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Abstract: There are a number of problems that their analytical solutions are difficult to obtain using
conventional techniques in robotics. This-paper examines the use of Artificial Neural Networks (ANNs) as a
new technique to solve such problems in the field of robotics.

This paper presents an overview on ANNs applications to robot kinematics, dynamics, control,
trajectory and task planning, and sensing. Moreover, the advantages and disadvantages of using and
implementing ANNs to the robotic problems are outlined.

1. INTRODUCTION
The methodology of artificial neural networks (ANNs) was originally conc:eived as an

attempt to model the brain of how to operate and function. The aim has been to create an
artificial model which may be capable of emulating human intelligence. ~s a result of that
ANNs have captured much more research interest and have been successfully applied to a
wide range of application areas due to their adaptability and ability to learn, generalisation,
fast real-time operation and easy implementation capabilities [1-5].

The aim in robotics is to create a device or a machine which can behave under human
authority without representing any threat [6]. To reach this aim, it should be considered that
the robots are highly nonlinear and complex systems and their dynamic performances
depending on the efficiency of computing such tasks; co-ordinate transformation between the
joint-variable space and the cartesian space, generalised forces/torques to drive the joint
motors, the manipulator inertia matrix for model based control schemes, and the Jacobian
matrix that relates the joint velocity in the joint-variable space to the cartesian space. These
are the basic computations for the control of robot manipulators. Some of the intensive
computations occur in calculating the robot kinematics, dynamics, Jacobian and their
corresponding inverses. These basic robotic computations require better modelling for robust
control. ANNs are known to handle such computations and tasks due to the capabilities.

In this paper, applications of ANNs are reviewed in the areas of lobot kinematics,
dynamics, control, trajectory and path planning, and sensing [1-148]. Firstly the problems in
the area are explained. ANN solutions to those problems are then reviewed. Therefore, the
advantages and disadvantages of using ANNs in robotics are summarised.

2. APPLICATIONS OF ANNS IN ROBOTICS
ANNs have presented great potential in many disciplinaries [3] as well as in robotics

[7-10] because of the following features: generalisation through learning, fast computational
capability for real-time applications, less priori information requirement and ease of
implementation. ANNs have ability to provide plausible solutions for ill-posed problems in
robotics.

('

The solution of robotic problems is difficult because even the simplest desired
movement requires sophisticated mathematics which may require more computational effort.
Common proD'iems encountered in robotics are short intensive computations with high level
of data dependency. These are major bottlenecks in the control of robots.
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For robotic applications, the most popular ANNs are multilayer backpropagation and
Hopfield network [11]. In addition, many other networks have been proposed which include
competitive and co-operative nets [12], ART, Kohonen's Self-organising Map [13], Modified
Counter-propagation, Functional net [14], Distributed Associative Memory [15], and an
Learning Vector Quantisation (LVQ) network [148].

In the following subsections, the major problems in the robotics are first introduced.
The applications of ANNs are then reviewed in each subsection.

2.1. Robot Kinematics
The term robot kinematics can be described as the study of robot joint motions

without taking into account the causes of motion. It is classified into the inverse and the
forward kinematics. The forward kinematics is a static geometrical problem of computing the
location of the end-effector of a manipulator. The inverse kinematics calculates all possible
sets of joint angles to attain the given position and orientation. The problems are
computationally intensive and have multiple solutions. Various methods have been proposed
to solve the inverse kinematics problem. They, are the closed form solution, iterative methods
[16], generalised inverse solution [17] and more recently ANN solutions [8-31]. .

Fig.l depicts how ANNs may solve the inverse kinematics. An ANN is taught the
relationship between the positions, x, y and z, and the joint angles, 81, 82 and 83. A well-
trained network is then able to provide the location of the end-effector for every possible
soldtion.

ANN solutions of inverse kinematics for 2 and 3 degree oflfreedom manipulators can
be calculated using multilayer perceptrons, Functional net, Backpropagation and Modified
Counter-propagation net with Kohonen net, Cerebellar Model Articulation Controller
(CMAC), Group Method of Data Handling, Hopfield net and co-operative/competitive
ANNs [8-31].

Fig.2 shows how an ANN learns a forward kinematics. For the both kinematics,
ANNs learn the robot function without requiring any priori information of the manipulator.
After training, the networks may provide the desired position and orientation or all possible
set of joint angels'ofthe end-effector.

Learning, generalisatiop, the capability of fast real-time operations after an off-line
training, requiriment of less priori information and the &omputation time, no need for
conventional serial programming, and reducing the mathematical complexity are the
advantages of ANN s for robot kinematics.

2.2. Robot Dynamics
Robot dynamics formulates the mapping between joint torques applied to the robot

and the joint co-ordinates, velocities and accelerations. ~ecaus:~ of mathematical formulations



e.g. the Lagrange-Euler and Newton-Euler, a large number of trigonometric and non-linear
functions of joint co-ordinates, velocities and acc.elerations are required. The non-linear

"'mapping ability or function approximation of ANNs is attractive for robot dynamics. ANNs
learn the behaviour of an inverse dynamics through a robot dynamics (it is very similar to the
calcul:?!tion of the forward kinematics as shown in Fig.2.). ANN is then used as an inverse
dynamics controller.

ANNs are used to identify linear and nonlinear" dynamic systems [32-40]. Recent
reviews provided by [33-35] show how robots learn mapping of the inverse dynamics. ANNs

r, are also used for the modelling of inertial sensor [36,37], for the inverse dynamics control for
a PUMA 260 manipulator [41,42], to compensate for dynamic effects on the first two joints
of the eMU Direct-Drive Arm II for a family of pick-and-place trajectories [42], for the
flexible-joint manipulators dynamics and nonlinear characteristics [43], a real-time
identification of a 2-D robot manipulator [44], and the identification of robot dynamics [134-
141].

2.3. Robot Control
The basic objective of a controller is to provide appropriate input parameters to a

robot in order to obtain the desired output. A controller has to provide a set of control
parameters allowing the robot to reach a given target and must therefore know the
parameters of the system for an optimal control. There are a number of situations that make
the control difficult such as when a model of the system is not available, the system may
change with time, or the controller itself may change with time due to component failures.

Use of neural networks in robot control offers a new p~omising direction for solving
some of the most difficult control problems. ANN approach upgrades classic non-adaptive
and adaptive control algorithms with acceptable performance characteristics over a very wide
range of uncertainty [45]. Many of ANN applications to robotics have been performed in
control because of their facinating features. Recent overviews present several learning control
techniques and architectures for training neural controllers to provide an appropriate input to
systems [33-35,46,47]. Bavarian [46] demonstrated several examples, especially, in situations
where input was noisy or incomplete, an ANN was still able to produce re~sonable results.

ANN learning algorithms accomplish an internal model of inverse robot dynamics
during execution of movement and recognise changes in environmental conditions and react
to them as required [48-50]. The use of ANNs in controlling robot manipulators and the
power grasp robots [18,50-54,57,58], the Stanford-like robot [55], space robot [56], on-line
the multi-joint robot manipulator [59] were successfully introduced.

Neurocontrollers are an existing new technology to the adaptive control of robots.
Their ability to learn a control algorithm without the benefit of a priori analysis or modelling
may be great benefit for difficult, complex, and non-linear robotic applications where either
analysis, simulation, modelling, and identification are to expensive or not practical, or real-
time operation is slow. The potential applications of neurocontroller are vast, and truly
important to the long-term future. The techniques are already available to provide that
potential [60-63].

The other papers on the applications are; the feedback loop and the inverse dynamics
model for learning trajectory control of an industrial robotic manipulator [40], for general
robotic control and a computed torque controller [64,65], one dimensional pole-balancing
problem [19] by reinforcement learning [66], the control of the tracking behaviour of an
autonomous mobile robot [67,68], three different neural architectures examined by [45] for
nonlinear robotic control, the inverse Jacobian control with a hierarchical neural networks



[26,69], the structured hierarchical neural network [59] for the real-time 'control of mobile
robots, the design and control multi-degree-of-freedom articulated robot han@s [50,70-74],
generating suitable grasp modes for various robot hands and for various objects [72], a
gripper with three straight fingers [73], control of a robot arm and gripper for the task of
grasping a cylinder [71], a recentralised variable structure control system [74], servo
controller [70] for one or two dimensional robotic manipulators, direct transition from/lsensor
processing to inverse dynamics [75], controlling the position of robot manipulator [76],
guiding the end of the manipulator by CMAC [77], a mobile robot [78} for multi-tasks,
underwater robotic vehicles [79-82] for increasing the autonomy of the vehicle control,
recovering the image, teaching the pitch attitude of underwater telerobot with the
combination of ANN and fuzzy logic, the neural compensation techniques by [83] for robot
control, several ways for an existing controller development, direct adaptive control,
optimised non-linear controller development [33,54,84], for time-optimal control [85],
intelligent control [86], force control [121], the rule-based robot systems with ANNs [87-89].

The major advantages of ANNs with the use the of hybrid structure of several
networks for robot control are : robustness to noise, error and damage; learning and
adaptation; nonlinear analog processing; modelling and controlling unknown or uncertain
systems.

2.4. Trajectory an,d Task Planning
In order to move a manipulator from one position to another in a smooth controlled

fashion, each joint must change its location as specified by a smooth function of time
Trajectory planning is a process of specifying the desired trajectory in joints Cartesian space
for joints or grippers. It is further complicated when the robot must move around obstacles or
is constrained to the given trajectory. The problems involve the co-ordination of multiple
sources of data and require problem solving techniques operating in a changing and harsh
environment.

The applications to this area are; motion planning and learning control of a biped
locomotive robot [90], trajectory formation [91], classification of robot hand grips [92],
storing and retrieving trajectories [93], mobile robot path planning [94,95] for multi-joint
robots and truss structures [96], robot manipulators [97,101], a map-based symbolic
reasoning to achieve high-level behaviours [98], a real-time robot navigation system based on
three VLSI neural networks [99], and a new control architecture for a specified trajectory
[100].

Learning and generalisation abilities for robot nonlinearities, optimising the
trajectories in task and trajectory planning, fast on-line operation and adaptability can be
counted as their advantages.

2.5. Sensing
Sensing is an important area in robotics for any movement and control. Sensing

devices are the only way of providing information about their environments. There are many
different types of sensors available for robots, namely; tactile, speed, stress, acceleration,
movement and position, inertial, visual, proximity, and optical sensors. The problems in
sensing come from the environmental effects, temperature, noise, lack of light, fumes,
humidity and components failures. A variety of materials, devices and sensing principles have
been reviewed [102,103] for robotics. There are some application covers two areas
[104,105]. The applications in tactile and non-tactile sensing will be surveyed in the following
subsection.



2.5.1. Tactile sensing
Tactile sensing is important for intelligent robots. Unlike vision sensing it constrains

the interpretation process due to loss of depth information in the image formation process,
and provides absolute information such as local shape information, object's roughness or
hardness to the robot manipulators.

Using a Hopfield network to recover surface stresses from strain data taken from a
tactile sensor [106,107], a modular arrangement .of MLPs trained by the BP algorithm to
process data obtained from a tactile sensor to determine the shape of an object [108], an
MLP (again trained by the BP algorithm) with a tactile sensor array to detect the angle of
contact between a rod and a cylindrical finger of a robot hand [109], controlling a prosthetic
hand [110], converting sensory inputs from the prosthetic hand into the appropriate nerve
signals [99] for the patient in sensing and controlling the prosthetic hand directly, calibrating
a 2-D displacement sensor [Ill], two BP-trained MLPs and a skin-like tactile sensor to
compute the normal and shear stresses on the sensor and deduce the shape and radius of a
surface in contact with it for grasping and manipulation tasks [112], an ultrasonic sensor for
location determination [113], and an inertial sensor for location determination of an object on
a platform [115,142], a BP-trained MLP to sense and control the grasping force of a robot
hand [52], an MLP trained by the BP algorithm with a contact sensor to recognise and
classity the geometry and roughness of various metal patterns [146], a BP-trained MLP with

'a force sensor to detect the state of contact between a cylindrical peg and a cylindrical hole
during insertion of the former into the latter [147] are the selected applications.

2.5.2. Non-tactile sensing
Most of the applications of ANNs in non-tactile sensing can be found in VISIon

system. ANNs are used to learn the non-linear mapping between image data and control
signal for changes in the joint angles required to achieve the desired position and orientation
using a vision system to position and orientate the end-effector (Fig.3). There are two ways
of mounting cameras. In the first way, a camera is fixed at the end of robot manipulator. In
the second way one or more cameras are mounted one or more places. The camerals are
directed to a working place and provide information about the motion or the object/s'
locationls to be grasped and moved as shown in Fig. 4.
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Figure 3. Visual control of a robot Figure 4. A myltiple sensor system adapted from
[104]

The visual information is processed and used to position and orientate the end
effector of the manipulator from image data obtained from the working place through the
camerals [54;104,114-120]. Among the five human senses; vision, hearing and touch are
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meaningful to robots. Recently there has been increasing interest in upgrading robot
intelligence by using multiple sensors as shown in Fig.3. [104,106]. In the figure, for a
specific task, cameras provide locational information about the objects. The colour camera
helps selecting a particular object depending on the object's colour. The range finder gives
detail about the object shape and its range. Contact force sensor illustrates the forces on the
contacts and so on so worth.

There have been several applications of ANNs to non-tactile sensing. They have
mainly concerned visual sensing, although some ultrasonic sensing applications have been
reported. The following are examples found in the literature:- Integrating the visual data into
the control process without calculating an inverse kinematic of a'manipulator [54]; Using two
CMAC ANNs to learn the non-linear mapping between image data from a vision system and
control signals to change the joint angles of a robot arm, in orde~ to position and orientate the
arm's end effector [114]. Similar work has also been described by [106] who have used two
ANNs trained by the BP algorithm; Using machine vision systems for automated industrial
inspection [116,117,121], Employing a vector-quantization network trained with Widrow-
Hoff's delta rule to process visual information from two cameras thus enabling a robot to
learn the position of its end effector [118]; Using a BP-trained MLP with a vision system for
robotic (automated) inspection of wood [120] and automotive components [148]. In their
work, a MLP and K-nearest neighbour classifiers were compared [120] and the former to

"-
have a slightly better performance were found. The MLP against an LVQ network were also
evaluated and concluded in favour of the MLP [148]; Employing a supervised neural network
to process stereo images from two cameras to enable sensory-motor coordination of a robot
arm in grasping objects. The robot could adapt unforeseen shapes in the positions, shapes and
sizes of objects [122]; Using a Kohonen self-organising map, with a vision system for bin-
picking (acquiring objects from a storage bin). The system could handle noisy and distorted
images and partially occluded and overlapping objects [15]; Using a combination of an MLP
made up of three sub-networks with a vision system to recognise objects and determine their
location [123]; Using a Hopfield network [124] and MLPs [126,127] with ultrasonic sensors
to recognise objects; Learning a variety of actuators, dampers, adaptive structures, and active
materials such those equal and opposite vibration wave forms [125]; Using colour image
processing [128,133].

3. DISCUSSION AND ANALYSIS
~ As mentioned and explained in the previous sections, ANNs enable many important

ac}!l.lantagesto robotic applications. Use of ANNs in robotic applications is very fascinating
from both scientific and technological point of view. Indeed, for certain problems ANNs
might be likely to become a new technique. ANN learning algorithms in robot dynamics
modelling, robot kinematics, robot sensing, robot control and, trajectory and path planning
are some of the successful areas.

Although neural networks provide better solutions for most of the robotic problems
effectively, it is needed understanding the principle of ANNs deeply. Using more integration
of ANNs with other artificial intelligence techniques (fuzzy logic, genetic algorithms, expert
systems, tabu search), investigate new neural network structures or architectures which may
provide more precise solutions for more complex robotic problems. Some of the recent
integration have been presented by [38,80,98,115,129,130,142,143]

In spite of being successful in solving robotic problems, ANNs have some drawbacks
in the area like setting the network parameters, finding convenient structure orland learning
algorithms. The problems can be summarised as:- type of network to be used, learning



algorithms, topology, number of layers, number of nodes, type of nonlinearities (sigmoid,
sine), network parameters (seed, momentum and learning coefficients, initialisation), and the
initial values of the weights and biases.

However, in order to train the weights of ANNs, the preparation of training data set
takes an important part and the training procedure must be specified in considering the
following points:- random training is inappropriate for on-line training; training set must be
specified to give an adequate representation of the type of inputs.

The learning algorithm is an important factor for speed up the training and guarantee
convergence. As summuraised above to find an appropriate network is not easy job, but the
problems in the robotics solved by the use of ANNs guide the applicants in their research.

The following features make the ANNs more attractive for robotic applications-
Adaptability and ability to learn [26,30,32,37,39,41,42,131], fast real-time applicability
[9,41,59,132], generalisation [21,22,24], tolerance to noise in the input ipformation [67], less
priori knowledge required [26,39,40,13 I], ease of integrating with other Artificia)
Intelligence techniques such as Fuzzy logic, Expert Systems and Tabu search [70,79,80,88,
89,98,129,142,143], and using several networks [71,115,134-141].

Altough the above properties make ANNs applicable to tackle most of the robotic
problems, ANNs in robotics have also some drawbacks which may be encountered in some
applications. These are:- slow to convergence during training, need large input data set for
complex systems, lack of accuracyfor some applications, difficulty in choosing parameters
and structure for different types of ANNs.
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