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ABSTRACT:

Electro-optically induced refractive-index change in regular and reverse-poled LiTaO,
has been calculated. Specifically we determine how index change depends on electric field
magnitude and direction for y-propagating extra-ordinary modes. To accomplish this, changes
in index-ellipsoid shape and orientation are found by the use of a numerical eigenvalue
procedure to diagonalize the impermeability tensor; then the refractive index is calculated by
the use of a vector reference-frame transformation and a small perturbation approximation. A
general formula is inferred from calculations for specific field directions. Electro-optic
coellicients for reserve-poled LiTaO, are obtained by application of a tensor reference-frame
transformation to those of LiTaOj.

LINTRODUCTION

We present numerical calculations of the clectro-oplically induced change in refractive
index for y-propagating extraordinary modes in regular and reverse-poled LiTaO;. These
calculations were done in order to gain insight into the operation of an integrated photonic
electric-field sensor that has no metallic electrodes [1,2] Specifically, we sought to determine
whether the electro-optic mechanism, which produces the sensor's intended linear response to
z-polarized fields, might also produce undesired secondary responses to x- and y-polarized
fields. If large enough, such orthogonal-component responses could hamper the sensor's use
for field-direction measurement .The possibility of x- and y- responses is suggested by the
presence of electro-optic tensor elements that have magnitudes comparable to that of ry,
(responsible for the z-response). Since analytical methods for index-change calculation are
conveniently applied only to specific combinations of electric-field direction and tensor form
[ 3], we use a numerical method that works for general field direction and general electro-
optic tensors. This method is not difficult to implement and generates a complete description of
the shape and the orientation changes of the index ellipsoid, in addition, with only slight
modification, it can produce the index change for both normal modes associated with an
arbitrary propagation direction through a general biaxial medium. Since many properties of
reverse-poled LiTaO; have not yet been experimentally determined, we assume a form for its
electro-optic tensor.
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2.THEORY

The extraordinary mode of refractive index and wave-normal unit vector are labeled
n, and S, respectively.Since S points in the y-direction, the zero-field value of n, equals n,. In
the presence of an electric field, n,-n, provides the desired TM-mode index-change
approximation.

The value of n, depends on the direction of S relative to the index ellipsoid and on the
index-ellipsoid shape, which is specified by the principal refractive indices [3 ]. In general,
when an electric field is applied, the principal refractive indices change, and the index ellipsoid
changes its orientation relative to the crystal axes. Because S remains fixed,the ellipsoid
orientation change is equivalent to a change in the direction of S relative to the ellipsoid.To
determine n,, the new principal refractive indices and the new ellipsoid orientation are found,
then the direction of S relative to the modified ellipsoid is determined, and finally,the
newprincipal refractive indices and the new relative S direction are used to calculate n,.

The primary axes of the index ellipsoid are always parallel to the axes of the principal
dielectric frame, so finding the orientation of this frame relative to the crystal frame provides a
method of determining the ellipsoid orientation. The principal dielectric frame is defined to be
the reference frame in which the permittivity tensor ¢ is a diagonal matrix [3]. Since the
impermeability tensor n equals ¢, €', and since the inverse of a diagonal matrix is also diagonal
the principal dielectric frame is also the reference frame in which 1 is diagonal. When an
electric field is applied to a uniaxial material characterized by n, and n, the impermeability
tensor is given by [3]
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In eq. (2) ra represents an element of the 6x3 contracted form of the linear electrooptic
tensor, and E;, E, and E; are the x, y and z component of E, respectively. For convenience, the
field vector will be specified as

) E =EUg 3)
where E is the field strength and Ug is a unit vector that specifies direction.

Eq. ( 1) indicates that when an electric field is applied, the crystal-frame
expression of n can become nondiagonal; in such a case, the crystal frame is no longer the
principal dielectric frame. As shown below, since 1 is always real and symmetric, there must
exist an orthogonal reference frame with the property that the expression of n in that frame is
diagonal. This frame is called the new principal dielectric frame, and its axes are labeled x ', y '
and z ' to distinguish them from the crystal-frame axes x, y and z.

When expressed in the new principal dielectric frame, the impermeability
tensor has the form
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where n', , n, and 1, are the new principal refractive indices. Note that m’ is used to
distinguish the X' y Z - frame expression in eq. ( 4 ) from the xyz-frame expression in eq. (1).
The new principal refractive indices completely specify the index ellipsoid's modified shape.

The positive directions of the x, y and Z axes are specified by three mutually
orthogonal unit basis vectors labeled U,, U, and Uj, respectively. These vectors completely
describe the index ellipsoid's shifted orientation . To help visualize this orientation, the
components of U,, U, and U, , which are expressed relative to the crystal frame, can be used
to calculate three angles, 0, ¢ and ¢ ; the first two specify the + z' - axis direction and the
third indicates the + x-axis direction within the plane perpendicular to the Z - axis.

To calculate ellipsoid shape and orientation, we make use of the fact that U,, U, and U,
are eigenvectors of i and the fact that n' n/y and 1/, equal the square roots of the reciprocals
of the corresponding eigenvalues. These facts result from application of linear algebra theory
[4]. The eigenvalue equation for n is

ek (5)
where y represents an eigenvalue and P represents the corresponding unit magnitude
eigenvector. Assuming that P is a unit vector is valid because any scalar multiple of an
eigenvector is also an eigenvector. Since 1 is a 3x3 real symmetric matrix, it has three real
eigenvalues y,, v, and vy; and the corresponding unit eigenvectors P, P, and P, are mutually
orthogonal. In addition, the Shur decomposition of | can be written as

n=PD P 6)
where the 3x3 marrices, D, P and its transpose, P" are defined as
v 0 0 P, |
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The diagonal element of D are the eigenvalues of m, and the column vectors of P ( row
vectors of P") are the corresponding unit eigenvectors. A square matris whose column (or
row) vectors form a set of mutually orthogonal unit vectors is always an orthogonal matris,
Since P is such a matris, premultiplying eq.( 6 ) by P' and then postmultiplying by P yields.

P'n.P=D (8)
The impermeability tensor is second rank , and m and v/ are its expressions in different
reference frames. Therefore , according to the secont-rank reference-frame transformation rule
[5,6], the xyz expression is transformed into the x'y' Z expression by using

3. 3
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where 1 is the appropriate 3x3 basis transformation matrix.In matrix notation this is written as

n=1tnt (10)
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By definition, the row vectors of T are the original frame expression of the transtorined {rame
unit basis vectors In eqs. (9) and (10), the original frame is xyz and the transformed frame is X’
y Z, so tis given by

(v, IVU U, U,|
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Assuming that the unit eigenvectors of 1 are in fact the new principal dielectric frame basis
vectors yields

U=P, U,=P, Us=P; (12)
These assumptions together with eq. (11) and the P" expression from eq. (7) imply that t
equals P', so replacing T in eq. (10) with P and then making use of eq. (8) leads to

n=mt' =PmP=D (13)
This implies that 17, like D, is diagonal, so the assumptions in eq. (12) are correct. Equating the
n and D expression from eqs.(4) and (7), respectively, and solving for n', , ', and ', reveals
that they equal the square roots of the reciprocals of v,, v, and y, respectively.

Theory and methods for finding matrix cigenvalues and eigenvectors are detailed in the
reference [4] and suitable software packages are readily available [7]. 1t has been calculated
eigenvalues by the use of the general cubic cquation procedure [8! to solve for the
characteristic polynominal roots; eigenvectors were then found by the use of Gauss climination
with complete pivoting and appropriate choice of arbitrary coustants  duii
substitation. Whatever method 15 used, the present application requires somo
considerations:
1.The eigenvalues must be determined to a hig
This is necessary because realistically sized clec
small compared with the index values themselves.
2.The eigenvectors must be normalized to unit i
veclors.
3.0f two eigenvalues are equal or thielr separation becomes comparable to the numerical
accuracy, then the cigenvector method must ensure that the corresponding eigenvectors remain
distinct and orthogonal (because n is real symmetric).

The order in which the eigenvalue -cigenvector pairs are calculated depends on the
particular method used and is not nccessarily the desired X, y, z' sequence. Therefore the
correspondence between the cigenvectors and the x'y'z-frame axes must be established. This
can be done by assigning the labels U, U, and U; to the eigenvectors that are most closely
parallel to the crystal-frame x, y and z axes, respectively. In addition, after labeling if the i"
component of U; is negative, U; is mulliplited by —1; this garantees that the xy'zZ frame is
right handed.

To find the direction of S relative to the modified index ellipsoid, the new principal
dielectric frame components of S are calculated To distinguish these components trom the
crystal-frame components, the notation S’ is used. In the current problem, the extraordinary
mode propagates in the +y direction, so the xyz components are

S=(5Sy1, Sz, S3)=(0,1,0) {14)
The reference-frame transformation rule for vectors [4] yields the corresponding xvz
components as
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wheie 7 is the xyz — x'y’z’ transformation matrix defined in eq. (11). From hereon, the prime

notation for S is only used when it is necessary to distinguish between the two sets of
compaonents.

The direction of S relative to the x'y' Z frame is specified by two angles, & and ¢..
Their deiinitions are shown in figure 1. The value of £ specifies the angle from the X'y’ plane
to S; this ange ranges from —90° to + 90°. The value of ¢, specifies the angle from the X' axis
Xy plane projection of S; this angle ranges from —180 ° to 180 °.

Numerical values for & and ¢, are calculated with the S’ components from eq. (15).
Since S is always a unit vector, the formula for & is

£ = arcSin(S)s (16)
The value of ¢, is calculated as follows; if S| and S/, are both zero, then ¢ is set equal to
zero; otherwise, the cosine and the sine of ¢ are calculated from

1
('os¢~9(1/2+5;2)2 17
| , (17)
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and then ¢, is found with

arceSinSing,, Cosg
arcCosCose._, |Cosg, | \ } St =0
¢, =) —arcCosCosp,_ . I( mp : Sinp <0 (18)
180 —arcSinSing ,  Cosp = Sitrgg >0

—180—wreSinSing ., Cosp, <

The index ellipsoid can be used to lind both the extraordinary-mode index n; and the
ordinary-mode index n;. The intersection of the index ellipsoid with the plane perpendicular to
S and passing through the origin forims and ¢llipse, which is called the index ellipse. The length
of the index-cllipse axes equal 2n,, and 2n, To find the lengths, we approximate the
orientation of the index ellipse by making use of the fact that S is in the xy-plane and the fact
that the diclectric perturbation is small.

For regular and reverse-poled LiTaQ; both ny and n. equal~2, and the largest electro-
optic-coeflicient magnitudes are approximately 5x10™ m/V. The small size of the dielectric
perturbation has two implications:

1. The angle O between the z and z'- axes is small. Since 0 is also the angle between
the xy and the x'y’ planes and because S is in the xy plane, the angle & from the x'y’ plane to
S is also small.
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2. The quantity |nj-n,| is much smaller than [nj-n,|, so the crystal remains almost
uniaxial. This holds true for E up to approximately 4x10° V/m; at this field strength, the largest

1

1
Al is still 100 times smaller than | — |-| —-

n, ",

To find approximate formulas for n; and n, we assume that, for small &, the orientation
of the almost-uniaxial index ellipse is approximately the same as that of the uniaxial index
eilipse. Let the intersection of the x'y’ plane with the index ellipsoid be called the equatorial
ellipse. Let the plane formed by S and the z'- axis be referred to as the longitudinal plane and
fet the intersection of this plane with the index ellipsoid be called the longitudinal ellipse. For
uniaxial crystals the 2n; and the 2n, axes of the index ellipse are always in the equatorial and
the longitudinal planes, respectively. Typically, when an electric field is applied n/ does not
equal n'y so the crystal becomes biaxial. The index ellipsoid has always mirror symmetry about
the x'y’ plane, so if S is in that plane, the index-ellipse axes must be parallel to the equatorial
and the longitudinal planes. Therefore if s is close to the x'y’ plane (€ small), we assume that
the index-ellipse axes are almost parallel to the equatorial and the longitudinal planes.

This implies that the index-ellipse vertices are approximately located on the equatorial

and the longitudinal ellipses. Therefore approximate index values are given by
i

n ~n'n, (n;zSin2 ¢, +n’Cos’p,) * (19)
1

n, ~ nxynz’(nzleinzé +nl Cos’¢) (20)
where ny, is the distance from the origin to the points of intersection between the longitudinal
and the equatorial ellipses; ny is given by

i

ny, =n.n, (n;lSin"' P, +n>‘v, "Cos’p ) > (21)

These equations are all polar-coordinate equations for ellipses in each case, the variable
on the left is the distance from the origin and the trigonometric function argument is the polar
angle within the plane that contains the ellipse.

Expression (19) traces out the equatorial ellipse starting from its +y’ -axis intercept at
$=0. Expression (20) traces out the longitudinal cllipse starting from its +z-axis intercept at
£=0. Equation (21) traces out the equatorial ¢liipse starting from its —x’-axis intercept at ¢=0.

As n. approches n,, the formulas above become more accurate. Because of the index
ellipsoid’s mirror symmetry about the x 'y’ plane the formulas are exact whenever & equals
zero. The index ellipsoid has also mirror symmieiry about the x’'z’ and y'z’ planes so the
formulas are also exact when ¢. equals either 0°, 180°, or £90". For a given nonzero &, the
worst-case errors oceur when ¢ is in the vicinity of either +45° or £135°. As E goes to zero,
n_ approaches n;_ and & goes to zero, so the approximation errors decrease rapidly. Exact n,
and n, values can be obtained by solution of the Fresnel equation, which is a quadratic in n’
with coeflicients that are functions of nl, n,, n, and the components of S’ [3]. The
approximate ny and n, values have been compared with the Fresnel equation roots. Even for
field strengths as large as 4x10° V/m the worst-case ny and n, error magnitudes are much
smaller than {n;-no} and |n,-ne|, respectively. In addition, as E is described, the errors go to zero
faster than the index changes do.

Since & is small and | n{-n/ | remains much smaller than | n)-n/, |, the variation of n,

with ¢, has little effect on the value of n, . As a result, (n-n.) depends primarily on & and



28

(n’-n.) and has only a weak dependence on ¢s, (n,-ng) and (n)-ny). These last three quantitics
strongly influence the ordinary-mode index change (nj-ng) but, since the proton-exchange
waveguides do not support TE modes, the ordinary-mode change does not affect the guided-
mode index. For regular LiTaO; the contracted form of the crystal frame (xyz) expression of
the electro-opiic tensor is

O T
0 T i

W @)
k. 0 I 0
i 0 0
~7 0 0

where the four independent elements have numerical values of
ra=9x102 m/V | 1y, = 7.5x102m/V | 133 = 32x10 m/V | 15, = 37.2x10°m/V, [3]  (23)

These are the constant stress (T) values. For reverse-poled LiTaOs, we assume that
the contracted form of the xyz expression of the electro-optic tensor is

0 553 BT
0 -r -1,
0 0N
= 24
=i 0
5y 0 0

where 13, ryp, 133 and rs; are the same as in eq. (23). The reasoning that leads to this
assumption can be explained as follows.

Etching experiments [ 9,10 ] reveal that the y and the z-axes in reverse-poled LiTaO;
point opposite to their corresponding axes in regular LiTaO3;. Whether the reverse-poled x-axis
also points opposite its regular counterpart is irrelevant. This is because reverse-poled LiTaOs
has a mirror- symmetric plane perpendicular to its x-axis. This mirror plane requires that the
electro-optic tensor remain invariant when the direction of the x-axis is reversed. Having the
regular and the reverse-poled x-axis point in opposite directions is the mathematically simpler
alternative, so we assume that all three reverse-poled axis point opposite to their regular
counterparts. Here the reverse-poled axis are labeled X, y, Z, and the x'y'Z frame is called the
reverse-poled crystal-frame expression of the reverse-poled tensor be designated as ry.,. We
assume that ', is identical to the ' defined by eqs. (22) and (23).

The electro-optic tensor is third rank so according to the third rank transformation rule
[ 5,61, r/, is transformed into r,, by using

3.3 3
(o} = 22200013 e Y (25)

m=1 n=1 p=
where 7 is the 3x3 basis transformation matrix. The row vectors of t are the original frame
expressions of the transformed frame basis vectors. In eq. (25) the original frame is x’y’z’ and

the transformed frame is xyz. Since corresponding axes of these frames point in opposite
directions, T is given by
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r=|0 =1 © (20)
0 0 -1
because the off-diagonal elements of t equal zero, the only nonzero term on the right-hand
side of eq. (25) is the one for whichm =i, n=jand p =k, so
(rrev ) ik - Tii Tj/ Tkk (rr/ev ) ijk (27)

Since all the diagonal elements of t equal —1, the 7,7,

corresponding expanded-form elements of r.,and r_, are negatives of each other. This same
relationship applies to the contracted-form elements, so assuming that r’ has the value
specified by eqs. (22) and (23) implies that r., takes the value given by eqs. (23) and (24).

7, term always equals —1. As a result

3. NUMERICAL RESULTS

For various electric-field directions in regular and reverse-poled LiTaOs it has been
calculated the y-propagating extraordinary-mode index change (n;-n.) as a function of field
strength (E). Here we present results obtained for fields applied along the +x, +y, and +z
directions and along the 45" directions of the xy, xz and yz planes. From these results, we infer
a general second-order relationship between (np-n.) and the field vector E. The six field
directions listed above are chosen because they maximize, respectively, the magnitudes of
terms involving Exor EZ, Ey or E | E, or E; and E:E,, EE, and E,E,. For all calculations, n
and n. are 2.3 and 2.2, respectively, and the independent electro-optic coefficient magnitudes
are those given in eq. (23).

Numerical calculations were made with floating point arithmetic with 15 decimal digits
uf precision. For a field of 4x10° V/m in the +z direction (Table 1) the regular and the reverse-
poled n, —n_ values are equal in magnitude and opposite in sign. In both cases & equals zero,
s0 (np-n¢) = (n}, —n,). For both materials as E is decreased, the magnitude of (n,-n.) decreases

in proportion to E and agrees with the —(—Z-anrHEZ formula to at least 3 significant digits

over the entire range of fie strengths. For the same field in the —x-direction (Table 1) the
regular and the reverse-poled n, —n_ values are equal. In both cases, & is so small that (n,-n)
decreases in proportion to E*. This holds to more than 3 significant digits over the entire field-
strength range, so an E’ term exists, but no significant E, term is apperent.

Table 1. For 4x10° V/m Fields directed along the crystal frame axes in regular and reverse-
Poled LiTaOs, the y-propagating.

Field direction Type n’ —n, £ (deg) Ny-Ne

+z — axis Regular -6.6x 10 0 -6.6x 10™
Reverse 6.6x10™ 0 6.6x 10™

+x — axis Regular -59x10° -8.7x10* -5.9x10°
Reverse -5.9x 10° -8.7x 10" -5.9x 10°

+y — axis Regular -59x10° 0.49 -4x10™
Reverse -59x10° -0.49 28x10™"
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For the field of 4x10° V/m in the +y direction (Table 1) the regular and the reverse-
poled (n), —n,) values are negative and essentially equal each other. The +y direction & values
have opposite signs and nearly equal magnitudes, which are much larger than the
corresponding +x direction magnitudes. Since n, is greater than n. and since both materials
remain almost uniaxial, the nonzero & causes n, to be greater than n). This n, increase cancels
the n, decrease produced by the negative (n, —n_) values. As a result, to the limit of numerical
accuracy, both (ny-n.) values equal zero. As E is decreased, the index changes, if any, remain
smaller than the numerical resolution, so no significant E, or E; terms are present.

4.CONCLUSION

The specific field-direction results presented above suggest, that, in general, the index
change for an extraordinary mode propagating along the y-axis is given by

n, —n,~+AE, —BE’ (28)
where E, and E; are the z and x components of E. In the first term, the minus sign is used for
regular LiTaOs and the plus sign is used for reverse-poled LiTaOs;. The values of A and B are
1,7x10™" m/V and 3.7x10™"° m/V? respectively.

The agreement between expression (28) and the numerical procedure has been verified
by comparing their results for additional field directions. Expression (28) indicates that, as far
as the fundamental electro-optic mechanism is concerned, the E,* term is the only potential
source of sensor response to non-E, field components. The E,” term produces index changes
that are smaller than those produced by the E, term.

The numerical procedure used to calculate index change is very general. Both the
electric-field vector and the electro-optic tensor can be chosen arbitrarily. Replacing ny and n.
in eq. (1) with ng, ny and n, and using the quadratic form of the Fresnel equation instead of eqs.
(19)-(21) would allow n; and n, to be calculated for an arbitrary S direction in a biaxial
material. The behaviour of the principal index changes and the ellipsoid-orientation angles can
be easily investigated.

z S y projection of S
E

=

-

ﬁ G

x'y’ plane z X

(a) (b)

Figure 1. Direction of wave-normal vector S relative to the new principal dielectric frame:

(a) definition of &, (b) definition of ¢s
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