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Electro-optically induced refractive-index change in regular and reverse-poled LiTaO]
has been calculated. Specifically we determine how index change depends on electric field
magnitude and direction for y-propagating extra-ordinary modes. To accomplish this, changes
in index-ellipsoid shape and orientation are found by the use of a numerical eigenvalue
procedure to diagonalize the impermeability tensor; then the refractive index is calculated by
the use of a vector reference-frame transformation and a small perturbation approximation. A
general formula is inferred from calculations for specific field directions. Electro-optic
coel1icienls for reserve-poled LiTaO] are obtained by application of a tensor reference-frame
transloilnation to those of LiTaO]

We present numerical calculations of tlie electro-optically induced change in retiactive
index for y-propagating extraordinary modes in regular and reverse-poled LiTaO] These
calculations were done in order to gain insight into the operation of an integrated photonic
electric-field sensor that has no metallic electrodes [1,2] Specifically, we sought to determine
whether the electro-optic mechanism, which produces the sensor's intended linear response to
z-polarized fields, might also produce undesired secondary responses to x- and y-polarized
fields. If large enough, such orthogonal-component responses could hamper the sensor's use
for field-direction measurement .The possibility of x- and y- responses is suggested by the
presence of electro-optic tensor elements that have magnitudes comparable to that of r33

(responsible for the z-response). Since analytical methods for index-change calculation are
conveniently applied only to specific combinations of electric-field direction and tensor form
[ 3 ] , we use a numerical method that works for general field direction and general electro-

optic tensors. This method is not difficult to implement and generates a complete description of
the shape and the orientation changes of the index ellipsoid, in addition, with only slight
modification, it can produce the index change for both normal modes associated with an
arbitrary propagation direction through a general biaxial medium Since many properties of
reverse-poled LiTaO] have not yet been experimentally determined, we assume a form for its
electro-optic tensor.



The extraordinary mode of refractive index and wave-normal unit vector are labeled
n2 and S, respectively. Since S points in the y-direction, the zero-field value of n2 equals ne In
the presence of an electric field, n2-ne provides the desired TM-mode index-change
approximation,

The value of n2 depends on the direction of S relative to the index ellipsoid and on the
index-ellipsoid shape, which is specified by the principal refractive indices [3] [n general,
when an electric field is applied, the principal refractive indices change, and the index ellipsoid
changes its orientation relative to the crystal axes. Because S remains fixed, the ellipsoid
orientation change is equivalent to a change in the direction of S relative to the ellipsoid.To
determine n2, the new principal refractive indices and the new ellipsoid orientation are found;
then the direction of S relative to the modified ellipsoid is determined, and finally,the
newprincipal refractive indices and the new relative S direction are used to calculate n2.

The primary axes of the index ellipsoid are always parallel to the axes of the principal
dielectric frame, so finding the orientation of this frame relative to the crystal frame provides a
method of determining the ellipsoid orientation. The principal dielectric frame is defined to be
the reference frame in which the permittivity tensor S is a diagonal matrix [3] Since the
impermeability tensor 1'] equals coS'I. and since the inverse ofa diagonal matrix is also diagonal
the principal dielectric frame is also thc reference frame in which 1'] is diagonal Whcn all

electric field is applied to a uilia:,iai matcrial characterized by nu and ne, thc impermeability
tcnsor is given by [3]
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In eq. (2) ruk represents an element of the 6x3 contracted form of the linear electrooptic
tensor, and E1, E2 and E3 are the x, y and z component of E, respectively. For convenience, the
field vector will be specified as

E = EVE (3)
where E is the field strength and DE is a unit vector that specifies direction

Eq. ( 1 ) indicates that when an electnc field is applied, the crystal-frame
expression of 1'] can become nondiagonal; in such a case, the crystal frame is no longer the
principal dielectric frame. As shown below, since 1'] is always real and symmetric, there must
exist an orthogonal reference frame with the property that the expression of 11 in that frame is
diagonal. This frame is called the new principal dielectric frame, and its axes are labeled x " y I

and z I to distinguish them from the crystal-frame axes x, y and z.
When expressed in the new principal dielectric frame, the impermeability

tensor has the form
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where < ' n'y and n'z are the new principal refractive indices. Note that 1"]' is used to
distinguish the x' y z' - frame expression in eq ( 4 ) from the xyz-frame expression in eq. (1).
The new principal refractive indices completely specifY the index ellipsoid's modified shape.

The positive directions of the x', y and z' axes are specified by three mutually
orthogonal unit basis vectors labeled V I' V2 and U), respectively. These vectors completely
describe the index ellipsoid's shifted orientation To help visualize this orientation, the
components of VI' V2 and V) , which are expressed relative to the crystal frame, can be used
to calculate three angles, e, q,' and q>; the first two specifY the + z' - axis direction and the
third indicates the + x'-axis direction within the plane perpendicular to the z' - axis

To calculate ellipsoid shape and orientation, we make use of the fact that V I' U2 and U)
are eigenvectors of 1"] and the fact that nix' n'yand nl

z equal the square roots of the reciprocals
of the corresponding eigenvalues. These facts result from application of linear algebra theory
[4]. The eigenvalue equation for 1"] is

1"]P=yP (5)
where y represents an eigenvalue and P represents the corresponding unit magnitude
eigenvector. Assuming that P is a unit vector is valid because any scalar multiple or an
eigenvector is also an eigenvector Since 11 is a 3x3 real symmetric matrix, it has three real
eigenvalues YI' Y2 and y) and the corresponding unit eigenvectors PI' 1'2 and PJ are mutually
orthogonal. In addition, the Shur decomposition of 1"] can be written as

1"] = I' D pi
where the 3x3 marrices, D, I' and its transpose, pT are defined as

rl 0 0 iPIl
D= ~ r~:3 P=[~ P2 1'3], pT=l::J

The diagonal element of D are the eigenvalues of 1"], and the column vectors of P ( row
vectors of p1

) are the corresponding unit eigenvectors. A square matris whose column (or
row) vectors form a set of mutually orthogonal unit vectors is always an orthogonal matris,
Since P is such a matris, premultiplying eq.( 6 ) by pT and then postmultiplying by P yields.

pT1].P=D (8)
The impermeability tensor is second rank , and 1"] and 1"]' are its expressions in different
reference frames. Therefore , according to the secont-rank reference-frame transformation rule
[5,6], the xyz expression is transformed into the x' y' Zl expression by using
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By definition, the row vectors of 1: are the original frame expression of the tran:;!<JriliCd frame
unit basis vectors In eqs. (9) and (10), the original frame is xyz and the transformed [j-"Ine is /
y Z!, so 1: is given by

Assuming that the unit eigenvectors of T] are in fact the new principal dielectric frame basis
vectors yields

U1=Pl U2=P2. U3=P3 (12)
These assumptions together with eq. (11) and the pT expression from eq. (7) imply that T

equals pT, so replacing 1: in eq (10) with I)T and then making use of eq. (8) leads to

T]I =TT]TT= pTT]p = D (13)
This implies that T]/, like D, is diagonal, so the assumptions in eq. (12) are correct. Equating the
T]I and D expression from eqs.( 4) and (7), respectively, and solving for nix' n/

v and n/
z reveals

that they equal the square roots of the reciproc,,!s 01"/1' Y2 and Y3 respectivcl)l.
Theory and methods for finding matrix eigellv~liues and cigenvectors C1i·edctaikd in the

reference [4J and suitable softwale packages are readily available [7J It has beel! calculated
eigenvalues by the use of the genera! cubic equatioi' procedure lSJ to solve for the
characteristic polynominal rools; eigell\·cClors \",ere then {Olilld by the use of Gauss di1l1inali(ll1
with complete pivoting and appropriate choice of arbitrary coustanls uUI-;ng ba':k
substitation.Whatever method is u:;ed. the present application reql,ires SOl'lC sp:xial
considerations:
[The eigcnvalues must be determined to a hig:l dCi!;ce or nUlOlericili accuracy (c.g. i <I digits).
This is necessary because realistically ~.ilCd electric rieids produce index changes thal arc very
small compared with the index values themselves
2.The eigenvectors must be normalized to un:t iE:Ignitude, so that they can be used as basis
veclors.
3.1 f tw·o eigenvalues arc equal llr 1 ~Icir :;cparalion becomes comparable to the numerical
accuracy, then the eigenvl:etor mell".,Jd /jIUS!E':Jsure that the corresponding eigenvectors remain
distinct and 011hogonal (because 11 is real syillmetric).

The order in which the ei!5envaiuc -cigenvector pairs are calculated depends on the
particular method uscd and is nol I1c.;es~;arily the desired Xl, /, Zl sequence. Therefore the
correspondellce between the eigc1\vectors and the //i-frame axes must be established. This
can be done by assigning Ihe labels 1I1, lJ 2 and U3 to the eigenvectors that are most closely
parallel to the crystal-Crame x, y and z axes, respectively. In addition, after labeling if the ith

cOinponenl of lJ; is negative, lJ; is Inultipliled by -1; this garantees that the //z! frame is
right handed.

To find the direction oC S rclative to the modified index ellipsoid, the new principal
dielectric frame components of S arc calculated. To distinguish these components from thc
crystal-fi-ame components, the notation Sl is used. In the current problem, the cxtraordinary
mode propagates in the +y direction, so the xyz components are

S = ( SI, S2, S3) = (0, 1,0) (] 4)
The reference-frame transformation rule for vectors [4J yields the corresponding x y z
components as
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whel c "\ is the xyz -) x I yl Zl transformation matrix defined in eq. (11). From hereon, the prime
notalil1:! li)r S is only used when it is necessary to distinguish between the two sets of

The direction of S relative to the XlI Zl frame is specified by two angles, 1; and 4>5'
Their deiinitions are shown in figure I. The value of 1; specifies the angle from the XlI plane
to S; this ange ranges from -900 to + 900 The value of 4>, specifies the angle from the Xl axis
xiI plane projection of S; this angle ranges from -180 0 to 180 0

Numerical values for ~ and 4>. are calculated with the SI components from eq. (15).
Since S is always a unit vector, the formula for 1; is

~= arcSin(S)', (16)
The value of 4>. is calculated as follows; if S; and S~ are both zero, then 4>8 is set equal to
zero; otherwise, the cosine and the sine of 4>5 are calculated from
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TI~e-index ellipsoid can be used to Lind both the extraordinary-mode index n2 and the
ordinary-mode index 11, The inters\,,(';ion of the' ;ndex ellipsoid with the plane perpendicular to
S and passing through the origin forms and ellipse, which is called the index ellipse. The length
of the index-ellipse axes equal 2111, and 2nl To tind the lengths, we approximate the
orientation of the index ellipse by making use of the fact that S is in the xy-plane and the fact
that the dielectric perturbation is smail.

For regular and reverse-pokd LiTaO} both no and l1e equal-2, and the largest electro-
optic-cocDicient magnitudes are ilpproximatcly 5)(10.11 ruN. The small size of the dielectric
perturbation has two implications:

I. The angle 0 between Ihe z and Z/ .. axes is small. Since e is also the angle between
the xy and the x' y I planes and because S is in the xy plane, the angle 1; from the Xl y' plane to
S is also small.



:2 Tile quantity In> n ~I is much smaller than In ~- n ~I, so the crystal remains almost

uni:.\xi,;L This holds true for E up to approximately 4xl06 Vim; at this field strength, the largest

ii\ q,,1 is still 100 times smaller than l(~)-(~~.
/I. flo ~

To find approximate formulas for nl and 112we assume that, for small 1;, the orientation
of the almost-uniaxial index ellipse is approximately the same as that of the uniaxial index
eilipse Let the intersection of the Xlyl plane with the index ellipsoid be called the equatorial
t:llipsc Let the plane formed by S and the Z' - axis be referred to as the longitudinal plane and
let the intersection of this plane with the index ellipsoid be called the longitudinal ellipse. For
uniaxial crystals the 2nl and the 2n2 axes of the index ellipse are always in the equatorial and
the longitudinal planes, respectively Typically, when an electric field is applied n ~ does not
equal n~ so the crystal becomes biaxiaL The index ellipsoid has always mirror symmetry about

the x'y' plane, so ifS is in that plane, the index-ellipse axes must be parallel to the equatorial
and the longitudinal planes. Therefore if s is close to the x' y' plane (I; small), we assume that
the index-ellipse axes are almost parallel to the cquatorial and the longitudinal planes.

This implies that the index-ellipse vCl,tices are approximately located on the equatorial
and the longitudinal ellipses Therefore approxilllate index values are given by

1
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\.vlIcre n.X) is the distance from the origin to i:l~points of intersection between the longitudinal
and the equatorial ellipses; n,) is giVE'n by
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These equations are all polar-coordiuate equations for ellipses in each case, the variable
on the left is the distance from the origin and t:'c trigonometric function argument is the polar
angle within the plane that contains the ellipse

Expression (19) traces out the equatorial ellipse starting from its +yl -axis intercept at
4>,=0. Expression (20) traces out the kmgiludilial ellipse starting from its +z'-axis intercept at
(;=O Equation (21) traces out the equatol iai ellipse starting from its -x' -axis intercept at 4>,=0

As n~ approehes n~, the forlllulas abO\e become more accurate. Because of the index

ellipsoid's mirror symmetry about the x y p!aj]c the formulas are exact whenever I; equals
zero. The index ellipsoid hilS also clirror S) 111l1iClryabout the Xlz' and yl z' planes so the
furmulas are also exact when tP, equals eithcr 0°, 180°, or ±90o For a given nonzero 1;, the
W0rst-case errors occur when (\),is in thc vicinity of either ±4S(l or ±13So As E goes to zero,
n, approaches n; and ~ goes to zero, so the approximation errors decrease rapidly. Exact nl

and n2 valu(~s can be obtained by solution of the Fresnel equation, which is a quadratic in n2

wit h cocllicicnts that are functions of n ~, n;, n ~ and the components of Sf [3]. The

<Ipproxirnate nl and n2 values have been compared with the Fresnel equation roots. Even for
field strengths as large as 4x I06 Vim the worst-case nl and n2 error magnitudes are much
smaller than [nl-nlll and In2-nel, respectively. In addition, as E is described, the errors go to zero
faster than the index changes do.

Since {; is small and I n~-n~ I remains much smaller than I n>n~ I, the variation ofn"

with <j!, has little effect on the value of n2 ' As a result, (n2-nc) depends primarily on ~ alld



(n~-l1c)and has only a weak dependencc on $" «-nu) and (n>no). These last three quanlities
strong!)' inlluence the ordinary-mode index change (nl-no) but, since the proton-exchange
waveguides do nol support TE modcs, the ordinary-mode change does not affect the guidcd-
l!lode i:Idex. For regular LiTaO,; the contracted form of the crystal frame (xyz) expression of
the eicctro-opiic tensor is

I 0
I 0
I 0

1',.,,, =1 0

-I'll

where the four independent elements have numerical values of

These are the constant stress (T) values. For reverse-poled LiTa03, we
the contracted form of the xyz expression of the electro-optic tensor is

o
o -1'22 -1'13

o
1'rev= 0

where rl3, r22, r33 and r51 are the same as in eq. (23). The reasoning that leads to this
assumption can be explained as follows.

Etching experiments [9,10] reveal that the y and the z-axes in reverse-poled LiTa03
point opposite to their corresponding axes in regular LiTa03. Whether the reverse-poled x-axis
also points opposite its regular counterpart is irrelevant. This is because reverse-poled LiTa03
has a mirror- symmetric plane perpendicular to its x-axis. This mirror plane requires that the
electro-optic tensor remain invariant when the direction of the x-axis is reversed. Having the
regular and the reverse-poled x-axis point in opposite directions is the mathematically simpler
alternative, so we assume that all three reverse-paled axis point opposite to their regular
counterparts. Here the reverse-poled axis are labeled Xl, y', Z/, and the x'y'z' frame is called the
reverse-poled crystal-frame expression of the reverse-poled tensor be designated as (rev. We
assume that (revis identical to the (rejdefined by eqs. (22) and (23).

The electro-optic tensor is third rank so according to the third rank transformation rule
[ 5,6 ], r:evis transformed into rr",'by using

3 3 3

(1',ev)ijk = LLL'im'Jn'kP(";",,)mnp (25)
m=l n=1 p=l

where 1: is the 3x3 basis transformation matrix. The row vectors of 1: are the original frame
expressions of the transformed frame basis vectors. In eq. (25) the original frame is xl

/ Zl and
the transformed frame is xyz. Since corresponding axes of these frames point in opposite
directions, 1: is given by
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T= 0 -I 0 (26)

0 0 -I

because the off-diagonal elements of 1: equal zero, the only nonzero term on the right-hand
side of eq. (2S) is the one for which m = i , n = j and p = k, so

(rrev)"k = Ti;TlITkk(r'~')Uk (27)

Since all the diagonal elements of 1: equal -I, the Tij T 1; T kk term always equals - 1. As a result

corresponding expanded-form elements of rrevand r:ev are negatives of each other. This same
relationship applies to the contracted-form elements, so assuming that r:ev has the value
specified by eqs (22) and (23) implies that rrevtakes the value given by eqs. (23) and (24)

For various electric-field directions in regular and reverse-poled LiTa03 it has been
calculated the y-propagating extraordinary-mode index change (n2-ne) as a function of field
strength (E). Here we present results obtained for fields applied along the +x, +y, and +z
directions and along the 4So directions of the xy, xz and yz planes. From these results, we infer
<t general second-order relationship between (nrne) and the field vector E. The six field
directions listed above are chosen because they maximize, respectively, the magnitudes of
terms involving Ex or E~, Ey or E~ , Ez or E~ and ExEy, ExEz and EyEz. For all calculations, no

<lnd ne are 2.3 and 22, respectively, and the independent electro-optic coefficient magnitudes
arc those given in eq. (23)

Numerical calculations were made with floating point arithmetic with IS decimal digits
of precision. For a field of 4x I06 Vim in the +z direction (Table I) the regular and the reverse-
poled < - ne values are equal in magnitude and opposite in sign. In both cases ~ equals zero,
so (nrn.) = (n~ - n.). For both materials as E is decreased, the magnitude of (n2-ne) decreases

in proportion to E and agrees with the {~)n~r33Ez formula to at least 3 significant digits

over the entire range of fie strengths. For the same field in the -x-direction Crable J) the
regular and the reverse-poled n~ - ne values are equaL In both cases, ~ is so small that (n2-ne)
decreases in proportion to E2 This holds to more than 3 significant digits over the entire field-
strength range, so an E~ term exists, but no significant Ex term is apperent

Table 1. For 4x106 Vim Fields directed along the crystal frame axes in regular and reverse-
Poled LiTa03, the y-propagating.

Field direction Type I ~ (deg) nrnenz-ne

+z - axis Regular -6.6 x 10-4 0 -6.6 X 10-4

Reverse 6.6 x 10-4 0 6.6 X 10-4

+x - axis Regular -S9x 10-6 -8.7 x 10-4 -S.9 X 10-6
Reverse -S.9 x 10-6 -8.7 x 10-4 -S.9 X 10-6

+y - axis Regular -S.9 x 10-(, OA9 -4 x 10-14

Reverse -59 x 10-6 -OA9 -2.8 x 10-14



For the field of 4x 106 Vim in the +y direction (Table I) the regular and the reverse-
poled (n~ - ne) values are negative and essentially equal each other. The +y direction ~ values
have opposite signs and nearly equal magnitudes, which are much larger than the
corresponding +x direction magnitudes Since no is greater than ne and since both materials
remain almost uniaxial, the nonzero ~ causes n2 to be greater than n~. This n2 increase cancels
the n2 decrease produced by the negative (n~ - ne) values. As a result, to the limit of numerical
accuracy, both (n2-ne) values equal zero. As E is decreased, the index changes, if any, remain
smaller than the numerical resolution, so no significant Ey or E~ terms are present.

The specific field-direction results presented above suggest, that, in general, the index
change for an extraordinary mode propagating along the y-axis is given by

n2-ne",,±AE,-BE~ (28)
where Ez and Ex are the z and x components of E. In the first term, the minus sign is used for
regular LiTa03 and the plus sign is used for reverse-poled LiTa03. The values of A and Bare
l,7xIO·1O mlV and 3.7xlO-19 mlV2, respectively.

The agreement between expression (28) and the numerical procedure has been verified
by comparing their results for additional field directions Expression (28) indicates that, as far
as the fundamental electro-optic mechanism is concerned, the E/ term is the only potential
source of sensor response to non-Ez field components. The E/ term produces index changes
that are smaller than those produced by the Ez term.

The numerical procedure used to calculate index change is very general Both the
electric-field vector and the electro-optic tensor can be chosen arbitrarily. Replacing no and ne
in eq. (1) with nx, ny and nz and using the quadratic form of the Fresnel equation instead of eqs
(19)-(21) would allow nl and n2 to be calculated for an arbitrary S direction in a biaxial
material The behaviour of the principal index changes and the ellipsoid-orientation angles can
be easily investigated.

projection of S
'Y
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