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Abstract: This paper presents a review of different elasto-plastic Boundary Element (BE) formulations \\ith
particular emphasis on two main approaches; the initial strain displaccmcnt- gradient approach with its
modeling of the partial or full interior domain, and the particular integral approach which can be applied
exclusively to the surface avoiding any modeling interior. The initial strain formulation is implemcntcd in a
computer program using two-dimensional isoparametric quatratic elements to discretise either the complete
intcrior domain or only the part associated with the plastic region. The BE solutions are shown to bc in good
agreement with analytical and Finite Elcment (FE) solutions.

The Boundary Element (BE) method is well established as an accurate numerical tool
particularly well suited for linear elastic problems. Its extension to non-linear analysis such
as elasto-plasticity, however, is not widespread and in many formulation the interior of the
solution domain has to be discretized, thus losing the main BE advantage of surface-
only modeling.

An outline of different elasto-plastic BE formulation is presented in this paper with
particular emphasis on two main approaches; (i) the initial strain displacement-gradient
approach in which interior discretization is required either for whole domain or only in the
region of expected plastic behaviour, and (ii) the particular integral approach in which
interior modeling is not required and can be applied exclusively to the surface The
analytical and numerical implementation of both approaches are presented.

Details of a quadratic BE formulation for the displacement-gradient approach are
presented for two-dimensional elasto-plastic problems in which three-node isoparametric
quadratic elements are used to model boundary and eight-node isoparametric quadrilateral
quadratic elements are used to model the interior domain. The values of stress and strain
rates at interior nodes are calculated via the numerical differentiation of the displacement
rates in an element-wise manner; an approach similar to that used in FE formulation.

Details of the numerical implementation algorithm which uses load incrementation and
an iterative procedure are presented To asses the accuracy of the BE formulation, the initial
strain displacement-gradient BE formulation is implemented in a computer program and
applied to some practical problems. The problems include a square subjected to uniform
tension, and a thick cylinder under internal pressure. The BE solutions are compared with
the corresponding FE solutions and exact or experimental solutions.

The first elasto-plastic BE formulation presented by Swedlow and Cruse [1] was based on a
direct analytical formulation. Riccardella [2] presented the initial strain formulation based



on a constant plastic strain over each internal cell with a non-iterative procedure.
Mendelson [3] provided a review of the BE formulations which is based on indirect, semi-
direct and direct approaches in two and three-dimensional problems. Mukherjee [4]
presented a correct direct BIE formulation in plane strain analysis. Telles and Brebbia [5]
presented a direct BE formulation based on the initial strain approach with corrections for
the internal stresses and a semi-analytical approach for the efficient evaluation of the
strongly singular integrals appearing in the domain kernels by using linear elements. The
indirect BE approach in elasto-plasticity was developed by some others such as Banerjee
and Mustoe [6], Kobayashi and Nishimura [7], Morjaria and Mukherjee [8], but the direct
approach has been widely developed.

Faria et al [9] performed the singular integrals in a manner similar to that of Telles and
Brebbia [10] by using quadratic elements. The elasto-plastic BE formulation was discussed
in detail by Lee [11] who presented an accelerated convergence procedure using an initial
strain approach and quadratic elements. Some authors, such as Tan and Lee [12] and
Lee and Fenner [13], used this approach to analyse practical problems such as fracture
problems

Other non-linear BE formulations have been developed for viscoplasticity and
time-dependent problems (see, e.g. Kumar and Mukherjee [14], Telles and Brebbia [15],
Banerjee and Davies [16] and Ahmad and Banerjee [17]).

One of the difficulties encountered in all non-linear BE analysis is the evaluation of the
singular integrals, defined only in the cauchy principal values sense, arising in the solution
domain. Henry and Banerjee[ 18] presented a particular integral approach to circumvent the
singular volume integrals. Okada et al [19] presented another approach, which handles
geometric and material non-linearity problems, based on the interpolation of the basic
variables to be computed in solution domain. Banerjee and Ravendra [20] presented a direct
approach to evaluate the strongly singular integrals by excluding a small sphere, where load
point is located, from the integration of volume cell. Banerjee et al [21] presented an
indirect approach, initial stress expansion technique, which is based on the admissible stress
states for the evaluation of the strongly singular integrals

Lu and Ye [22] presented a direct technique to evaluate the strongly singular integrals by
use of coordinate transformation and a form of Stokes' theorem with numerical examples,
whereas Guiggiani and Gigante [23] used a taylor series expansion and local polar
coordinates. The study of Guiggiani et al[24] provide a genaral algorithm in order to treat
numerically the hyper-singular integrals arising in BE formulations Dallner and Kuhn[25]
presented a direct approach for the efficient evaluation of the strongly singular integrals
with tree-dimensional examples by using a regularised formulation based on the Gauss
theorem. This approach is capable of handling viscoplasticity and large deformation
problems.

Unlike the FE method which requires whole body discretization, the BE method reduces
the dimensionalty by one by transforming the variables from volume to surface values,
hence only the boundary of the domain requires discretization The basis of the BE
formulation is a boundary integral identity for displacements, relating the displacement at



an interior point P to the displacements and tractions at boundary point Q, over the surface
S, as follows (e.g. Brebbia et al [26], Becker [27]and Banerjee[28])

U,(P) + fT'J(p,Q) uJ(Q) dS(Q) = fU'J(p,Q) tJ(Q) dS(Q)
s s

Where Ui and ti are the displacement and traction vectors respectively, and Uij and Tij are
the displacement and traction kernels, respectively, which are functions of position and
material properties The above equation ignores the effects of body forces and plasticity.

To include the effect of the elastoplastic material behaviour, an additional volume term
based on the work done by the strain rate, f:~ multiplied by the stresses at the load point can

be written as follows (see eg Lee[!!]):

fWkoJ(p,q) f:~(q)dA
A

where A is the area of the domain and q is an interior point. The dot above the strain
indicates the rate of the chance of the strain with respect to time. The kernel WkiJ can be
interpreted as the stress at point q due to a unit load at the load point P in the kth direction
This approach is referred to as initial strain method Alternatively, the initial stress, 0:;, can

be used as the primary unknown. Hence, by using the given relationship between the initial
stress increment(rates) and the initial strain increments, in quasi-static behaviour, the
plastic integral term can be written as follows:

fYkij(P,q) 0~(q)dA
A

where the kernel Ykij can be interpreted as the strain at point q due to a unit load at the load
point p in the kth direction

To calculate the plastic strain rates, the Yon Mises rule is used. The following
expressions can be used for plastic strain increments in terms of the total strain increments

where Ski and 0 eq are current deviatoric and equivalent stresses respectively, and H is the
slope of the uniaxial plastic stress-strain curve. Alternatively the plastic strain increments
can be expressed in terms of the stress increments as follow:



It is obvious from the elasto-plastic BE formulation discussed previously that both
boundary elements and domain cells (internal cells) are necessary in order to perform the
integrals arising in the BE formulation. Both the boundary elements and the domain cells
are used in two-dimensional elasto-plastic BE analysis are illustrated in Figure I In a
manner similar to the elasto-static BE analysis, the boundary is represented as a collection
of boundary elements. The zones, where the plastic deformation is expected in solution
domain, is discretised into domain cells in order to perform domain integrals. The
elastoplastic BE equation in the initial strain approach (without considering body forces) in
discretized form, can be written as follows:

M 3 +1 M 3 +1
C\I(P)+ L: L: \1(Q) f T(P,Q)N <SJJ(~)d~= L: L: i(Q) f U(P.Q)N (~)J(c,)d~IJ 1 J IJ e J IJ em = Ie = I - I 111= Ie = I - 1

o 8 +1 +1
+ L: L: EB(Q) f i Wijk (P.q)Ne(~I'~2)J(C,I·C,2)dc,ldc,2 (6)
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where P denotes the node where the integration is performed, Q indicates the cth node of the
boundary element and q indicates the cth node ofa domain cell. Nc(~) is the quadratic shape
function and J(~) is the jacobian of transformation.

The integrals appearing in equation (6) have to be calculated in order to obtain the
coefficients. The kernels functions contain singularities of the order of 11r or 11r2 where r
is the distance between the load point P and the field point Q or the interior point q.
Therefore, the integrals become singular when P coincides with either Q or q. it is
important the examine the numerical evaluation of the integrals in such cases.

When P and Q or q are in different elements, there is no singularity, and the gaussian
quadrature formulae can be used. When P is a node of the element in which Q or q are
located, there are two situations to be considered. When P and Q are different nodes in the
same element, the Gaussian quadrature formulae can also be used. However, for the case
when P coincides with either Q or q, special integration schemes have to be devised.
For the boundary element, when P coincedes with Q, the integrals and the fi-ee-term
coefficients, Cij(P) can be calculated using rigid body motion(see e.g. Becker[27]) For the
domain integrals, when P coincides with q, the domain cell must be divided into sub-
elements in order to performing integration, as shown in Figure 2. In this scheme, the
quadrilateral elements is divided into or three triangular sub-elements (for details, see
Lee[ II], and Becker[27]).

The main advantage of the displacement gradient approach is that it is possible to
circumvent the strongly singular integrals by differentiating the displacement rates via the
shape functions in order to obtain the strain and the stress rates.



p

mid-point node

\ ..,..' //
\!

Figure I:Typical 3-node boundary element
and 8-node domain cell

Figure 2: Sub-division of the domain cell into
triangles in singular integration

By differentiating the interior displacements via the shape functions over each domain
cell, and using the jacobian of transformation, the displacement differentials with respect to
the local coordinates 1;1 and 1;2 can be obtained. To obtain the total strain rates, the strain-
displacement relationships can be used as follows:

In plane stress problems the total strain rate in the third direction can be obtained by using
0'33 =0, i.e.

. _ -u (. . 1- 2v .p p )
lOzz--- lOxx+lOyy)---(lOxx +lOyy

I-v I-v
Using Hook's law, the cell stress rates can be written as follows

Therefore, the internal stress rates can be calculated without having to deal with an integral
identity for which contains strongly singular integrals. Full details of the evaluation of
stress and strain rates at boundary and interior nodes are presented by Gun [29]



It is well known that the solution of partial differential equations (e.g [30]) can be obtained
using a complementary function (CF) and a particular integral (P L) Therefore, the
displacement in the governing differential equations can be defined as a combination of a
complementary function and a particular integral, as follows:

Similarly the tractions, stresses and strains can be written in terms of complementary and
palticular integral components as follows:

t, =(I,fF +(I,lF
("I' PF0, =(O,) +(O,)

E:, = (l:,{F + (':,)PI-

The elastic solution given by the boundary integral equation (equation I) is the
complementary solution, i.e.

ll~'F(p)+ fT,/P,Q)ll~F(Q)dS= fU'j(P.Q)i~'F(Q)dS (12)
s

Where o-:j is the initial stress which can be expressed in terms of a global shape- function,

K(Q, P), as follows(see Henry and Banerjee[ 18])

M .

6:j(Q)= LK(Q,Pm) ~'j(Pm)
01::\

where Pm represents the boundary nodes and internal (fictitious) nodes in the solution
domain, and ~,/Pm) is a fictitious tensor density It should be noted that fictitious interior

nodes have to be consistent with the boundary discretization of the domain to be solved. M
is the total number of known can be expressed for two-dimensional problems as a fourth-
order differential as follows (see Henry [31]):

K(Q P ) = 8
4
C(Q, Pn,) (15)

. m a2x
m
82xn



where Co is characteristic length related to the solution domain, which can be chosen as the
largest distance between the nodes in the solution domain, and r(Q,Pm) is the distance
between the field point Q and load point Pm. The parameter bn is chosen to minimize the
solution error which may be caused by arbitrary ordering of the nodes, by scaling down
each column of the matrix K(Q,Pm) such that the lowest value is forced to be zero in order
to optimize the solution matrix.

For two-dimensional problems, the particular integral for the displace ment rates can
be expressed as follows(see Henrry[31] and Kane[32]):

The particular solution for stress can be obtained by differentiating the displacement
functions to obtain the strain functions and then substituting in equation (13). The particular
solution for the traction rate is obtained from the stress functions as follows:

By considering a particular load increments, the complementary displacement and traction
rates at the boundary can be written as follows:

[UCF]=[UJ-[UPF]

[ieF]= [i]- [iPF
]

It should be noted that the complementary solution is simply the elastic solution. Therefore,
by introducing the particular integrals into the system equations, the elasto-plastic system
equations can be formed as follows:

As discussed previously, the displacement and traction rates are arranged such that all
unknown variables are placed in the left hand side, and all prescribed values in the right
hand side. The system equations can be formed as followed.



where the matrices [A'] and[B'] are the modified forms of[A] and [B], while the vector [x]
and [y] contain the unknown and known values respectively, of either traction or
displacement rates. By using equations (17) and (18), the particular solutions for
displacement and traction rates are given in matrix form as follows:

[uP1]= [DP1] [~]

[iP1]= [IP1] [~]

In this expression the rectangular matrices [DPI] and [TP1] are the size (2N x 3M) where N is
the total number of boundary nodes and M is the total number of the boundary and interior
(fictitious) nodes in the solution domain. Details of the calculation of the calculation of the
initial stress and plastic strain increments can be found in reference[31).

As mentioned earlier, in order to include the effect of plasticity in the initial strain BE
formulation, interior discretization is required, which results in strongly singular integrals
A significant increase in analytical and numerical work is required to maintain the accuracy
of the BE formulation. However, by using the displacement-gradient approach, the strongly
singular integrals can be avoided. The particular integral approach uses fictitious nodes
(internal nodes) in the solution domain to evaluate the internal variables. Comparing the
numerical implementation of the particular integral approach to the initial strain approach
several advantages and disadvantages of the particular integral approach can be identified.

The main advantage of the particular integral approach is the elimination of the interior
discretization into domain cells. However, the penalty for this is a greater degree of the
mathematical complexity, and the fact that the distribution of the fictitious nodes needs to
be consistent with the boundary discretization of the solution domain. Furthermore, a great
deal of effort is needed to produce a robust general-purpose BE computer program which
may be used by inexperienced users. Therefore, it is concluded that, despite its
disadvantage of full or partial interior discretization, the initial strain method with
numerical differentiation of the Displacement is a more attractive option for general robust
BE software.

In the elasto-plastic FE analysis, depending on the fonhulation of the stiffness matrix,
either the tangential stiffness technique or initial stiffness technique can be employed
However, because of the nature of the elasto-plastic BE formulation, neither of these
formulation can be used. Instead, the concepts of the initial strain and initial stress
techniques, used in the FE approach, can be modified in order to be applicable to the elasto-
plastic BE analysis.

In the elasto-plastic BE analysis, the plastic strain increments can be calculated by lIsing
the flow rule expressions in equations(4) and (5). In equation(5) the actual stress increments
are required in order to obtain the initial strain increments. The initial stresses can be
obtained by using equation(4) in which the total strain increments are assumed to be



known. In the initial strain approach it is possible to obtain the plastic strain increments by
using equation (4), which can handle the perfectly plastic material behaviour In BE
formulations, there is no significant difference between the initial stress approach and
initial strain approach, because the integral equations in both approaches include the effect
of the plasticity The initial strain formulation is considered more suitable for traction-
control problems, because the first approximations for the stress increments are usually
reasonably accurate.

A robust incremental iterative procedure and the details of the evaluation of the plastic
strain rates and the initial plastic stress rates for both approaches are presented by Gun[29].

The present initial strain formulation with the displacement-gradient approach is
implemented in a computer program and applied to some classical test problems. The
results are compared with either analytical solutions or the corresponding FE solutions.

This problem concerns a square plate subjected to uniform tension in the x-direction. The
BE discretization is shown in Figure 3 where 4 boundary elements and 1 cell are used The
material is loaded in tension up to 596 N/mm2 using 26 increments The material properties
are:

where the yield stress, cry = 483 N/mm2
, E=207000 N/mm2

, n=O.I, and v = 0.3.

The BE solutions are compared with the corresponding analytical and FE solutions
obtained using ABAQUS[33] in Figure 4 where the agreement is excellent.

This problem concerns a thick cylinder under an internal pressure in which the diameter
ratio R2!R1 is taken to be 2. The analytical solution of this problem was presented by Hodge
and White[34]. The geometry and loading conditions are shown in Figure 5. The material is
assumed to be elastic-perfectly plastic with the following material properties (";y = 200

N/mm2
, E=200000 N/mm2 and v = 0.33.

The boundary element discretization is shown in Figure 6 where a 15° sector is used to
represent the cylinder with 4 cells.
The variation ofthe load factor Ploy with the non-dimensionalised displacement (411 uh/oya)
at the outer radius for BE mesh and the corresponding FE solutions are depicted in Figure
7. In the BE analysis 5 load increments were used to reach the load factor, Ploy, value of
079 The BE solutions show very good agreement with the analytical and FE results



Figure 8 shows the hoop stress distribution along the radius for the load factor, Play, value
of 0.76. The BE results, computed using 5 load increments, are again in good agreement
with the analytical and FE results.
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Figure 3: Uniaxial tension problem
and BE mesh design
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Figure 6: BE discretization for the
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A brief review of elastoplastic BE formulations was presented. In the initial strain
approach, the plastic strain rates are treated as initial strain rates. The initial stress approach
is very similar to the initial strain except that the initial plastic stress rates is used as a
primary domain unknown in the integral equations. The choice between the use of the
initial strain and initial stress formulation is not critical because the effect of plasticity is
catered for in the integral equations. The initial strain approach, however, is considered
more suitable for traction-control problems because the first approximations for the stress
increments are usually accurate. In order to circumvent the strongly singular integrals
arising in the domain kernels, the stress and strain rates inside the domain are calculated by
numerical differentiation of the displacement rates obtained from the boundltry integral
equations in an element-wise manner. This approach is referred to as the displacement-
gradient approach.

As an alternative formulation to the initial strain, the particular integral formulation is
also presented The main advantage of this method is that it is possible to eliminate the
domain integrals. However, the main disadvantage of the particular integral approach is
that it requires a fictitious interior node distribution in order to avoid the discretization of
the entire solution domain, which makes its implementation in a general-purpose computer
program very complex.

The initial strain approach is implemented in a computer program and applied to elasto-
plasticity problems. The BE solutions obtained from the computer program are shown to be
accurate and in good agreement with the FE and other solutions.

The present elasto-plastic BE formulation can be extended to cover contact mechanics
problems In contact applications, introducing frictional stick-slip behaviour would require
a carefully designed robust numerical algorithm to incorporate nested iterations and load
increments that are capable of monitoring contact development and ma.ching the solution
along the elasto-plastic material path. This is the ongoing research work.
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