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Abstract - The diffraction of plane electromagnetic waves by an open parallel plate
waveguide with dielectric loading is investigated rigorously by using the Fourier transform
technique. This method of formulation gives rise to Wiener- Hopf equations . The solution
of each Wiener-Hopf equation contains a set of infinitely many constants satisfying an
infinite system of linear algebraic equations. A numerical solution of this systems is obtained
for various values of the distances between the plates, plate thickness, the number of wave
in the dielectric region. -

LLINTRODUCTION

The scattering of plane waves by a series of parallel plates constitutes an important class of
canonical problem in diffraction theory and has been studied for many years.

The scattering by a parallel plate waveguide [1,2] and by an infinite grating {3.4] [5] was
resolved in the early days but other configurations such as three parallel half-planes have
long defied analysis. The reason is that the solution rests on the Wiener-Hopt technique
The diffraction of plane waves by three parallel infinitely thin soft half-planes has been
considered first by D.S. Jones who formulated the problem as a three dimensional matrix
Wiener-Hopt equation [6]. The three parallel half-planes problem has been also considered
by Abrahams [7] who presented a more simples approach to achieve the Wiener-Hopf
factorisation of the Kernel matrix.

We consider the diffraction of Ez-polarized plane waves by an open parallel plate
waveguide[8].

The traditional formulation of this problem leads to Wiener-Hopf equation which can not
be solved by considering the known techniques.

A numerical solution of this system is obtained for various values of the wave number of
dielectric region plate thicknesses and distance between the plates, through which the effect
of these parameters on the diffraction phenomenon are studied.

A time factor e’
throughout the paper.

with @ being the angular frequency is assumed and suppressed
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Fig.1 Geometry of the problem

IL. ANALYSIS

We consider the diffraction of an E,-polarized plane wave by a thick semi-infinite plate
defined by S= {(x,y,z);x € (-2,0),y € (a,b),z e (—x,x) located over a pertectly
conducting plane as shown in Fig. 1.

The waveguide is supposed to be filled by a dielectric material with constitutive parameters
E=¢g.,u=Mu, ando =0.

For analysis purposes, it is convenient to express the total field as follows:

[(u'(x‘y)+n"(x,y)+u.5(x,y) .oy>bh
Ur={u,(x, y) O<y<ax<0 (1)
i\u_;(x,y) O<y<hx>0

Here, «' is the incident field given by

u'(x,y) = exp(-ik(xcos @, + ysing,)) (2a)
while #” denotes the field reflected from the plane y=b, namely

u' (x,y) = -exp(ik(xcosg,- (v - 2b)sing,)) (2b)

In (2a,b) k is the free space wave number which is assumed to have a small positive
imaginery part: &, is the wave number of dielectric region. #,, j=1,2.3, which satisfy the

Au,~ ku; =0 (3a)
Au>+kiu>=0 (3b)
Aus+k’u; = 3c)

Helmholtz equation in appropriate regions are to be determined with the aid of the
following boundary and continuity conditions:
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111 BOUNDARY CONDITIONS AND WIENER HOPF EQUATION

The total field Ur(x,y) whic satisfy the Helmholtz equation is to be determined with the aid
of following boundary and contiunity conditions:

u,(x,b)=0 ;x 0 (4a)
u-(x,a)=0 ; x 0 (4b)
u-(x,0) =0 ;x 0 (4¢)
w;(60) =0 ;x 0 (4d)
w (x.b)-us(x.b)=0:x 0 | (4e)
(‘: I 3 3 5 ths v

F:I (x,h)- ((A'I:_‘ (x.h) = 2ik sits P et g0 r . @ (41)
u(0,y)=us(0,y) :0 y a (4g)
Cus CUs

F:’r' (0.y) %(().y) ‘0 y a (4h)
us(0,y)=0 ;a y b (41

Since u,(x,y) satisfies the Helmholtz equation in the rance xor-«,» ) its Fourier
transform with respect to x gives

(d-’ y ’ﬂn . -
s (k™ -a ) |I'(a,y) -0 Sa
Ly |
with

Hay F(ay-F(ay (5hj
where

F.(a)) I u (x,y)e'“dx (5¢)

0

By taking into account the following asymtotic behaviours of u, for x — +x

O(e " ).x = —x ‘[

O(e,,k\-cnslz'" ),Y —> +XZJ

ul(x*y):{ (6)

One can show that F.(a,y) and F («,y) are regular fonctions of o in the half planes
Im{a} Im{kcosp,} and Im{a} Im{k}, respectively. The general solution of (5a)
satisfying the radiation condiction for y — o« reads

Folay)+F(ay)=A(a)e " (7a)

9
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with

K(a)- Nk -a’ (7b)
The square-root function is defined in the complex a-plane cut along o=k to o=k+ix and
o=-k to or=-k-io0, such that K(0) -k .
In the Fourier transform domain (4a) takes the form

F(ab)-0 (R)
By using the derivative of (7a) with respect to y and (8), we get,

A(a)  F.(a,b) (9)
In the region O<y<b and x>0, u;(x, y) satisfies the Helmholtz equation

(& & ) ,

| ==+ ==k Jus(xy)=0 (10)

Lax’ ay )

The half-range Fourier transtorm of (10) yields

Lo K@) |Gty [ f-iag] 1
4y r.(a,y) 27[.y)-lag)) (I11a)
with
O
Jo) = L (0,y). gv)=us(0,y) (11b.c)

(;.(a,y), which is defined by
t 4 1ux " ‘
Golay)=<—fusbx, p)edx . (12)
by )

" is a function regular in the half-plane Im{a} Im{-k}. The gemeral solution of (11la)
satisfying the Dirichlet boundary condition at y=0 reads

G.(a,y)=B(a)sinK(a)y+

: K( ] [[0-iagtv]singkra)s - (13)

Combining (4e) and (4f), we get

F.(a,b)=G.(ab) (14)
and. B( ) can be solved uniquely to give
3: ’ : -
) F.(a,b)- ;K(—) j [f0-iag()siniK(a )b -1 1dr
o B(a)= (15)

sin/K(a)b]

Replacing (15) into (13) we get



sinK(a )y

G.(a,y)= m

I .
{R (a.b)- e ! [f()-iag(t)] sinfK(a)(b -z)}dz}

/

" 27K(a) I[f(’)"""(‘i(’)/ sinfK(a )(y-1)}dt

0

(16)
Although the left-hand side of (16) is regular in the upper half-plane /m{a}! Im{-k}the
regularity of the right-hand side is violated by the presence of simple poles occuring at the
zeros of sin/ K, b/ namely at a = «,, satisfying

sinfK,,b] =0, Im{a} Im{-k}, m=12,.. (17)

These poles can be eliminated by imposing that their residues are zero This gives

. (_l)m*lé 4
Fo{amb)= 7K. Z[f,,,-la,,,gm] (18a)
where
£  JEE . 2} | Py -
m- NK =Qy == sin/ K,,t/dt C
- £ ba (1) . cos

Consider now the region 0y @, x 0 where tha total field can be expressed in terms of
Fourier series as

zlg(X,y):Zc.Siﬂane'iﬁ"' - -~ v < . %

n=r tag T A2 . A

with 3
e 7'7d—— .: ,«‘ “n (Igb)

e
B, =k, l"\k,aj | (19c)

From the continuity relations (4 g,h) and (11 b,c) we get

wO0)=80) . Sw0)-f). 0 y a . @oab)

Owing to (18c) can be expanded into Fourier Cosine series as follows:

| W) el Sl
o =3 sin/ K, y/ (21)
" L W] w &, e

Substituting (19a) and (21) in to (20.,b)

We obtain : :
> PR w . ‘ e
Z.fm sin %ybiZ(‘nﬁnsin y,y:0 y a ( (22)
m=1 n=1
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0 a y b
mr
Z g, sin ——y=4¢ . (23)
m=1 h - Y Cpf,siny,y; 0 y a
nol
. . . hr _
Let us multiply both sides of (22) by sin— )' and integrate from y=0 to y=a to get
2 B . Jma I
Co=—(-1)""i =2 sin—— . 24
~(-1) Z f vy (24)

m J

nrw e . )
Similarly, the multiplication of both sides of (23) by sin Y and its integration from y=0

to y=b yields

4 nma Ve . pce] /
= d——sIn—— et == S sin j— - (25
g ab h ; ﬂn,(}/,,, Kn) LZ ] b }/n,_K-lJ )
Consider the continuity relation (4f) which reads. in the Fourier transform domain
-ksing, /
r(a.b)-G. (a,b) = ——L™P™ 0 — 26
F.(ab)-G.(ab) pa (a-kcosd) (20)

where the dot (.) specifies the derivative with respect to y. Taking into account (7a). (9)
and (16), one obtains

K(a)e N

~ sin [K (a)b]

. k b )-lkbsma”
1’1 (a,b) + ],‘7 (a‘b) _ Sin ¢g(— B . | : o
n(a-kcosg,) 2msin [1\ ()]

!
L

(27)
Substituting (21) in (27) and evaluating the resultant integral, one obtains the following
Wiener-Hopf ~ Equation  of the second kind wvalid in  the  strp
Imtkcos¢,} Im{o} 1,k

3 -tkbsing,, st . )
ksing,e R fn-l g,

O(a)F.(a.b)+ - (a.b)- :
JFA D F 4 n(a-kcosg,) 2rm i(a a)a-a,)

sin( K,,b) (28)

with ,
e—r.‘{(a)h K(a) \' i -
0 = a,=\k -K; 29
Ofa) sin/K(a )b] “ (29)
Here . (a)and O («)are the split functions, regular and free zeros in the half-planes
Im{a} Im{-k}and Im{a} Im{k}respectively, resulting from the Wiener-Hopt

factorization of the kernel function as
O(a)

/I /
O(a) O (a)O-(a)
The explicit expression of (. (« ) can be obtained by following the procedure outlined in

(2]

(30)



.

K(a) — K(a)b (a+iK((1)j [ . b( . 2z M
O = | exp| —ia—| 1€ +In— #1541 1
Rl G o |

1

‘ 1ah
[l

noi ‘\\ an //

(31a)

) nim
Ofa) O f(a). a, — (31b)
4]

In (31a) C 1s the Euler's constant givén by C=0,57721...
IV.  ANALYSIS OF THE FIELD AND COMPUTATIONAL RESULTS

The scattered field in the region y>b can be obtained by taking the inverse Fourier
transform of /(. y)

/ o .
ui(xy) - == I Afa )™ ™ da (32a)
2r

I

Here [ is a straight line parallel to the real o-axis lying in the strip
Im(k cos@,) Im(a) Im(k). The asymptotic evaluation of the integrals in (32a)
through the saddle point technique enables us to write for the diffraction field

( o ksing "~ sin/K,b] (f, ia,g )1 o
/:1) 9,) " — m>f VS m m&m/ |
m(P-¢)_iu (9.9,) W20 (k cos¢)g-:7 anO (-an) (an-kcosg) | Jkp

(32b)
"o e»z/(h\*m(f’,, (32(:)
ke sing, sin ¢ !
) | 33
PO " Qthcosd,) (cosg - cosd,) O (keasd) o

where (p,¢) are the cylindrical polar coodinates defined by x = pcos¢, y-b - psing
and u, is the expression of the incident fieldat y - h,x ~ 0 .

The results here applied to some numerical examples, which permit us grasp the eftect of
various parameters on the diffraction phenomena.

Fig.2 shows the variation of the scattering field versus the observation angle for the
thick of the plate(b-a). It is seen that scattering field becomes insensitive to the observation
angle bigger than 100 degree.

Fig.3 depicts the influence of the wave number of the dielectric region on the
scattering field.

Finally, Fig.4 illustrates the effects of the incident fields on the scattering
phenomenon.
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