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Abstract. We obtain exact solutions for a class of nonlinear partial differential equa-
tions which models soil water infiltration and redistribution in a bedded soil profile
irrigated by a drip irrigation system. The solutions obtained are invariant under two-
parameter symmetry groups.

1. INTRODUCTION

In [1] (see also [2]) a mathematical model was developed to simulate soil water infil-
tration and redistribution in a bedded soil profile irrigated by a drip irrigation system.
This model is described by the class of equations

C(¥)uy = (K(v)¢,), + (K(¥) (¢, — 1)), — S{v), (1)

where 1 is soil moisture pressure head, C(v) is specific water capacity, A (¢ is un-
saturated hydraulic conductivity, S(v) is a sink or source term, t is time, z is the
horizontal and z is the vertical axis which is considered positive downward. Because
of the nonlinearity of equation (1), researchers have given analvtical and numerical
solutions for special cases when the functions C(¢) and K(v') are constants and S
are linear functions.

In this paper, using Lie group theory, we shall obtain exact/asymptotic invariant
solutions of equation (1) for some specia: coefficients C{v:}. K{vj and Siv) which are
not constants nor linear.

In 4. all symmetries of equation (1) were found. The principal Lie algebra L, (ie.,
the Lie algebra of the Lie transformation group admitted by equation (1; for arbitrary
functions C(v), K(v) and S(v), see e.g. [3) was found to be the three-dimensione!
Lie algebra spanned by the following three generators:

)
X = —, X2=3 X -5)—

—
o

ot oz’ :

For special cases of C(v), K(¢) and S(¢)), the algebra L, is shown to extend by two
or more operators. Also two examples of invariant solutions to equation (1) are given
analytically and graphically in [4].
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2. INVARIANT SOLUTIONS

In this section we shall obtain exact/asymptotic (invariant) solutions of equation (1)
for some special forms of the functions C(v), K (v) and S(2). We shall be considering
those cases in which the principal Lie algebra L, extends by one or more operators.
For each case we shall look for solutions invariant under two-dimensional subalgebras
of the symmetry Lie algebra. Equation (1) is then reduced, in general, to second-order
ordinary differential equations which are then solved to obtain solutions. We shall
follow the general algorithm for constructing invariant solutions (see, e.g. [5] and [6).

Here we consider examples of invariant solutions of equation (1) with K(¢) =1
C(v) = v, where o is an arbitrary constant and two forms of S(v), viz. S(y) = Bv”,
and S(v) =By’ +Dvw, B#0.D#0and vy # o + 1.

We first consider the case when S{v) = Bu".

In this case equation (1) has the form

U = U7 {Ugg + U} — BY77O. 3)

According to the classification result, equation (3) admits a five-dimensional Lie algebra
Ls obtained by an extension of the principal Lie algebra L, by the following two
operators:
0 0
Ay =2— %,
oz 0z’
and

Xs=2(14+0—7)t gt +(1- /)zé%-k(l )z—a——i-?w%
We now construct invariant solutions under these two operators. These operators
span a two-dimensional subalgebra L, of the algebra Ls and have two functionally
independent invariants. We first calculate a basis of invariants I(¢, z, z,1) by solving

the system of linear first-order partial differential equations:
X4I=0, XsI=0.

Since we have [X4, X5] = 0, the subalgebra L, is Abelian. Therefore we can solve the
equations X4I = 0, XsI = 0 successively in any order. The first equation provides
three functionally independent solutions

'

s J1=32+22, Jo=t and Jz3=19¢
Hence the common solution I(t, z, z,v) of the system is defined as a function of J;. J,
and J3 only. Writing the action of X3 on the space of J;, J; and J3 we obtain

a 0 0
Xs=2(1—-7v)Jim— +2(1 — +2J.

¥s =201 =) igm + 2L+ =Ny +2hg7
Consequently, from the second equation XsI = 0 we obtain the following two function-
ally independent solutions (invariants):

=1 y—1

I = 37 = (2 + 2,
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and 1

I = JJJJ77 = ptTees.

The invariant solution is given by I, = ®([}), that is

Yt = @ ((.t:2 + z2)t'_+77’—1_7)

o , L 92 . oy,-Y=l_ ;
Y = tT+o—v CI)(T]), 0= (.’E e )tH-a—“f, 1)

Substituting this into equation (3) we obtain

v—1 B oo

P ——— =, 3)

(I)" i @I_
B 4l +0—-7) 4 4(1-0—-7)

This is a second-order nonlinear differential equation and it can be shown that it has
a special solution of the type

N —4 T
QW)Z{BU—vV} T

and consequently equation (4) yields

1
. _4 v—-1 2 2;
= —— . 1-v
. {3(1-7)2} (& +=)

as an invariant solution of equation (3) which is a stationary (independent of time)
solution.

Also, it can easily be seen that

1
-1 y-l-o
By =
’ (B(1+a—7)>

is a constant solution of equation (5). We now obtain an approximate solution near
®,. By letting ® = &, + ®, we linearize equation (5) near the constant solution ®,.
We obtain

1 ~ =1 By ., o=1 1
Pralemee—l = P I@ 44 L) =" = P F=(). (B
: (n 4(1+0—-") 0) . (4 0 4(l+0—7) °>n I 6)

If we let s o
o, = ye 2 J (G- %)

and substitute in equation (6), it can be seen that y satisfies the second-order differential
equation



where

-1 o+1 v¥-=1 By _..i1\1 (y - 1)2
P \ ey o (I)cr__ (I)Qa-——'(I)'Y 1y - =
K 47727_(4(14—0—‘7)  8(1+o-7v) ° 4 0 77+64(1+0—"')

The Liouville-Green approximation for the general solution of y” = P(n)y is given by
(see for example (7])

=1

3= ClPT(n)efP’if(n)dn + CzP_Tl(n)e_fP%(")d”,

where ¢; and ¢, are arbitrary constants. Hence an approximate invariant solution of
equation {3) is

_ FEE iy e
) =TT =k e s %g)dn,
B(l+o0—")

[e1P % (mpel PHinin eaP™ (eI PHon] |

We now consider the second case when S(v) = Buw"! + Dv), where B # 0 and D # 0
are arbitrary constants.
In this case equation (1) has the form

Yy = U'J_”(wu + wzz) — By — le-o ( )

=l

and the principal Lie algebra extends by two operators, namely

0 0

X4:Z£—.'E$

and

Xs = eB"t-g—; - BeB“wa%.
These operators span a two-dimensional subalgebra L, of the algebra Ls. We have
X1.X5] = 0. Hence the subalgebra L, is Abelian. We then solve the system X,I =
0, X5 = 0 for invariants, begining with the equation X4/ = 0. Then the second
equation X5/ = 0 will be represented in the space of three independent solutions of the
equation X4/ = 0. Solving this equation yields two functionally independent solutions
(invariants) and as in the previous case we can write the invariant solution as

v = eBt(I)(g), E= % + 22 (8)

Substituting this into equation (7), we obtain

(" + ' + %p =0.



By the change of variable n = In €, the above equation is transformed to
D
" .
Do, + 1 e"® = 0.

The Liouville-Green approximation for the general solution of this equation (see for
example 7]) is given by
—1 1

®(n) =4 (—§€n> N ef(_%en)%d" +C (—%e") N e—f(““?‘f")%dn

where 4 and C are arbitrary constants.
Consequently. equation (8) yields

i =1 = \
L= B {‘4 [‘%ﬂ e :2)} 4 e{“’)“"z*zz”l2 + [—5(12 - :2'}] =D |

which is an approximate invariant solution of equation (7).

We note that as a special case when C' = — A, we obtain
=
D EY
‘U) = 21468"‘ [—I(l'z + 22)] sinh[—D(:L‘2 + 22)1%.

We can in fact also obtain (non invariant) solutions of equation (7) of the form

¥ = f(t)2(z)¥(z)

provided f' = Bf and % + ‘%I = D. If we let %I = o and %— = (3, where « and 3 are
real constants then we have a + 3 = D and

B(z) = C1e¥°® + Coe™%,  y(z) = CseV? + Cpem VP2
and f(t) = CseBt.

Particular case; D = 0.
If D =0.B # 0, equation (1) has the form

wt = U)—U(Ui'zz + wzz) - B'lL' '9)

In this case there is a further extension of the principal Lie algebra by one operator.
namely

0
Xe=0r—+0z— —20—.
Oz 0z oy
We therefore have three further cases to discuss and construct invariant solutions by
considering two operators at a time.
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Case 1.
We first construct invariant solutions under the operators X4 and X5. The invariant

solution in this case is again given by equation (8), but the differential equation satisfied
by ® is

£9" + @' = 0.

The solution of this equation is given by

®(€) =C,In€ + G,y
and equation (8) yields
v = eB{C\ In(z? + 2%) + C,}
as an invariant solution of equation (9).

Case 2.

We now construct invariant solutions under the operators X4y and Xg. Repeating the
calculations described above, we obtain the invariant solution

=i

v=(2*+2%)7 d(t)

where ® satisfies &' = ;‘%Q)“" — B®.
Hence

d®
t:/@(gz-@—a—B)'

For special cases the integral can be evaluated.
For example when ¢ = 2 and B = —1, we obtain

o(t) = Ve — 1.

Case 3.

Finally we construct invariant solutions under the operators X5 and Xg. In this case
we obtain the invariant solution ‘

. -2 T
v=27e"0(E), {=<
where ® satisfies

1 9 /9
e~ (242 <I>'+—(—+1)q>=o.‘
(1 g)cb ( O’>§ o \o , o

The solution of this equation is given by (see for example [7})

o(&) =C1D, + Cr0,



where (. ard C, are arbitrary constants and

and

Hence F is a hypergeometric function.
Hence the invariant solution of equation (9)is given by

w=z72 e {C[cbl CQ(DQ}.
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