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Abstract- In this article finite differences are used to study viscoelastic incompressible flow of
a Criminale Erickson Filbey fluid in a square cavity flow domain. In this case, the nature of
corner singularities is examined in which the fluid is contained and the flow generated by the
motion of one or more walls. The governing equations are formulated in terms of stream
function and vorticity equation and the corresponding radial parts are defined by a tourth-order
non-linear differential equations for Stokes flow. In recent years that mathematical
formulations of viscoelastic flows often remain very complex velocity and stress tield and then
stress singularities are known to occur in several flows as in this article Therefore, singularity
behaviour became a very imp0l1ant current issue in fluid dynamics However, this al1icle is set
up with the aim of examining the corner singularities for cavity driven tlow in 2D for
viscoelastic flow despite the Newtonian flow being weil known rhen we show that the
viscoelastic fluid has different singularity behaviour than the viscous tluid near the corner with
respect to the shear-rate

The corner singularity problem of the non-Newtonian fllm in flow domain has been subject of
experimental and numerical study for over 20 years [11 and is ,I valuable work in tluid
dynamics These techniques were first used bv Dean and :VI<lntagnon [2] and later
developments include the work of Moffat [3] lVloreover. DavIes [4] described the methods of
how an investigation of the effects of elasticity on eddies could be made Because the local
behaviour of flow variables in two-dimensional Stokes tlow has proved the existence of such
eddies in wedges and non-re-entrant corners Many important studies were carried out but first
study was done by Walters and Webster [5]. They reported that corner conditions had a
greater effect to the flow in the case of non-Ne'wtonian tlows than corresponding Newtonian
flows in their experiments. Some disadvantages can be expected for this problem tor non-
Newtonian flows than their Newtonian counterparts in numerical studies due to numerical
discretison errors occurs near the corner This can be supported by the nature of the governing
equations which are being different type partial differential equations in each case For
example, while the non-linear partial differential governing equations for non-Newtonian flows
are of mixed elliptic-hyperbolic type for steady incompressible flows, the corresponding
Newtonian flows are elliptic. Therefore, this problem gives undesirable results in the simulation
of non-Newtonian flows, apart from a few works [6] in which special methods were used to
define boundary singularity behaviour which can be existed near the corner, in velocity
gradients, stress and pressure instead of using the numerical techniques [4].



In standard cavity flow, singularities exist near the top two corners because the shear-rate
becomes increasingly large and therefore both shear-rate and vorticity become singular
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Figure I. Diagram of the corner singularity

To consider the standard cavity flow whose top plate moves with constant speed (I we
assume that no-slip boundary conditions are applied. We next examine the nature of the corner
singularities separately for both Newtonian and non-Newtonian flow

2.1. Newtonian Flow
In steady two-dimensional VISCOUS incompressible flow the stream function and vOl1icity
equations are
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Moffat [2] has shown that the viscous forces dominate the inertial forces near the corner itself
Then equation (I) becomes

Equation (4) is called the Stokesian flow equation.
Considering the polar co-ordinates (r, e) with origin at one singular corner the stream function

takes the form as

where only the solution for m = I is allowed due to the boundary conditions.
In this case the vorticity and shear-rate near the corner are given by
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where g(e) and h(e) incorporate!l(e) and its derivatives. As seen from (6) and (7), when

r ~ 0 the vorticity and shear-rate become infinite and singularities exist at the corner points.



Similarly by using equation (4) in terms of polar co-ordinates and on using (5). we have the
general form of In< (e) as

where A, B, C and D are constants. In the special case m= I the solution takes the form (which
is for the Stokesian flow equation)

The boundaries may be rigid walls on which the velocity is defined, or surfaces on which the
stress is defined. Therefore. for standard cavity flow with one wall moving and the other
stationary we have
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where e = 0 and e = !!... represent moving wall and stationary wall respectively. The solution
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of the Stokesian flow equation near the corner is
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2.2 Non-Newtonian Flow
To use Moffat's assumption, we need to see how inelastic non-Newtonian flow behaves near
the corner In this case the flow equation is

where M and L are defined ·as before. Equation (13) is usually solved with equation (2).
We consider the viscosity near the corner through the Cross-model for non-Newtonian viscous
flow. Since we work with polar co-ordinates the velocity components are defined in terms of
polar co-ordinates by
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where I = II (8), s = sin 8 and c = cos8, The Cross-model viscosity, therefore, takes the

form

When we substitute the stream, vorticity and viscosity function, are defined in terms of polar
co-ordinates, into (13) the equation of the non-Newtonian flow near the corner is

I
Here C(8) incorporates terms including I(8) since OJ has the form (u = -X(8), \7:w,.
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When r ~ 0, \7' OJ ~ 0 and \741.J! ~ 0, We can therefore say that the !low near the corner IS

Stokesian for shear-dependent non-Newtonian viscous flow with these approximations

2,3, The Corner Singularities of Viscoelastic Fluids
The flow of viscoelastic fluids in regions involving high stresses, it shows the different
b~haviour from the viscous flow near the singularity It is a matter of fact that in non-
Newtonian flows little is known about local behaviour near the corner apart from a few case~
[4]
We use a similar analysis as before and examine the steady viscoelastic fluid behaviour near the
corner, for simplicity, whose model is denoted by CEF. It appears likely that the corner
singularity of the viscoelastic fluids may create significant numerical prohlems We assume as
previously the Moffat's assumption that the viscous force still dominate tIle inertial force as
Re ~ O. Under these circumstances, for the viscoelastic fluid



17'H( 17; OJ) + M('P)M( 17) + L('P)L(17) - ± M(S" - S\1) - L(Sn) = 0 (19)

where H, M and L are defined as before
Near the corner, we use a similar analysis to that used earlier to examine the singularity
behaviour
When the polar forms for 'P,ro, 17 are substituting into (19) we have
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Here }~ (e), 1~(e), F1 (e) and F4 (e) involves too many functions of e to incorporate have

and we omit their full expression. For n= I equation (22) takes the form

If B( e) = 0 and 0:0; n :0; I, then we may say from equation (21) that the viscoelastic fluid

behaviour near the corner is Stokesian as is its counterpart Newtonian fluid
Then we can say that the well known Giesekus- Tanner theorem for second order fluids (ti = I)
is consistent with the Moffat's assumption which has been used to examine the flow behaviour
near the corner earlier i.e. B( e) = 0 for n=1 in equation (21).

If the Moffat's assumption is true for all n close to 1 (where n < 1 ), we require R( e) = 0

We obtain the equation

by subtracting the right hand side of equation (23) (which must now be zero) from the right
hand side of equation (22) and assuming B( e) = 0 for n < 1 .

In our analysis we find F; (e) * 0, therefore B( e) * 0 for all n < I, whereas B( e) = 0 for
n=l.
In this case when viscosity is not a constant there may be elastic domination near the corner
invalidating the Moffat's assumption. This is a problem for future study. In conclusion we can



say that the flow is Stokesian near the corner for shear dependent Newtonian and non-
Newtonian viscous flow. Under same circumstance the fluid is Stokesian near the cor;;cr j~)r
the viscoelastic fluid with constant viscosity but the problem remains many questions
unanswered for the flow with varia!:>!c vi,,'()\ily

The corner singularity in the 2D flow was investigated. It was determined that flow near the
corner singularity for the shear dependent Newtonian and non-Newtonian purely viscolls tlows
can be regarded as Stokesian flow When the same analysis was undertaken for the viscoelastic
fluids it was found that they can behave as Stokesian flow near the corner for the constant
viscosity case. However the problem remains unresolved for variable viscosity fluids.
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