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Abstract- The transverse vibrations of a simply supported beam moving with constant
velocity is considered. The case of transition from',:string to beam effects is treated. In
this model, the fourth order spatial derivative multiplies a small parameter and hence
leads to a boundary layer problem. The problem is solved approximately using the
method of multiple scales.

Band saws, fiber textiles, paper sheets, aerial cable tramways, oil pipelines,
magnetic tapes, power transmission belts are all classified as axially moving material
problems. These problems are categorized into two groups: 1) axially m.oving strings 2)
axially moving beams. Due to their technological importance, a vast amount of literature
exists on the topic. The review papers by Ulsoy et al. [1] and Wickert and Mote [2]
contains work on axially moving strings and beams upto 1988.

For more recent work on beam vibrations see Wickert and Mote [3], Wickert [4],
Pellicano and Zirilli [5] a",jdOz et al. [6]. The transition behavior from string to beam has
first been investigated by .references [5] and [6]. In reference [5], a boundary layer
solution was presented using a modified Lindstedt Poincare method. In [6], an outer
solution was presented using the method of multiple scales. A stability analysis was also
included.

Classical methods find the inner solution and outer solution separately and match
the two solutions using physical constraints. The final solution is a composite expansion
including the inner and outer solutions. On the other hand, using the method of multiple
scales, the composite expansion can be retrieved at once using a single expansion [7]. In
this work, the method of multiple scales is first applied to the small-stiffness axially-
moving-beam problem. The approximate solution is constructed.



The linear dimensionless equation of motion for an axially moving beam with
small flexural stiffness is [4]

where y(x,t) is the transverse displacement, v is the constant velocity and vl is a
dimensionless parameter [4]. A small parameter E is introduced to represent small beam
effects. x and t are the dimensionless spatial and time coordinates respectively. The
simply supported boundary conditions for the problem are

Since the highest order derivative multiplies a small parameter, the problem is a boundary
layer problem.

To apply the method of multiple scales, one defines the variables

where Xois the outer variable ,.andXI is the inner variable for the left boundary. To is the
usual fast time scale and T I is the slow time scale. The derivatives are defined as follows
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Substituting (6) into (5) and separating each order of 8, one obtains the set of
equations

o (~):
8

4 ~ 2 84yo
- V ---------

fax ax 3
o 1



In this section, one solves the equations consequtively. At order (liE), the general
solution is

~ ~1-v2
--XI ---XI

yo=A(xo,To,T[) e vf + B (xo,To,T]) e vf + C (xo,To,T1) Xl + 0 (xo,To,T1)

For finite solutions, one chooses A=C=O. The term with B is a part of the inner solution.
One may require B=O for not allowing the inner solution to appear at the first order
Hence

For order (l/~), one substitutes (13) into (8)



Note that this equation is the equation for a constantly moving strip. A solution for Y2
would then be

JI-v2
---XI

Y2= E] (xo,To,TI) e Vf + FI (xo,To,T1)

At order ( ~), the solvability condition is

JI-v"2
---Xl

Y3=G1(Xo,To,TI) e Vf

Substituting the solutions obtained to the expansion, one has the approximate
boundary layer solution
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Y= D (xo,To,T]) + c (EI (xo,To,T1) e Vf +FI (xo,To,T1»+. .....

The above solution contains the inner expansion at the left hand side and the
outer expansion. One may now calculate the outer expansion and the right hand side
boundary layer solution by defining



A similar calculation with only inserting X2instead of XI makes some sign changes
in the equations. Finally the solution for this case is

.Jl-v2
---x.,

Y = D(xo,To,TI) + c: (E2 (xo,To,TI) e Vr -

To obtain the composite expansion valid for all parts of the domain, one has to add
solutions (23) and (25) and subtract the outer solution which is common. Hence the final
solution is
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-~-Xl -~-X2

y=D(xo,To,TI)+c: (E](xo,To,TI)e Vr +E2(xo,To,TI)e Vr +FI(xn,Tn,TI»+ ... (26)

In this section, the boundary conditions will be applied to the composite
expansion (26). One has to solve equation (17) first subject to the boundary conditions

Since equation (17) is of second order, these two conditions are the only applicable
conditions from the set of boundary conditions given in (2). The solution is
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Inserting (32) into (28) and defining Ao=2 ae' , one finally obtains



Since the composite expansion is constructed upto order E, there is no need to determine
G1 from (22)

Substituting (33)-(36) into (26) and imposing the boundary conditions, one sees that the
solution has an order (E) error for conditions y(O,t) = y(1 ,t) = O.

For the remaining boundary conditions, to eliminate the error at the first order of
approximation, ai, 81, a2 and 82 in (35) and (36) are selected as
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The above approximate solution has an O(~) error for boundary conditions
y(O,t)=y(1,t)=O and an 0(..[;.) error for boundary conditions y"(O,t)=y"(1 ,t)=O

An approximate boundary layer solution is presented for an axially moving beam
with small flexural stiffness. The method of multiple scales is applied to the problem and
the composite expansion including two inner solutions and one outer solution is found.

Comparing the solutions with those of Pellicano and Zirilli [5], one may note that
both solutions yield the same error for boundary conditions y(O,t)=y(l,t)=O, namely 0(£)
error. While multiple scales yield an 0(..[;. ) error for boundary conditions
y" (0, t)=y" (1, t)=0, their solution satisfies the boundary conditions exactly. However
contrary to their modified Lindstedt Poincare method, using the method of multiple
scales, a single expansion is sufficient and requires no matching between the expansions.
This advantage brings another disadvantage: constructing the solutions at each order of ~
is not as straightforward in the method of multiple scales as in the method of matched
expansions and requires some experience.
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