k.
The natural epimorphism gives on Moore complexes

N(cosky (1, (A))) : 0 ——> 8NA,,, —> NA, %> NA, | —>--
v \: N’ 3 , 2
tk} (NA) 0 — ) —> NAk /6NAk+1 ———""““}NA]C_} —_—

and it is immediate that the kernel is acyclic as required. 0
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3 CROSSED MODULES OF ALGEBRAS

Crossed modules of groups were initially defined by Whitehead as models for (homotopy)
2-types in [20]. Conduche, [16], in 1984 described the notion of 2-crossed module as a model for
3-types. Both crossed modules and 2-crossed modules have been adapted for use in the context
of commutative algebras ( cf. [6], [14] and {15]). Throughout this paper we denote an action of
reRonce Cby r-c.

A crossed module is an algebra morphism 6:C —> R with an action of R on C satisfying
A -cy=rde and 8(c)-c"=c¢’ forall e,c’eC,rekR.

In this section, 2-crossed module is described in [15] and a free 2-crossed module
of algebras will be introduced by using the second dimension Peiffer elements of [2].

We recall from Grandjean and Vale [15] the definition of 2-crossed module:

A 2-crossed module of k-algebras consists of a complex of Co-algebras

C2 ?2 >C1 % >C0
with 8,,8; morphisms of Cy-algebras, where the algebra Cy acts on itself by multiplication, such
that

C; —=C
is a crossed module in which C, acts on C; via Co, (we require thus that for all xe C;, ye C,; and
ze Cy that (xy)z = x(yz)), further, there is a Co-bilinear function with

{ }'C1®C1—>Cz:
caHed a Peiffer lifting, which satisfies the following axioms:
PLL: 8,{y ® 1} = yoyi = Yo - 01(0),

PL2: {82(x1)®52(x2)}—x1x2,
PL3: {po ®y1y2)= oy ® y1}+01v2 - o ® 1},
PL4 a) {0,(x)®y)=y x-8,0)"x,
B {p®a, )=y
PL5  {yo®@p}z=1y- Z®J’1} {y0®y; z},
forall x,x,x, € Cy ¥, ¥9,¥1,¥2 €C; and zeCq. One has
C, —2C 2,
2 \’ 2
C, 25014503,
such that f,0; = 01 £, fi0, =&, f, and such that

Sileg e1) = foleo) fler), faleg-c3) = foleg)- f2(ca),

and
@A ©fi= 18
forall e Cy, c1€Cy, ¢y e Co, where £, :Cy > C5, f1:Cp - Cy, fo : Cy = Cy,
We thus define the category of 2-crossed module denoting it by X;Mod.

We denote the category of simplicial algebras with Moore complexes of length n by
SimpAlg < » in the following. First we recall from [2] the following results.
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Proposition 3.1 Let A be a simplicial commutative algebra with the Moore complex NA. Then the
complex of algebras

NAy [ 33(NAy  Dy) ~22-5 Ny —5 N4,
is a 2-crossed module of algebras, where the Peiffer lifting map is defined as follows:
{®}: N4, ® N4, — N4, /85(Ndz ~ Dy)
(Vo ® 1) > 51Y0 (311 ~ So)1).
Here the right hand side denotes a coset in NAy/03(NAy ~D;) represented by the
corresponding element in NA,. 0

3.1 Free 2-Crossed Modules

The definition of a free 2-crossed module is similar in some way to the corresponding
definition of a free crossed module. However, the construction of a free 2-crossed module is
naturally a little more complicated. ‘

It will be helpful to have the notion of a pre-crossed module: this is just a
homomorphism 8:C ~> R, with an action satisfying 8(r - ¢) = réc for ce C, reR.

Let (C,R,0) be a pre-crossed module, let Y be a set and let v:¥ — C, be a function,
then (C,R,0) is said to be a free pre-crossed R-module with basis v or, alternatively, on the
fanction dv:¥ — R if for any pre-crossed R-module (C’,R,d")and function v': ¥ — C' with
d'v' = dv there is a unique morphism

9 :(C,R,0) > (C',R,0)
such that gv =v'

The pre-crossed module (C,R,d) is totally free, if R is a free algebra.

We recall from [2] the following construction. -

Let {C2,C1,Co,0,5,0; } be a 2-crossed module, let Y be a set and let v:V — (,, then
{C2,C1,Co,0,,8; } is said to be a free 2-crossed module with basis v or, alternatively, on the
function Ov:Y —C; if for any 2-crossed module {C5,C;,Cqo,35,8;} and function

v': Y > C) with &'v’ = v there is a unique morphism @ :C, — C} such that 8,® = J.

Remark:
“Freeness” in any setting corresponds-to a left adjoint, so what are the categories involved
here? '

Let 2CM/PCM be  the category whose object consists of a precrossed module (C, D,d)
and (Y,v) where v:Y —» C is simply a function to the underlying set of the algebra C such that
dv=0. Morphisms of such object consist of a pair ¢,¢’, where ¢':Y —> ¥’, is a function with
v¢' =vg. Omittion of the algebra structure of the top algebra, Cs, of a 2-crossed module
provides one with a functor from 2-crossed module to this category. The object of 2CM/PCM
are thought of a s 2-(dimensional) construction data on given precrossed module.

Let (R, I) be ideal-pair case will be described only. Taking the kernel of this morphism
K — Rwe pick a set of generators of K, v, :¥ —» K as a precrossed module and we have an
object of 2CM/PCM. Thus to analyse an ideal homological pair, one natural method to use is to
compare it via a free 2-crossed module, with a free precrossed modulé. This process is based
some extent on the intuition of related CW-complex constructions in topology. Andre’s use [19]
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of simplicial resolutions provides the bridge between the two settings. The sort of construction
data, one obtains from a simplicial resolution, corresponds to a special type of 2-crossed module:
A free 2-crossed module {C,, Ci, Co,8,,8;} is totally free if 8, :C; = C; is a totally
free pre-crossed module,
The following notation and terminology is due to [2]. We give an explicit description of

the construction of a totally free 2-crossed module. For this, we need to recall the 2-skeleton of
the free simplicial algebra, which is

) ..........,.___%
—_—
dy.dy.dy 4.4
AP (RUsp(X), 5 (XY RLX] R,
. . o
(.........._.........____

5o
with the simplicial structure defined as in section 2.2 of [2]. Analysis of this 2-dimensional
construction data, (cf. [2]), shows that it consists of some 1-dimensional data: namely the
function @: X —» R that is used to induce d, : RiX]— R, together with strictly 2-dimensional

data consisting of the function ;¥ ~» RT[X]where R[X] is the positively graded part of R[X]

and which is used to induce dy from R[se(X), si(X)][Y] to R[X]. We will denote this 2-
dimensional construction data by (Y, Xy, ¢, ,R).

Theorem 3.1 (See [2].) 4 totally free 2-crossed module {L, A, R, w',0,} exists on the 2-
dimensional construction data (Y, X; v, ., R).

Proof: See [2]. 0

4. 2-CROSSED COMPLEXES AND SIMPLICIAL ALGEBRAS,
Any simplicial, 4,, yields a normal chain complex of algebras, namely its Moore

complex, (NA , ). Carrasco and Cegarra, [10], examined the extra structure inherent in a Moore
complex that allows the reconstruction of A, from NA. They gave the term hyper-crossed

complex to the resulting structure, Crossed complexes themselves, {cf. Brown and Higgins, [17])
correspond to a class of hypercrossed complexes in which nearly all of the extra structure is
trivial, so the only non-abelian algebras occur in dimensions 0 and 1 and are linked by a crossed
module structure. The other terms are all modules over NA/ NA;. Thus a crossed complex
looks like a crossed module with a tail that is a chain complex of 7, (4) -modules. If the original

simplicial algebra is the algebra of a reduced simplicial set, K, then it is well known that the
corresponding complex has the “chains on the universal cover” in dimensions greater than 1 and
a free crossed module in the bottom of dimension two. (This is implicit in much of the work of
Baues on crossed (chain) complexes, [7, 11, 12], and was explicitly proved by Ehlers and Porter,
[51) - |

Crossed modules-model algebraic 1-types ( and hence topological 2-types) and we have
recalled from Conduche's work, [16], that 2-crossed modules model algebraic 2-types (and hence
topological 3-types). It is thus natural to give these latter models also a “tail” and to consider “2-

crossed complexes”. Such gadgets are related to the quadratic complexes of Baues, [11, 12], in
an obvious way.
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Definition: ‘ ‘
A 2-crossed complex of algebras is a sequence of algebras
al 2 al ~
C: .. >Cn On rd G| >... }v(,g" 2 >(,1 % )(10
in which |

(i) Coactson Cy, 121, the action of 8C, being trivial on C, for 2 3;
(i) each 0, is a Co-algebra homomorphism and 8,0,,, =0 forall n21;
and

(it} Cy % >y d >y 18 a 2-crossed module.

Note that for any 2-crossed module,
L—2sm -85y
the which K = Kerd, is abelian, since L—22->M is a crossed module, but the much more is
true. The action of M on L via N restricts to one on K, but by axiom PLA4, the action is trivial.

This implies that the action of N itself on K, factors through one of N/3, M. Thus in any 2-
crossed complex,

. > C4 > C3 > Ker 62
is a chain complex of Cy/8, C;-modules and a 2-crossed complex is just a 2-crossed module with

a chain complex as a tail added on.

As usual there is an algebra version with C, an algebra and each C, a family of algebras
indexed by the objects of Co.

Given a simplicial algebra or algebra, A, define

NA,, : Jor  n=0,1
C, ={NAy /dy(N4; ~D3) for  n=
' NA, I(NA,, "D,y +d, (NA,,y " D,yy)  for  n=3

with &, induced by the differential of NA.
Proposition 4.1 With the above structure, (C, 0,,) is a 2-crossed complex.

Proof: The only thing remaining is to check that 8,8, is trivial. This composite
. N4 NA,
- _ ~> ~>
. ) NA3 f\D3 +d4(NA4 (’\Dg;) d3(NA3 ﬁD3)
is induced from 8,03 in NA,, and so is trivial. Thus Im 05 < Kerd, as required. d

The notion of morphism for 2-crossed complexes should be clear. This will give us a
-category, X,;Comp of 2-crossed complexes and morphisms between them. We will similarly
denote by X;Comp the category of crossed complexes together with their morphisms. It is
easily seen that the construction C is functorial from the category of simplicial algebras to that of
2-crossed complexes. :

NA,



19

_ A 2-crossed coinpiex C will be said to be free if for n >3, the Cy/0C,-modules, C, are
free and the 2-crossed module at the base is a free 2-crossed module. It will be fotally free if in
addition the base 2-crossed module is totally free.

Before turning to a detailed examination of freeness in 2-crossed complexes, we will
consider the relation between crossed-complexes and 2-crossed complexes.

Let

C: Cz % )C} % >C0
is a 2-truncated crossed complex, then (C;,Cy, 8, ) is a crossed module, C; is a module over Co on
which 0,C; acts trivially, and 9,0, = 0.

Lemma 4.2 The 2-truncated crossed complex yields a 2-crossed module by faking {c®c'}=0 e
C, forall c, ¢'e C; and inwhich the actions of C; on Crare trivial.

Proof: As (C,, Co, 0y ) is a crossed module, if ¢, ¢' € Cy, then
O(c)-cY=c-c'=0
and so 2CM1 is trivially satisfied. -
If ¢, c'eCy, thenas Cyis, {c®c'} =0 and PL2 is also satisfied.
The vanishing of both sides in the various parts of PL3 makes this equally easy to check
whilst triviality of the actions of C, on C, imply PL4. Finally PL5 is again trivially true. 0
We will think of X;Comp as a full subcategory of XoComp via this embedding.

Teorem 4.3 The full subcategory of crossed complexes is a reflexive subcategory of X;Comp.

Proof: We have to show that the functor, E, thought of now as an inclusion, has a left adjoint, L.
We first look at a slightly simpler situation.
Suppose that D is a 2-truncated crossed complex as above, and

C: L2y M Py

with morphisms, 8,,0, and Peiffer lifting, {®}, is a 2-crossed module. If we are given a
morphism, f= (£, fi, f) of 2-crossed modules, f: C— E(D), then if m;, mpeM, £{m & my} =
0 since within E(D), the Peiffer lifting is trivial. This in turn implies that fi<m; ® my> = 0,
where <my,m;> = & (m;)mp-mym; is the Peiffer commutator of m; and mp. Thus any morphism
from C to E(D) has a kernel that contains the subgroup, {C;® C,} generated by the Peiffer lifts in
dimension 2, and the Peiffer subgroup, P, of the precrossed module, 9, : C; > Cy in dimension
I.
We form L(C) as follows:
L(C)y =Cy =Cy /P, = C, /iC; ®Cy),

with the induced morphisms and actions. The previous discussion makes it clear that L(C) is a 2-
truncated crossed complex, and L is clearly functorial. Of course f: C — E(D) yields-

LD : L{C)— LED) = D so L is'the required reflection, at least on this subcategory of
truncated objects.
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Extending L to all crossed complexes is then simple as we take L(C), =C, if nz3
L(D), =&, if n>3 and
L(6)3 :C3 - (:‘2 /{(ji ®Cl} = L((j)z
given by the composite of 93 and the quotient from C; to L{C),. The details are easy so will be
omitted. Thus the functor L preserves freeness. (

Proposition 4.4: [f C is a (totally) free 2-crossed complex, then L(C) is a (totally) free crossed
complex.

Proof: In the above the dimension is 2, L does nothing and as

Co /0C) = L(C)o 1 OL(CH,.
the freeness of the modules L(C),, 7> 3 is not in doubt. In the base 2-crossed module, we have
merely to check that L(C), is a free L(C), /8L(C), -module, as the behaviour of L on (C,,Cy, 8)

is just that of the quotienting operation that turns a pre-crossed module into a crossed module and
this preserves freeness.

Let therefore that C: C, NG, | % »Cy is a free 2-crossed module with basis
g Y —C,. Letalso given a module M over G = Co/@C; and a function ¢:¥, — M. We need
to show that ¢ extends over L(C),. To do this we construct a 2-crossed complex as follows: The
base is the precrossed module (C1, Co, 0), but this is completed by putting Ker &, in dimension 2
with the inclusion as 8, . To this we add M with its G-action to form

D :Kerd) xM — Cy — C,.

The boundary from level 2 to level 1 is trivial on M. The Peiffer lifting
is just the Peiffer map from C; x C; to Ker &, and the axioms are easy to check.

Now define ¢ from our given free 2-crossed module to this one, D,

by defining ¢(y)= (80 y,¢ y) for y e Y,. Compose ¢ with the obvious projection from D to the
crossed complex

M- 519 56
where as before, G = Co/0C;. The composed map factors through L(C) giving a morphism

L(C); —» M extending ¢ . This is the unique extension of ¢ since at each stage uniqueness was a
consequence of the conditions. O

The functor C® has a right adjoint, just as C® does. Given a 2-crossed complex, C, one
first construct the simplicial algebra corresponding to the 2-crossed module at the base, using
Conduche's theorem. We also form the simplicial algebra from the chain complex given by all
Ci, iz2. The fact that C; may be non-abelian does not cause any problem, but does force
semidirect products to be used rather than products. The two parts are then put together via a
semidirect product as in Ehlers and Porter, [5], Proposition 2.4. An alternative but equivalent
approach follows the route via hypercrossed complexes (cf. Carrasco and Cegarra, [10]), and the
extension of the Dold-Kan theorem. _

This variety is determined by, a subset of the corresponding words for X;Comp as given in
[11].
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Finally we return to the discussion of freeness for 2-crossed complexes. Given the
linkages between the various categories above, one would expect the following:

Remarks

There are various things to note:

(i) The proof given in [6] that if F is a simplicial resolution of A then CVF is a free
crossed resolution of G, can not be immediately extended to “2-crossed resolutions”. Such a
notion clearly would make sense and seems to be needed for handling certain problems in algebra
extension theory, however we have not given a construction of a tensor product of a pair of 2-
crossed complexes and the result for crossed resolutions used 7(1)®_. This construction could

be avoided by using A[1]®_, which should give the same result, but as we have not yet
investigated colimits of 2-crossed complexes that construction must also be put off for a future
date. It should be pointed out the Baues in [11] defined a tensor product totally free of quadratic
complexes using a fairly obvious construction, so it seems unlikely that the conjectured
constructions are technically difficult.

(i) Although CPF is totally free for F free simplicial algebra, it seems almost certain
that not all totally free 2-crossed complexes arise in this way. The problem is that in a CW-basis,
the new generators are used to build #,F or z, F either as generators or relations. In a 2-

crossed complex, the generators at each level influence the relative homotopy algebras,

7, (F™, F"Dy  The differences here are subtle. This is of course more or less equivalent to

the realisation problem of Whitehead discussed at length by Baues, [11], but occurring here in a
purely algebraic context. Clearly this algebraic realisation problem is important for the analysis
of the difference in the homotopical information that can be gleaned from crossed or 2-crossed as
against simplicial methods.
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