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Abstract

In recent years, the prevalence of large-scale datasets and the demand for sophisticated
learning models have necessitated the development of efficient distributed machine learn-
ing (ML) solutions. Convergence speed is a critical factor influencing the practicality and
effectiveness of these distributed frameworks. Recently, non-Lipschitz continuous opti-
mization algorithms have been proposed to improve the slow convergence rate of the
existing linear solutions. The use of signum-based functions was previously considered in
consensus and control literature to reach fast convergence in the prescribed time and also
to provide robust algorithms to noisy/outlier data. However, as shown in this work, these
algorithms lead to an optimality gap and steady-state residual of the objective function
in discrete-time setup. This motivates us to investigate the distributed optimization and
ML algorithms in terms of trade-off between convergence rate and optimality gap. In
this direction, we specifically consider the distributed regression problem and check its
convergence rate by applying both linear and non-Lipschitz signum-based functions. We
check our distributed regression approach by extensive simulations. Our results show
that although adopting signum-based functions may give faster convergence, it results in
large optimality gaps. The findings presented in this paper may contribute to and advance
the ongoing discourse of similar distributed algorithms, e.g., for distributed constrained
optimization and distributed estimation.

Keywords: linear regression; distributed optimization; network and graph theory;
Lipschitz continuity

1. Introduction

Distributed algorithms for detection, estimation machine learning, and resource al-
location have recently gained interest in signal processing, control, and optimization
literature [1-4]. Such algorithms are known to have many benefits in terms of scalability,
real-time and parallel data processing, and distributed learning over multi-agent networks,
with specific applications in data mining [5,6]. To give more details, by distributing the com-
putational load across multiple nodes or devices, these algorithms allow for the processing
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of large datasets and complex tasks without overburdening a single central processing
unit [7]. This is also motivated by recent cloud-based solutions for high-performance com-
puting, which are well suited for computationally intensive tasks involved in distributed
algorithms. This is especially beneficial in machine learning and simulation-based algo-
rithms where large datasets and complex computations are common. Such distributed
algorithms are further motivated by recent advances in Internet of Things (IoT) applica-
tions [8], cloud/edge computing [9], and cyber-physical systems (CPS) [10,11] with many
processing devices interconnected over a network. In general, distributed optimization
algorithms benefit from robustness to single-node failure, parallelism by assigning different
parts of the optimization process to different computing nodes/agents, scalability (and
resource utilization) by distributing the workload for large-scale optimization problems,
and data distribution without the need for centralized storage. In this work, we investigate
the use of non-Lipschitz consensus-based functions for distributed optimization in terms of
convergence rate and steady-state optimization residual (optimality gap).

1.1. Literature Review

Signum-based functions can be robust to outliers in the data. In the presence of noisy
or outlier data, algorithms based on the signum function may be more resilient compared to
methods that rely on smooth functions [12,13]. In the consensus literature these algorithms
are used to reach fast agreement over the multi-agent network in prescribed time [14], finite
time [15,16], and fixed time [17,18]. For a similar reason, signum-based functions are used
for distributed resource allocation [19], event-triggered systems [20], distributed gradient
flow schemes [21], sliding mode control [22], parameter identification [23], distributed
optimization [24], cooperative control [25,26], and distributed estimation [13]. A survey of
finite- /fixed-time convergent algorithms can be found in [27].

In the context of distributed optimization, ML, and regression solutions, most existing
literature provides linear algorithms [28-30], many of which are consensus-based solu-
tions [31,32]. Recently distributed non-Lipschitz algorithms are proposed in the context
of distributed optimization and learning, claiming improved convergence rate (stability
in finite time, fixed time, or prescribed time) [33—41]. Although in continuous time these
may work properly, the discrete-time dynamics (after discretization) results in steady-state
oscillation around the optimal point, known as chattering phenomena. This is well known in
nonlinear control applications, e.g., in sliding mode control [42]. For distributed optimiza-
tion, this results in the final residual of the objective function and optimality gap. In this
direction, the current study investigates the trade-off between the improved convergence
rate and the optimization steady-state residual.

The use of non-Lipschitz function also includes non-Lipschitz activation functions
in neural networks [43,44] and non-Lipschitz optimization in related fields such as deep
learning [45,46] by designing algorithms that exploit structure, e.g., sign/threshold dy-
namics and proximal maps for nonconvex nonsmooth terms. In neural networks, while
mainly Lipschitz activations (ReLU, ELU, GELU) are adopted, classical examples include
the signum function and hard-threshold activations.

1.2. Contributions

This study investigates the distributed optimization algorithms with signum-based
functions added to improve their convergence rate. We consider a gradient tracking (GT)
distributed optimization algorithm which is based on consensus algorithm [47]. The
idea is to improve the rate of convergence by adding non-Lipschitz sign-based functions,
while checking the steady-state residual (the optimality gap). The adopted signum-based
functions are sign preserving and odd; therefore, they do not violate the consensus-type
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nature of the algorithm. Further, the GT-based dynamics ensures evolution of the states
toward the optimal point. We specifically show that the optimal point is the invariant
state under the proposed dynamics. As an ML application, we consider distributed linear
regression over a randomly generated dataset. Our results show that, although sign-
based nonlinearity may affect the convergence rate (and reach fixed-time, finite-time, or
prescribed-time convergence), it may cause steady-state residual in the cost and certain
optimality gap depending on the parameters of the signum-based function.

1.3. Paper Organization

Section 2 states the preliminaries. Section 3 frames the distributed linear regression as
a distributed optimization problem. Section 4 presents the linear and signum-based GT
solutions. Section 5 provides the simulation, and Section 6 concludes the paper.

2. Preliminaries
2.1. Notations

Let A denote the eigenvalue. The abbreviations LHP and RHP correspond to left-half
plane and right-half plane in the complex eigenspace. Let 9;z = % be the derivative with
respect to . 1, =(1,--- ,1) 0} :=(0,-- - ,0), i.e., 1, and 0, are size n vectors of all 1s and Os.

—— ——

n n
The operator ‘;” implies column concatenation of vectors. VF is the gradient of F.

2.2. Algebraic Graph Theory

The distributed algorithm works over a connected undirected multi-agent net-
work represented by an undirected graph topology G with real adjacency matrix
W = [w;;| € R"*". The entry w;; > 0 associated with the link j — i denotes the weighting
factor, which defines the weight that agent 7 assigns to the information received from agent
j. For a connected undirected G, its associated matrix W is irreducible. Further, define the
Laplacian matrix W = [@;;] € R"*" as @;; = wjj for i # jand W;; = =Y/ wyj fori = j. It
is known that the connectivity of the graph is related to the rank of its Laplacian matrix.
Given a connected undirected graph G, its Laplacian W has only one zero eigenvalue and
the rest are on LHP. The (left and right) eigenvectors 1, and 1, are associated with these
zero eigenvalues, i.e., 1, W = 0, and W1,, = 0, [47].

2.3. Background on Signum-Based Consensus

Consensus algorithms are widely used to coordinate (reach agreement) over multi-
agent networks. The primary solution to solve consensus in a distributed way is to follow
a linear dynamics, where the dynamics at node i is as follows [47]:

X = - ) wij(x; — xj), 1)

JEN;

where 17 > 0 as the step-rate and W = [wij] as the stochastic adjacency weight matrix (a
matrix is called stochastic if for every i € {1,...,n} we have E}’:l wij = 2}7:1 wj; =1.), N;
denotes the neighboring set of node/agent i, and x;, x; denote the state values at nodes i, j.
It is known that, under certain conditions, the solution of this dynamics asymptotically
converges to the agreement/consensus state. On the other hand, finite-time consensus
protocols [16,48] improve the convergence rate of the linear dynamics (1) in the region
|x; — x| < 1by adding signum-based function as follows:

X =~ ), wisgn® (x; — x;), (2)
JEN;

where 0 < v < 1 and the signum-based function sgn” (x) : R — R is
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sgn”t(x) = x |x[ 71, 3)

recall that this function is non-Lipschitz at x = 0. As it is proved in finite-time consensus
literature [16,48], this solution converges faster than linear dynamics (1) in the regions close
to the equilibrium. This follows from the definition of signum-based function and the
fact that [sgn”(x)|>|x| for all |x| < 1. Moreover, the non-Lipschitz continuity and infinite
gradient at the agreement equilibrium allow to reach consensus in finite time. However,
these solutions converge slower than linear dynamics (1) in the region farther from zero
(or the agreement equilibrium) as |sgn”(x)|<|x| for all |x|> 1. Fixed-time consensus
protocols [49-53] overcome this by adding a second term in the form sgn?2(x) with vy > 1.
For this function we have [sgn®(x)| > |x| for |x|> 1; this implies a faster convergence rate
than the linear dynamics for states farther from the agreement equilibrium. By combining
the two consensus dynamics, the solution has a fast convergence rate for all the regions,
both close and far from the equilibrium. This convergence rate can be changed via the
parameters v1, v3. The overall fixed-time consensus dynamics is in the following form:

% == ) wij(isgn” (x; — xj) + 125gn™ (x; — x;)), )

JEN;

with0 < v; < 1,03 > 1, 12, 71 > 0. The convergence rate of the dynamics (4) is faster
than protocols (1) and (2). It should be mentioned that these dynamics are non-Lipschitz
(a function f(x) : x € Ris called Lipschitz continuous if there exists a constant /C such that
for every two points x1, xp we have, |f(x1) — f(x2)| < K|x1 — x2|. Otherwise, the function
is called non-Lipschitz.). Therefore, they may result in chattering around the equilibrium
as stated in sliding-mode control literature [42].

3. The Framework: Distributed Regression Problem

Linear regression is a statistical method used to fit a linear line to a set of data points.
Given a set of N data points x; € R™1, i = {1, ..., n}, the model’s prediction is
BTxi —v = y;, which gives the hyperplane that fits the data best. In the centralized
regression, all the data points are sent to a central computation entity (the fusion center)
which finds [v; B] optimizing the following quadratic convex function:

N
min)_ (B"xi —v—y;) ®)
vigl iz

which is also known as the linear least square problem. Distributed linear regression (DLR)
is an extension of linear regression that leverages distributed computing resources for
handling large datasets. In traditional linear regression, all data are typically processed
on a single machine (the fusion center), which can become impractical when dealing with
massive datasets that may not fit into the memory of a single computer. Distributed linear
regression distributes the computation across multiple machines or nodes in a computing
cluster. For parallel processing of data, this approach allows one to make handling large-
scale datasets more feasible (and more efficient). In DLR, the dataset is widespread over a
network of n agents/machines, and each machine 7 has its own % < N; < N data points
X', where some of these data might be shared between two or more machines. The main
idea is to solve the optimization problem (5) locally at each machine using its own data
X' and information received from its neighboring machines. Note that every machine has
access to partial data and thus the optimal values ; and v; may differ for each machine i.
Therefore, the machines share necessary information by reaching a consensus on  and v.
Then, the optimization problem changes to:
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min ): fi(Bi, vi),

BVt Bnn i= (6)
subjectto 1 = - - - :'3,1, V= =1y
N; ‘ )
fi(Bi, vi) = Z(ﬁ?)(} — v — yj) , ?)
j=1

This problem (6)—(7) represents a consensus-constrained distributed optimization
framework. By denoting the optimization state variable as vector x; = [8];v;] and vector x
be the concatenation of all local state vectors x;’s, i.e., x = [x1;xp; ...; x,]€ R™". Then, this
DLR problem (6)—(7) is framed as a distributed optimization formulation:

min F(x) = 1. fi(x),

subjectto x1 = xp =+ -+ = xp

4. The Proposed Signum-Based Learning Dynamics
4.1. The Algorithm

First, we recall the existing linear gradient tracking dynamics to solve the DLR asymp-
totically. The following linear dynamics is proposed by the author in [7] to solve distributed
optimization and support vector machine problems:

= _qu( — QYi, )

_Z“ij(?/i —yj) = Vfi(xi), (10)
j=1

with x;(f) and y;(t), respectively, denoting the state and the auxiliary variable at agent i at
time . The auxiliary variable y;(t) tracks and accumulates the sum of the local gradients.
The matrices A = [a;;]€ R"*" and W = [w;;] € R"*" are the adjacency weight matrices
associated with the state x and auxiliary variable y. For convex objective functions, the
convergence rate of the dynamics (9)-(10) toward the optimal point is O (exp(Azt)) with
Az as the smallest nonzero eigenvalue of the Laplacian matrix associated with matrices
A and W (also known as the algebraic connectivity) [54]. Recalling the application of
signum-based functions from Section 2.3, the convergence rate can be improved by using
signum-based functions, and the accelerated version of the linear dynamics (9)-(10) is in
the following form:

n
5(,' = —Z wi]' (sgnvl (xi — x]) + Sgi’lv2 (X,’ — x])) — &Y, (11)
j=1

= aij(sgn™ (yi — y;) +5gn® (yi —y;)) +sgn" (3 V fi(xi)) +sgn*2(3:V fi(x7), (12)
i=1

with (note that for u; =1, up = 1, v; = 1, v = 1, the nonlinear algorithm changes to the
linear algorithm). 0 < uy < 1,u2 > 1,0 < v1 < 1, v2 > 1. The fast convergence of ML
dynamics (11)—(12) includes one step of consensus on the states and one step of gradient
tracking update. Note that the nonlinear signum function sgn”1(-) is odd, sign preserving,
and monotonically increasing; therefore, the stability properties hold similar to the linear
case [7]. These properties of sgn”!(-) function also ensure that:

Z ngn @V fi(x;)) +sgn" (3 V fi(x;)), (13)
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n n
in - —IXZ yi/ (14)
i=1 i=1

these follow the stochastic property of the matrices W and A and the existing consensus-
based distributed algorithms (see [47,55] as an example) saying that,

Y w;j (sgn® (x; — x;j) + sgn®?(x; — x;)) =0, (15)
i=1j=1

M:

n n
Y ) ai(sgn™ (vi —yj) +s8n™ (vi —yj)) =0,
i=1j=1
by initializing as y(0) = 0 it is straightforward to see that }_!' ; y; tracks a nonlinear
signum-based function of —Y ! ; Vfi(x;). This implies that the time derivative of }_\" ; x;
tracks a function of the accumulated gradient at all nodes over the network. This fol-
lows from the proposed nonlinear structure of (11)—(12) and can be extended to any form
of odd sign-preserving model nonlinearities (e.g., quantization or saturation) while pre-
serving the GT dynamics. This is in contrast to the existing linear alternating direction
method of multipliers (ADMM) dynamics that does not allow one to consider model
nonlinearity. In other words, the existing ADMM solutions [56-59] cannot directly ad-
dress typical real-world model nonlinearity (such as saturation and quantization), while
our proposed dynamics (11)—(12) can address such models. Our distributed solution is
summarized in Algorithm 1. For the algorithm initialization, set the x states randomly
such that x(0) ¢ span{l, ® ¢} (with ¢€ R™ and ® as Kronecker network product) and
set 4(0) = 0y,. From the strict convexity of the DLR objective function F(x) one can see
that at the optimal point x = x* =1, ® ¥*(i.e., x; = X¥*) the equilibrium uniquely holds as,

M-

X; = —oc(l;lr ® Im> (sgn"* (VE(x*)) +sgn"2(VF(x"))) = O, (16)

i=1

which follows from the oddness of the signum function. Similarly, from the proposed
dynamics one can see that x; = x; = X* and the gradient tracking term y; = 0y, at the
optimal point; thus, we have x; = 0,, and,

Y; = sgn'1(9:V fi(X*)) 4 sgn"2 (9; V fi(

¥ >>
= sgn (V2fi(¥) 1) + sgn' (V2fi(¥) ;) =

(17)

the above imply that [x*; 0,,,] satisfying (1,1T ® Im) VF(x*) = 0y, is invariant (and stable)
equilibrium state of (11)—(12) for continuous time dynamics; thus, any randomly initialized
solution of x; with y;(0) = 0 converges to the optimizer x*.

Table 1 summarizes the effect of the parameters 11, 13, v1, v on the convergence rate
of the proposed signum-based dynamics (11)—-(12).

Algorithm 1. GT-based distributed ML algorithm

Data: Undirected graph topology G, adjacency matrices A, W, loss function f;
Result: Optimal state x*
Initialization: t = 0, y;(0) = 0 at all nodes and states x;(0) randomly initialized;
While termination criteria NOT hold;
do
Node i receives x; and y; from neighbor nodes j € N; over G;
Node i calculates V f;(x;) (the gradient of local loss function f;(x;));
Node i updates x; and y; via dynamics (11)-(12);
Node i shares updated x; and y; with its neighbor nodes i € N; over g;
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Table 1. The change in the parameters of signum-based nonlinearity to reach faster convergence.

Parameter Faster Convergence
0<v <1 smaller — 0

vy >1 larger — oo
O<u <1 smaller — 0

up > 1 larger — oo

The discretized version of the continuous time dynamics (11)-(12) can be represented
as follows:

xi(k+1) = x;(k) — ’fi w;j (sgn® (xi(k) — xj(k)) 4 sgn® (x;(k) — x;(k))) — ayi(k), (18)
iz

yitk+1) = yi(k) — ﬂjil a;j (sgn® (yi(k) — yj(k)) +sgn(yi(k) — y;(k)))

+ysgn' (Vfi(xi(k+1)) = Vfi(xi(k))) + ysgn'2(V fi(xi(k+ 1)) = Vfi(xi(k))),
with 7 as the discretization step rate and k > 0 as the discrete step time.

It is worth mentioning that applying the discretized version (18)—(19) may result in
certain optimality gap because of the chattering phenomena. This refers to rapid and erratic

(19)

oscillations in the system variables during the optimization process since the dynamics
lacks Lipschitz continuity. This means that the gradients of the objective function can vary
widely across different regions.

The discretization step size plays a key role in worsening or mitigating chattering
phenomena. The step size determines how large or small the state updates we have at each
iteration of the optimization algorithm are. If the step size is too large, the optimization
algorithm may overshoot around the optimal solution, causing larger oscillations (and
optimality gap). On the other hand, if the step size is too small, the algorithm may converge
very slowly. Thus, there is a trade-off in terms of convergence rate and steady-state
optimization residual.

Table 2 summarizes the effect of the parameters u1, 13, v1, v2 on the optimality gap of
the discretized dynamics (18)—(19).

Table 2. The change in parameters of signum-based nonlinearity to reach lower optimality gap.

Parameter Faster Convergence
0<om <1 larger — 1

vy > 1 smaller — 1
0<u <1 larger — 1

up, > 1 smaller — 1

To reduce the optimality gap introduced by non-Lipschitz signum-based update
rules (18)—(19), we propose replacing a fixed step size with a diminishing step size se-

quence. Diminishing step sizes (e.g., 17y = k;?Tol or §y = \/ZOTJ balance the following two
competing needs: early iterations require sufficiently large updates to exploit fast tran-
sient convergence by the signum dynamics, while later iterations require progressively
smaller updates to attenuate persistent bias and oscillations caused by the non-Lipschitz
terms. Formally, a diminishing sequence that is positive, nonincreasing, and satisfies
Yoeollk = %, Yiiy 17,% < oo preserves asymptotic convergence. In our context, this yields
to vanishing optimality gap as k — oo, while on the other hand it slows the convergence.
Therefore, diminishing step sizes also provide a trade-off finite time convergence rate for
improved asymptotic optimality in signum-based distributed algorithms. This is better

demonstrated later by the simulations in Section 5.1.
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4.2. Practical Implementations and Applications

Discretizing continuous time signum-based control laws for distributed optimization
introduces several implementation challenges, mainly on stability and communication
constraints. When the ideal continuous dynamics (11)—(12) is approximated with a discrete
time update, the non-Lipschitz nature of signum-based terms causes sensitivity to sampling
and numerical quantization. Step size selection in the discretized dynamics (18)—(19)
trades off convergence rate against the achievable optimality gap, i.e., larger step sizes
can accelerate transient progress but increases discretization error and steady-state bias
introduced by the non-Lipschitz terms and any smoothing used to avoid chattering. In
particular, for signum-like updates the discretization error does not necessarily vanish with
time unless the step size is reduced; this implies that a fixed step size gives a persistent
optimality gap proportional to the step magnitude. On the other hand, diminishing
step sizes may reduce the gap asymptotically but give slow convergence and add more
complexity to the coordination of distributed agents.

The proposed signum-based distributed optimization algorithm may offer practical
advantages in decentralized control and multi-agent systems where fast and robust con-
vergence among many agents is of interest. In large-scale distributed control systems
signum-like coupling may provide finite time or very fast convergence that help the net-
work quickly reach consensus or track a reference despite the disturbances [60]. The
non-Lipschitz nature allows stronger corrective property near disagreement regions to
reduce transient errors and also improves tolerance against impulsive noise/faults. How-
ever, the trade-off between convergence speed and steady-state residual must be managed:
very aggressive signum terms as in Table 1 can drive the system rapidly but introduce a
non-vanishing steady-state error or chattering.

In financial data analysis and distributed machine learning on market data, signum-
like functions can be used to design decentralized and robust aggregation rules, e.g., in
federated learning updates resilient to outliers and deep learning models resilient to low
signal-to-noise ratios [61]. For instance, signum-based penalties or gradient modifications
give higher weight to correcting large discrepancies among local models or estimates as in
financial chaotic systems [62]. In fact, the same non-Lipschitz behavior that accelerates con-
vergence may prevent reaching the absolute optimal parameter set or introduce oscillations
around it; therefore, hybrid designs (tempered signum terms or decaying/diminishing
gains) are proposed for financial data analysis.

5. Simulations
5.1. Academic Example

For MATLAB (R2022) simulation over a Core i5 Laptop, we consider a (randomly
generated) dataset of N = 100 data points and a network of n = 10 agents each having
access to 50% of the (randomly chosen) data points. The dataset is shown in Figure 1.
Each agent performs local regression analysis on its own batch of data and shares the
regressor parameters over an Erdos-Renyi (ER) random network. The linking probability
of the connected ER network is 30%. The objective function to be optimized is in the
form (6)—(7). We compare the convergence under the nonlinear dynamics with different
signum-based models (18)—(19) (as the discrete version of (11)-(12)) withy = 2 x 10~% and
« = 4.) Following Algorithm 1, agents update their regressor parameters based on the
proposed dynamics and share their states x; and y; over the network. We consider four
scenarios for comparison of the convergence rate and the optimality gap.

e Case(i)u1=1,u=1,0<0v7=05<1,0=1,
o Case(ii):up=1,u=10<0v,=05<1, v,=15>1;
o Case(iii):0<u; =06<1,u=10<0v;=05<1,0v,=15>1;
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Case(iv): 0<u; =06<1,uy=14>1,0<0v1=05<1,0,=15>1;

The time evolution of the cost functions is compared in Figure 2. As it can be seen
from the figure, although as claimed in the literature the signum-based dynamics may
result in finite time stability, it results in steady-state optimization residual (depending
on the parameters u1, up, v1, v2).

The parameters of the regressor at different agents under different dynamics are shown
in Figures 3-6. The regressor line parameters p;, v; are calculated at every node/agent
i. In these figures, different colors show the parameters associated with different
computing nodes/agents. As it can be seen, applying sign function may result in
inexact convergence and steady-state error, especially when adding it to the gradient
tracking part of the dynamics (as shown in Figures 5 and 6).

Next, to strengthen the generalizability of the results, we redo the simulations for
large-scale example with N = 1000 data points and a network of n = 100 agents
each having access to 35% of the (randomly chosen) data points. The large dataset
is shown in Figure 7. We redo the simulation on local regression with the objective
function (6)—(7) over an ER random network with 20% linking probability. For this
simulation, we set different values for step size asn = 1 x 10~ and gradient tracking
rate as & = 2. Note that large step sizes, although they may lead to faster convergence,
may result in larger optimality gap of the signum-based dynamics. In case of very
large step size the solution may diverge. We compare the optimality gap under four
different signum-based models based on (18)—(19) as,

Case(1):u1 =1, uy=1,0<0v1=03<1, vp,=1;

Case (2):u1 =1, uy=1,0<0v1=03<1,0p=2>1;

Case(3):0<u1 =08<1, uy=1,0<0v1=03<1,0pb=2>1;

Case (4):0<u; =08<1,upy=12>1,0<0v1=03<1,0,=2>1;

The residual cost function over iteration k is compared in Figure 8. Despite the finite
time convergence, the solution may result in steady-state residual or optimality gap
depending on the parameters uy, 1y, v1, v2. To better highlight this optimality gap on
the regressor line parameters 3;, v;, these parameters are shown in Figures 9-12 for
different cases under signum-based dynamics. It is clear that applying sign function
may result in steady-state error, especially for u; # 1, up # 1 where the gradient
tracking is under signum-based nonlinearity (e.g., see Figures 11 and 12).

Next, we repeat the simulation to compare the optimality gap under fixed and dimin-
ishing step sizes 1. For fixed step size we considern = 5 x 107 and for diminishing
step sizen = %. The signum function parameters are setas u; = 1, up = 1,
0 <9 =075 <1,vp =125 > 1. As we see from Figure 13, the optimality gap is
smaller for diminishing step size as compared with the fixed step size, while converg-
ing in slower rate. This is one remedy to decrease the optimality gap while it causes
slower convergence rate.
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Figure 1. This figure shows the randomly generated dataset and its associated regressor line to be
calculated by agents in a distributed way.
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Figure 2. This figure compares the time evolution of DLR objective residual under different signum-
based dynamics. Evidently, the discrete time dynamics under signum-based function leads to
steady-state residual.
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Figure 3. This figure shows the time evolution of the regressor parameters under Case (i).
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Figure 7. This figure shows the randomly generated data points with the associated regressor line for

the large-scale distributed optimization simulation.
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Figure 8. This figure compares the DLR optimality gap under different signum-based dynamics
where signum-based solution may result in some optimality gap.
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Figure 9. This figure shows the time evolution of the regressor parameters under Case (1).
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Figure 12. This figure shows the time evolution of the regressor parameters under Case (4).
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Figure 13. This figure compares the DLR optimality gap under fixed step size and diminishing step size.

5.2. Real Dataset Example

e  For the next simulation, we consider the MNIST dataset and the optimization data
from [63]. We randomly select N = 12,000 labelled images from this dataset and clas-
sify these images via logistic regression with a convex regularizer over an exponential

network of n = 16 computing nodes. For this problem, the global cost function is

1 n

inF(b,c) = — i) 20
minE(b,c) = ; fi (20)

with each computing node i taking a batch of m; = 750 sample images. Then, every
node i locally minimizes the following objective function:

filb,c) = ni]i In(1+exp (= (b xi; + )i ) ) + §||b||§, (21)

where b, ¢ denote the parameters of the separating hyperplane for classification. The
optimization residual (or the optimality gap) of the signum-based Algorithm 1 with
up =lLup =1 0< v =09 < 1,v, =11 > 1is compared with some existing
algorithms in the literature. The following algorithms are considered for comparison:
GP [64], SGP [65], SFADDOPT [66]. The comparison results are shown in Figure 14. As
it is clear from the figure, by choosing v1, and v, moderately close to 1, Algorithm 1
reaches fast convergence with sufficiently low optimality gap.

MNIST Exponential

10!
a
©
O 102
>
=
©
E 10-3
=
8— —— GP
10-74 SGP
—»— SADDOPT
—e— This work
0 5 10 15 20 25
Epochs

Figure 14. This figure compares the performance of the signum-based algorithm with some existing

algorithms in the literature.
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6. Conclusions
6.1. Concluding Remarks

Our findings in this paper suggest that although non-Lipschitz signum-based functions
show interesting behavior in terms of convergence time/rate, they suffer from certain
optimality gap in discrete time applications. The use of such functions results in losing
the exact optimality while, on the other hand, reaching rapid convergence rates. In other
words, such solutions are practical in scenarios where the exact convergence can be given
up to reach faster convergence. This trade-off presents a valuable consideration to balance
between the need for quick convergence with the required optimality of the solutions in
distributed optimization and machine learning applications.

6.2. Future Directions

The results can be extended to other applications, to study the trade-off between
convergence rate and optimality gap in distributed optimization and learning algorithms
via alternating direction method of multipliers (D-ADMM) [67] and in the distributed
control of the integrated energy system [68]. As we move forward, studying the integration
of non-Lipschitz signum-based functions into distributed /decentralized frameworks is
an interesting method for other multi-agent applications. This study provides practical
insights for decision-making algorithms in real-world applications, for example, distributed
techniques for estimation, detection, and resource allocation.
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