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Abstract: This study presents a low-cost and scalable CO, monitoring system that leverages
NDIR sensors and a Long Short-Term Memory (LSTM) neural network to predict indoor
CO; concentrations over both short- and long-term horizons. The proposed system aims
to anticipate air quality deterioration in shared spaces, enabling proactive ventilation
strategies. Various LSTM configurations were evaluated, optimizing the number of layers,
neurons per layer, and input delays to enhance forecasting accuracy. The optimal model
consisted of two LSTM layers with 128 neurons each and a time window of 10 previous
observations. This model achieved an RMSE of approximately 57 ppm for an 8 h forecast
in a classroom setting. Experimental results demonstrate the reliability of the proposed
approach for CO, prediction and its potential impact on indoor air quality management.

Keywords: COy; air quality; remote monitoring; forecasting; artificial neural network

1. Introduction

In indoor environments, avoiding high concentrations of aerosols (microscopic par-
ticles exhaled when speaking or breathing) is critical, as these can degrade air quality
and increase health risks. Poorly ventilated closed spaces exacerbate this issue, as the
accumulation of aerosols and COj rises with the number of occupants and the time spent
in such environments [1]. This situation is common in classrooms during face-to-face
sessions, where ventilation is often insufficient to maintain moderate CO; levels. Continu-
ous CO, monitoring is essential to assess air quality, along with predicting or forecasting
CO; concentration over time. This allows us to estimate how long it will take for a given
space to reach CO; levels that could pose a significant risk, enabling proactive air quality
management.

The clean air we breathe “outdoors”, without pollution, contains approximately
400 parts per million (ppm) of CO,. In the literature, minimum reference levels are reported
between 412 ppm and 420 ppm, according to various sources [2]. Air with this concentration
of COy is considered to not have been breathed recently. CO, concentrations above the
reference level indicate that the air has already been partially exhaled by someone, as shown
in Table 1. For instance, when the CO, concentration reaches 1000 ppm, it is estimated
that approximately 1.5% of the air has already been previously exhaled. Concentrations
above 1000 ppm not only reflect reduced air quality but also pose a potential health risk, as
elevated CO; levels can be toxic [3,4].
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Table 1. Relationship between CO, concentration and the fraction of breathed air *.

CO;, Concentration Percentage of Breathed Air

400 ppm 0%
600 ppm 0.5%
700 ppm 0.7%
800 ppm 1.0%

1000 ppm 1.5%

2000 ppm 4.0%

3000 ppm 6.5%

4000 ppm 9.0%

* Based on IDAEA-CSIC-LIFTEC recommendations [5].

To assess air quality, the appropriate sensor must be selected. NDIR (non-dispersive
infrared) sensors are suitable for measuring the concentration of CO, since the molecules
of this gas are prone to absorbing infrared light. Evaluations have already been made of
NDIR sensors as a low-cost option for CO, measurement. One of these was performed in a
laboratory environment, demonstrating that, without any calibration or correction, NDIR
sensors achieve RMS errors between 5 ppm and 21 ppm compared to a precision sensor [6].
CO;, measurements can be managed and analyzed by various methods. Typically, as a
complement to monitoring systems, diagnosis/prognosis applications are developed where
the data are processed through specialized programs (e.g., MATLAB) or cloud computing
services, such as ThingSpeak, Microsoft Azure, and Amazon Web Services, among others [7].
Cloud computing offers data storage and analysis services to forecast various physical
variables using computational intelligence techniques like neural networks. In Robin
et al. [8], convolutional neural networks were evaluated to monitor air quality; on the other
hand, Altikat et al. [9] also used neural networks to predict the passage of CO; from the
ground to the atmosphere. Recently, Kapoor et al. [10] designed a pilot monitoring system
for CO; using neural networks and support vector machines. However, real-time CO,
monitoring alone is insufficient for effective air quality management. Predictive modeling
is necessary to estimate future CO, concentrations and optimize ventilation strategies.

Monitoring CO, levels is essential for ensuring indoor air quality (IAQ) and occupant
well-being. Kwon et al. [11] classify CO; sensors into two main types: chemical sensors,
which are energy-efficient and compact but suffer from short lifespan and low durability,
and non-dispersive infrared (NDIR) sensors, which offer higher accuracy and are commonly
used for air quality monitoring. The integration of Internet of Things (IoT) technologies
has significantly improved CO, monitoring by enabling real-time data acquisition and
remote accessibility. Marques and Pitarma [12] introduced iAQ WiFi, an IoT-based system
that collects environmental data using low-cost sensors and transmits them via WiFi for
real-time visualization and analysis. Marques et al. [13] expanded on this work with iAir
CO,, an advanced IoT solution designed for continuous CO; monitoring. Their study
emphasizes the importance of real-time air quality tracking to anticipate and mitigate
potential health risks.

Machine learning techniques have also been applied to CO; forecasting, allowing for
more efficient and proactive air quality management. Kallio et al. [14] investigated multiple
machine learning models, including ridge regression, decision trees, random forest, and
multilayer perceptron, to predict indoor CO; concentration. Arsiwala et al. [15] developed
a digital twin system integrating IoT, artificial intelligence, and Building Information
Modeling (BIM) to automate CO; emissions tracking. Alsamrai et al. [16] provided
a comprehensive review of loT-based air quality monitoring systems, emphasizing the
growing use of low-cost sensors and microcontrollers such as ESP8266 and ESP32. Their
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findings confirm that IoT applications offer a cost-effective and scalable alternative for
pollution monitoring.

Building upon these advancements, this study integrates predictive modeling and real-
time data collection to enhance CO, monitoring solutions. By leveraging machine learning
and IoT technologies, our approach improves forecasting accuracy, supports proactive air
quality management, and contributes to healthier indoor environments.

This study proposes an IoT-based CO; monitoring and forecasting system, integrating
low-cost monitoring stations equipped with NDIR sensors and ESP32 microcontrollers
to provide real-time CO, measurements. These devices are strategically deployed in
classrooms, offices, and laboratories within Tecnol6gico Nacional de México campus Tuxtla
Gutiérrez. The collected CO, data are processed using an LSTM autoregressive neural
network, trained to predict future CO, concentrations up to eight hours in advance. Unlike
traditional mathematical forecasting models, this approach allows the neural network to
learn patterns directly from sensor data, enhancing adaptability to different environmental
conditions. The results of this study suggest an alternative for scheduling classroom
sessions to ensure safe air quality conditions. The main contributions of this study are
summarized as follows:

¢ The LSTM network analyzes historical data to accurately forecast CO, levels up to
four hours in advance, eliminating the need for explicit models.

* A network of affordable sensors and wireless transmitters enables cost-effective de-
ployment and easy maintenance, making the system highly scalable.

*  Predictive insights allow proactive ventilation control, improving air quality, health,
and cognitive performance in indoor environments.

*  Real-time monitoring and forecasting optimize space utilization and enhance safety in
educational institutions, supporting data-driven decision making.

The remainder of this document is organized as follows: Section 2 presents the ma-
terials and methods used for the monitoring system and the configuration of the LSTM
network for CO, concentration forecasting. Section 3 describes the results obtained in dif-
ferent configurations and the comparison with different methods reported in the literature.
Finally, Section 4 presents the conclusions.

2. Materials and Methods

The CO, monitoring system to prevent COVID-19 infection involves using an NDIR
sensor and an ESP32-Core2 microcontroller board to monitor CO, levels in indoor environ-
ments, as seen in Figure 1. The DNIR sensor is a kind of optical sensor that can detect the
concentration of CO; in the air by measuring light absorption at a specific wavelength.

The ESP32-Core2 microcontroller board reads data from the DNIR sensor and sends
them to the Thinhspeak cloud using WiFi connectivity. Thinhspeak is an IoT platform that
provides data storage, analysis, and visualization tools. The collected CO, data are then
analyzed in Matlab, a popular data analysis and modeling tool. Using these data, a CO,
level prediction algorithm can be developed, which can estimate the CO; level in the near
future based on current measurements.

The CO; level prediction algorithm based on LSTM results can be displayed to users on
their mobile devices using an application. The application can show real-time monitoring
graphs and alert users if the CO, level exceeds a certain threshold, indicating that the
indoor environment may be poorly ventilated and potentially hazardous to human health.

This system has the potential to prevent the spread of airborne diseases, such as
COVID-19, by providing a tool for monitoring indoor air quality and identifying poorly
ventilated environments that could increase the risk of pathogen transmission. The fol-
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lowing sections describe the method in detail, including device connections for collecting
sensor data, the neural network used, the training process, and the tested configurations.

7‘/' \\‘\ MATLAB
\ Algorithm develop
Thinkspeak -~ Sensor analytics
server
N aad

Core 2 ESP 32

Alerts Monitoring

Figure 1. General schema of the proposed methodology.

2.1. Measurement of COp Concentration

To measure the concentration of CO; in the air, an NDIR sensor is used, which is quite
precise and easy to calibrate. This sensor consists of a tube, an optical filter, an emitter, and
an infrared (IR) detector, as shown in Figure 2. The emitter produces IR light waves that
travel through the air sample tube. The IR waves move toward the optical filter in front of
the detector. The detector measures the amount of IR light that passes through the filter.

Air inlet
| | Reflective tube
IR Emitter . o o ° e IR Detector

* CO, molecule

Other molecules Air outlet  Optical filter

Figure 2. CO; sensor.

The radiation emitters band coincides with the CO,’s absorption band, located around
4.26 uym. The absorption spectrum is unique, so it is a signature or fingerprint to identify
the CO; molecule.

As IR light travels through the tube, the CO; gas molecules absorb the characteristic
4.26 pm band while letting other wavelengths pass. At the detector end, the remaining light
is incident on an optical filter that absorbs all wavelengths of light except the wavelength
absorbed by the CO, molecules in the tube containing the air sample.

Finally, the detector receives the remaining amount of IR light not absorbed by the
CO, molecules or the optical filter. To calculate the CO, concentration, the difference
between the amount of IR light radiated by the emitter and the amount of IR light received
by the detector is measured. Since this difference results from light absorption by the CO,
molecules in the tube, it is directly proportional to the number of CO, molecules in the air
sample.

In the monitoring station where the sensor is embedded, some aspects are taken into
account so that the measurements are as accurate as possible; one of them is the warm-up
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time, which lasts approximately 60 s; during this time, the data are unreliable and are not
recorded. In addition, the sensor must be calibrated using a process that references the
lowest concentration recorded outdoors over some time. To verify the proper operation
and accuracy of each NDIR sensor, its readings are compared to those of a precision CO,
meter to validate the calibration.

The CO; concentrations recorded by the sensor vary depending on where it is placed
within the monitored space; for a reliable reading, considering the influence of ventilation,
the sensors are placed at least 120 cm from the ground, 60 cm from air flows (windows),
and SI2m of the people inside the room, as suggested by previous studies [17].

2.2. Monitoring Stations

The monitoring stations capture the measurements from the sensors to transmit them
in an IoT network where the measurements of all the monitored classrooms or offices
converge. Each station is made up of the following elements:

e  An ESP32 microcontroller module with WiFi, Bluetooth, and LoRa wireless connec-
tions; it also allows wired connections using 12C, UART, and SPI protocols.

¢  An NDIR sensor model MH-Z19D with UART-type serial interface; its detection range
goes from 400 ppm to 10,000 ppm, with a maximum error of 50 ppm.

*  Connection to an IoT network by WiFi or LoRa (long-range radio frequency), depend-
ing on the wireless connectivity available in each station.

The microcontroller captures the values the NDIR sensor detects and sends the data
wirelessly for recording and processing in the cloud. The electrical diagram of the M5 tough
device is shown in Figure 3, where the connections of the microcontroller with the sensor
and the visual/sound indicators used as an alarm are specified when the concentration of
CO; exceeds the safe values; and its specifications are presented in Table 2.

BUZZER PIN 18 PIN 14 LED

ESP32 OLED

RX

MHZ—19D

Figure 3. Connections at the monitoring station.

Table 2. Technical data for M5TOUGH.

Specifications Parameters
ESP32-DOWDQ6-V3 240 MHz dual core, 600 DMIPS, 520 KB SRAM, WiFi
IPSLCD Full-color display of 2.0” 320 x 240 ILI9342C
Antenna 3D-WiFi
Speaker Configuration NS4168 16-bit 125 amplifier + 1 W speaker
Voltage Input USB (5V at500 mA) DC (24 V at1 A)

The monitoring stations comprise an IoT network managed by ThingSpeak, a Cloud
Computing service operated by MathWorks. The data are stored in the cloud, which
can be updated and viewed using the ThingSpeak AP]I, allowing them to be viewed on
computers or mobile devices connected to the internet. The final prototype is presented
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in Figure 4, where the three concentration levels of CO; are shown, according to ppm and
visual indicators (green, yellow, and red). The design includes a 2 cm hole which allows air
to flow freely through it, thus facilitating readings from the CO, sensor. The marked levels
are presented according to Table 3.

Low level Medium level High level

Figure 4. CO, concentration levels with indicator colors.

Table 3. Risk levels according to [18].

Risk Level Color Range (ppm)
Low Green 400 to 700
Medium Yellow 701 to 999
High Red 1000 and above

The screenshot in Figure 5 shows the remote interface of one of the stations. The
sensor sampling period is one second, although the cloud data are updated every 15 s
due to limitations in bandwidth and available storage space; the communication latency is
approximately one second, which is sufficient considering the frequency of data updating
and the slow dynamics in the monitored area since there are no sudden changes in the
concentration of CO,.

AULA 713

1200

CO2 (ppm)

1000

12:40 12:50
Date

1341
ppm

Figure 5. Monitoring interface in ThingSpeak.

2.3. Prognosis of CO, Concentration with LSTM Network

A type of neural network based on deep learning frequently used in time-series
forecasting is autoregressive networks and those called Long Short-Term Memory (LSTM).
From the CO, concentrations recorded by the stations, time—series are created for each
monitored classroom, which are used to estimate future CO, concentrations based on the
most recent measurements. LSTM networks work with time—series processing, using loops
in their network diagram, and allowing them to remember /forget previous states and use
this information to decide the next one. This LSTM comprises a status cell that transmits the
data to be processed through the network. This gate allows us to decide what information
is going to be discarded and another allows us to update the memory, as shown in Figure 6
and as expressed in Equations (1)—(6). Where x; are the input data; f;, i;, and oy, are the
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outputs of each gate, enabled by the activation function, ¢ or tanh. The subscripts f, i, and
o are indicative of the gate that corresponds to them, forget, input, and output. In addition,
there are short- and long-term memories, /; and C;.

fr=c(Welhi—1,x:] + bf) (1)
iy = O'(Wl' [ht,l,xt] + bl) (2)
or = 0(Wolhs—1,x¢] + bo) 3)
Ct = tanh(We[hy_1, x¢] + be) (4)
Ct = fiCr1 +itCy )
hy = oy tanh(Cy) (6)
htlk
& o :
Ct—l @ Ct
£l i ¢ o | ()
Lo | o] [tann] | o |
his [ T 1 | e

J

Xt

Figure 6. Structure of an LSTM network.

Conventional recursive networks are used to model short-term dependencies (i.e.,
close relationships in time-series), whereas LSTMs are useful for modeling long-term
dependencies. The LSTM architecture is a block comprising three neural networks, better
known as gates, which allow us to weigh the dataset to remember, discard, and update the
information at the convenience of its application. This network will enable us to make a
more extended prediction due to its long-term memory derived from the gates above. The
LSTM block configurations are presented, which were proposed to analyze its performance
with the dataset described above. The LSTM configurations were trained with 70% of
the available data, and the other 30% were used to perform the forecast tests. The Adam
learning algorithm was used with an initial learning rate of 0.005, and the iterations for the
training were varied to know its impact on the performance of the network.

The number of hidden units and training times were varied in the neural architecture
tuning. The first configuration selected took 200 epochs to train, having 128 hidden units.
The second setup was 30 hidden units and trained in 1000 epochs. The third analysis case
was of 208 hidden units and was trained in 1000 epochs.

3. Results and Discussion

The previously mentioned configurations of the LSTM block, varying the number of
hidden units (128, 30, and 208 units), registered the best performances, obtaining accurate
forecasts with a competitive RMSE, being lower concerning the results obtained with the
NAR architecture. The first configuration with 128 hidden units took 200 epochs to train,
obtaining an RMSE of 57.4396 ppm, an MAD of 27.67 ppm, and an MAPE of 0.026887%.
Figure 7 shows the network output, Figure 8 contrasts the measured and forecast data,
whereas Figure 9 presents the error between them.
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Figure 7. Neural network output, Case 1 LSTM.
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Figure 8. Measured data versus predicted data, Case 1 LSTM.
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Figure 9. Forecast error, Case 1 LSTM.

The second configuration with 30 hidden units took 1000 epochs to train, obtaining an
RMSE of 68.17 ppm, an MAD of 31.33 ppm, and an MAPE of 0.02871%. Figure 10 shows
the network output, Figure 11 contrasts the measured and forecast data, and Figure 12
presents the error between them.

The third configuration, with 208 hidden units, took 1000 epochs to train, obtaining
an RMSE of 69.86 ppm, an MAD of 29.1748 ppm, and an MAPE of 0.017992%. Figure 13
shows the network performance, Figure 14 contrasts the measured and forecast data, and
Figure 15 presents the error between them.

1700

— Measurements
Forecast

1400

CO2 (ppm)
-
=
8

200 . . .
Apr 05, 18:00 Apr 06, 00:00 Apr 06, 06:00 Apr 06, 12:00

Time 2022

Figure 10. Neural network output, Case 2 LSTM.
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06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
Time Apr 06, 2022

Figure 11. Measured data versus predicted data, Case 2 LSTM.
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Figure 12. Forecast error, Case 2 LSTM.
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Figure 13. Neural network output, Case 3 LSTM.
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Figure 14. Measured data versus predicted data, Case 3 LSTM.
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Figure 15. Forecast error, Case 3 LSTM.

Validation of the Proposed LSTM

Different architecture configurations for the validation of the LSTM were analyzed,
which are presented below (Tables 4-7), highlighting the best performances. These tables
are separated concerning selection percentages for training and test data to analyze their
impact on configurations; in addition, they present the statistical indices to measure their
performance. From this, it was concluded that the best results were obtained by selecting a
data percentage of 70% for training and 30% for testing, maintaining the lowest RMSE on
average.



Math. Comput. Appl. 2025, 30, 36 10 of 13

Table 4. LSTM validation: 80% training, 20% testing.

Configuration Epochs RMSE (ppm) MAD (ppm) MAPE (%)
128 1000 63.86 34.04 0.040045
128 200 80.53 39.15 0.060933
100 800 105.82 46.28 0.045336
150 1000 84.03 41.40 0.043663
200 1000 67.25 34.33 0.029713
30 1000 76.77 38.76 0.05382
208 1000 81.2230 41.2516 0.051761
160 1000 64.7605 33.0171 0.041185
180 1000 104.5606 49.5327 0.082857
120 1000 80.5162 39.6079 0.038419

Table 5. LSTM validation: 70% training, 30% testing.

Configuration Epochs RMSE (ppm) MAD (ppm) MAPE (%)
128 1000 73.21 30.32 0.020867
128 200 57.4396 27.67 0.026887
100 800 70.88 29.35 0.019392
150 1000 76.48 32.65 0.027096
200 1000 7591 34.88 0.032143
30 1000 68.17 31.33 0.028715
208 1000 69.8691 31.6915 0.028221
160 1000 86.5504 35.1914 0.033307
180 1000 67.4451 32.5854 0.0222
120 1000 68.1354 29.7362 0.028629

Table 6. LSTM validation: 60% training, 40% testing.

Configuration Epochs RMSE (ppm) MAD (ppm) MAPE (%)
128 1000 119.38 54.49 0.03586
128 200 92.37 42.60 0.030407
100 800 106.06 49.56 0.036635
150 1000 99.83 44.53 0.02597
200 1000 117.41 55.69 0.041978
30 1000 104.12 50.26 0.039152
208 1000 114.702 53.7591 0.038169
160 1000 112.7961 49.5180 0.038434
180 1000 105.6364 47.5359 0.033837
120 1000 123.9902 56.5427 0.044883

In relation to the results obtained, a comparison is made with previous research
carried out by other authors, who have addressed the analysis of the concentration of
CO; using various machine learning and deep learning approaches and techniques. These
approaches and techniques are detailed in Table 8. A nonlinear autoregressive network
(NAR) was tested, with a similar configuration presented for the LSMT of this work,
the NAR obtained lower performance than the LSTM. On the other hand, the results
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were compared with the SVM, a linear regressive network (LR), and an artificial neural
network (ANN) although its topology is not presented, reported in [19]. As can be seen, the
proposed LSTM configuration obtained the lowest RMSE to predict CO,. Table 9 expands
this comparison by summarizing the key differences between the study by Liu et al. and
the present research; whereas Liu et al. [19] achieved lower RMSE values (16.77 ppm),
their model is limited to a 1 min prediction window. In contrast, the proposed approach
extends the forecast to 8 h, making it more suitable for long-term air quality management.
Additionally, the methodology provides a detailed description of the IoT implementation,
specifying the use of NDIR sensors and ESP32 microcontrollers, whereas Liu et al. do not
specify their hardware components; while Liu et al. validated their study in a residential
environment, the present research was tested in various indoor spaces, such as classrooms,
offices, and laboratories, demonstrating broader applicability.

Table 7. LSTM validation: second dataset.

Configuration Epochs RMSE (ppm) MAD (ppm) MAPE (%)
128 1000 114.3233 55.6462 0.037745
128 200 90.5694 40.2798 0.030747
100 800 104.3672 48.9134 0.039543
150 1000 99.83 44.53 0.02597
200 1000 111.1245 54.6689 0.04027
30 1000 101.3488 49.8211 0.03734

128-80 1000 158.3354 68.2418 0.05489
80-80 1000 129.8544 56.4882 0.04233
100-80 1000 118.695 52.658 0.03452
60-60 1000 120.4541 53.548 0.04065

Table 8. Summary of performances of different network architectures.

Architecture RMSE (ppm) MAPE (%)
NAR 66.56 0.022695
LSTM 57.4396 0.026887

SVM () 153.0833 1.9642
LR () 143.6322 1.9341
ANN ) 111.5761 1.7404

(*) Results from [10].

Table 9. Comparison between Liu et al. [19] and the present study.

Aspect Liu et al. [19] Present Study

Main Model LSTM LSTM

Configurations Single, Stacked, Bidirectional LSTM Variation in layers, neurons, and input delays
Prediction Horizon 1 min Upto8h

Best RMSE 16.77 ppm (Bidirectional LSTM) 57.44 ppm (128 neurons, 200 epochs)
Worst RMSE 21.96 ppm (Single-cell LSTM) 69.86 ppm (208 neurons, 1000 epochs)
Sensors Used Not specified (generic IoT) NDIR MH-Z19D
Microcontroller Not specified ESP32

IoT Platform MQTT + Grafana ThingSpeak

Test Environment Residential Classrooms, offices, and laboratories
Main Objective Quick ventilation adjustment Space optimization and mitigation strategies

Expected Impact Immediate CO, prediction Long-term air quality planning and management
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4. Conclusions

The implementation of an IoT-based LSTM model for CO, monitoring has demon-
strated high effectiveness in predicting CO, levels up to 8 h in advance. The ability of LSTM
networks to capture long-term dependencies in time-series data allows for accurate and
reliable forecasting, surpassing the performance of NAR neural networks. The proposed
system provides a scalable and cost-effective solution for real-time CO, monitoring, offer-
ing valuable insights into air quality trends in shared indoor environments. These results
highlight the potential of LSTM-based approaches to enhance air quality management by
enabling proactive ventilation strategies and improving occupant well-being.

Future research could focus on optimizing the model’s hyperparameters to further
enhance predictive accuracy. Additionally, integrating other environmental factors such
as temperature, humidity, and air quality indices could refine the system’s performance.
Developing a real-time alert mechanism for CO; threshold exceedance would further im-
prove its practical applicability, allowing for immediate corrective actions. Advancements
in this area will contribute to the development of more intelligent and efficient air quality
monitoring systems, fostering healthier and safer indoor environments.
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