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Abstract: Using a meshless method, a simulation of steel billets in a pusher-type reheating furnace is
carried out for the first time. The simulation represents an affordable way to replace the measurements.
The heat transfer from the billets with convection and radiation is considered. Inside each of the
billets, the heat diffusion equation is solved on a two-dimensional central slice of the billet. The
diffusion equation is solved in a strong form by the Local Radial Basis Function Collocation Method
(LRBFCM) with explicit time-stepping. The ray tracing procedure solves the radiation, where the view
factors are computed with the Monte Carlo method. The changing number of billets in the furnace at
the start and the end of the loading and unloading of the furnace is considered. A sensitivity study
on billets’ temperature evolution is performed as a function of a different number of rays used in
the Monte Carlo method, different stopping times of the billets in the furnace, and different spacing
between the billets. The temperature field simulation is also essential for automatically optimizing the
furnace’s productivity, energy consumption, and the billet’s quality. For the first time, the LRBFCM is
successfully demonstrated for solving such a complex industrial problem.

Keywords: pusher-type reheating furnace; steel; temperature field; radiation; convection; diffusion;
strong form meshless method; radial basis functions

1. Introduction

Reheating steel billets after continuous casting is necessary to temper the billets for hot
rolling. Steel billets are usually heated up to 1200 ◦C. Five types of continuous industrial
reheating furnaces are known for moving steel billets inside the furnace [1], of which the
walking beam and pusher industrial reheating furnaces are the most widely used types
in the steel industry. This work is focused on the simulation of temperature conditions
in the gas-fired pusher-type furnace [2]. These furnaces operate mostly in a continuous
mode. The steel billets are charged at the furnace entry, heated while stepwise moving
inside the furnace, and released at the furnace exit [3]. The continuous mode of this process
is interrupted at the start of charging until the furnace is filled up and at the end of the
process, when the billets are only discharged without charging.

Heat is transferred to each steel billet by moving inside the furnace from the furnace
entry to the furnace exit. The heat transfer mechanisms include radiation from the gases
of the burners, radiation from the furnace walls, and convection [4]. The heat transfer by
thermal radiation accounts for more than 90% of the total heat flux impinging on the billet
surface [5]. The required temperature of the billets at the furnace outlet is determined
by the hot rolling requirements, which consider the size of the billets, rolling speed, and
steel composition [6,7]. The process should ensure the required uniform temperature
distribution of the billet at discharge from the furnace.

The control of the furnace, natural gas consumption, and productivity mainly depend
on the knowledge of the temperature field of the billets. Measuring the temperature inside
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the billets with thermocouples is possible for experimental purposes only. However, per-
forming such measurements in a standard way during production is impossible. Computer
simulation thus represents an affordable way to replace the mentioned measurements. The
temperature field simulation is also essential for automatically optimizing the furnace’s
productivity, energy consumption, and the billet’s quality. Automatic optimization is per-
formed by calculating the related object functions and using the evolutionary optimization
algorithm to minimize them. Several simulation models have already been developed to
predict the reheating process of steel billets in a reheating furnace. The first published
model on the heating process in regenerative furnaces considering the moving billets was
introduced in [8]. A simplified furnace geometry was considered, and the billets were
modeled as a single body located on the furnace floor. Later, Kim and Huh [9] modeled the
thermal behavior of the furnace system as a steady-state heating process. The temperature
field of the billets has been calculated using the finite difference technique. Hsieh et al. [10]
applied the model introduced in [9] to model the turbulent flow of the combustion process
using complex real-world furnace geometry. The details are provided in [1].

The solution of the temperature field in the middle of each of the billets during the
reheating process is, in the present work, obtained based on the meshless Local Radial
Basis Function Collocation Method (LRBFCM) with explicit time-stepping for the first time.
This method has already been demonstrated for solving different steel processing steps
such as continuous casting [11], hot rolling [12], cooling at the cooling bed after rolling [13],
and microstructure evolution [14].

2. Thermal Model
2.1. Heat Transfer Equation

The temperature field in the steel billets is governed by the heat diffusion equation

∂

∂t
(ρh) = ∇ · (k∇T), (1)

where ρ, h, T, and k stand for density, mass-specific enthalpy, temperature, and thermal
conductivity, respectively. It is assumed that the relation

h(T) = cp(T)T, (2)

with cp(T) standing for the, in general, temperature-dependent specific heat at constant pressure.

2.2. Boundary Conditions

Neumann boundary condition is employed as a magnitude of heat flux q in the normal
direction n on the boundary

qn = q · n = −k
∂T
∂n

= cconvqconv + qradS + cBGqradBG + cGqradG, (3)

where the heat flux inside the billet is defined by Fourier’s law q = −k∇T. The total heat
flux is composed of the convective heat flux qconv, radiative heat flux from the surface of the
furnace and billets inside the furnace qradS, radiative heat flux from the burning gas qradBG,
and radiative heat flux from the inner gas qradG. The constants cconv, cBG, cG depend on
the shape, position of the billets, and the position of the furnace’s inner walls.

The billets are positioned close to the bottom of the furnace. So, the bottom of the
billets only receives the radiation from the bottom of the furnace. The burning gas influ-
ences from the top of the furnace. The top of the billets receives radiation from all the
contributors. The radiation from the burning gas to the billet is geometrically shadowed
by the neighboring billets situated at the left or right side of the considered billet. The
constants cconv, cBG, cG for the surface of billets are shown in Table 1, where d is the distance
between two neighboring billets; wb is the square dimension of the billets. Since there is no
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obstruction from other billets, the constants are cconv = 1, cBG = 1/2, cG = 1 on the left
side of the first billet, the right side of the last billet, and the edge of all billets, respectively.

Table 1. Coefficients of heat flux for different surfaces of billets.

Top Left–Right Bottom

cconv 1 1 0
cBG 1 [arctan(d/WB)]/π 0
cG 1 1 0

2.2.1. Radiative Heat Flux

The furnace has dimensions LF × WF × HF (length, width, and height). A symmetry
plane is considered at WF/2. The billets have dimensions LB × WB × HB, and there is a
space between the billets, denoted by SB. The distance between the bottom of the billets
and furnace bottom is denoted by DFB. The distance of the center of the first billet from the
start surface of the furnace is DLBe, and the center position of the last billet from the end
surface of the furnace is denoted by DLBo. The billets are moving from the start to the end
surface of the furnace.

The radiative heat flux from the surface of the furnace and billets is calculated in three
dimensions and used to calculate the temperature in the two-dimensional middle slices of
each of the billets. The surface of the furnace and the billets is divided into finite surface
planes (FSPs), depicted in Figure 1.
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Figure 1. A scheme of the division of the involved surfaces into FFSs. (a) A scheme of the furnace
planes, and (b) a scheme of the billet planes.

The furnace length LF is divided into NL equidistant segments with top, bottom, front,
and back surfaces. The furnace’s start and the end surfaces are divided into NH vertically
positioned equidistant surfaces. The billets are in the longitudinal direction divided into
three segments, of which only one and a half of the central segment is considered due to
the symmetry. The top, bottom, left, and right surfaces of each of the three segments are
divided into two equidistant surfaces (2 × 8 in total). The temperatures of the billets are
calculated in the middle of the second longitudinal segment. Each billet’s head and tail are
divided into four equal surfaces.

The net radiative heat flux of the i-th FSP qradS,i is given as a difference between the
emitted heat flux from the i-th surface and received heat flux from all surrounding FSPs
written as

qradS,i =
J

∑
j=1

ε j(Tj)σT4
j

Aj

Ai
Fj→i − αi(Ti)σT4

i , (4)

where Tj is the average temperature of the j-th FSP, and the sum goes over all J FSPs, where
Aj represents the area of the j-th FSP. The visibility between FSPs is given by a view factor
Fj→i ∈ [0, 1]. It defines the fraction of the radiation emitted by the j-th FSP and received by
the i-th FSP [15]. A ray tracing algorithm is used in the simulations. The number of rays
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is defined per square meter of the surfaces involved. The rays are randomly emitted and
tracked until they are absorbed.

The temperatures TBs, s = 1, 2, 3, 4 of the four head and four tail planes of each of the
billets are calculated by solving Equation (1) four times in one dimension by assuming the
Dirichlet boundary condition at the center of each quarter of the middle slice from the 2D
calculation and the Neumann boundary condition in Equation (2) of each plane at the head
of the billet (Figure 2a).
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Figure 2. A scheme of the division of the billets to calculate the average temperature for each plane
of the billets. (a) A whole billet with 32 planes and middle slice, (b) half of the billet showing
two planes i and j from the first segment, (c) half of the billet showing two planes m and n from
the second segment, and (d) half of the billet showing the connection between the middle and
head planes.

The one-dimensional equations are calculated by the finite difference method

ρ0lcp0l
Tl − T0l

∆t
=

k0l − k0l−1
∆z

T0l − T0l−1
∆z

+
T0l+1 − 2T0l + T0l−1

∆z2 , (5)

where subscripts 0 and l indicate the initial time-step and the position of the point. Half
of the billet length is represented by 201 equidistant nodes. TCs = T1 is the average
temperature value of a quarter of the middle slice (Figure 2d) computational domain of
the billet. TBs = T201 (in Figure 2d) is used as the average temperature of the head plane
of the billet in Equation (6). The temperature Tm of plane m (in Figure 2c) is the average
temperature value of the boundary nodes belonging both to the 2D slice and plane m. The
temperature Tn of plane n is calculated in the same way as the temperature of plane m. The
temperature of the planes i and j (in Figure 2b) is Ti = (TB1 + Tm)/2 and Tj = (TB1 + Tn)/2.
This procedure is repeated four times in order to cover all four sides of the billet. The
temperature of the billets is the same at the head as at the tail because of the symmetry.

The radiative heat flux from the burning gas qradBG and the radiative heat flux from
the inner gas qradG are described as the difference between the emitted heat flux from the
gas and the heat flux emitted from the billets

qradBG = αBGσ(TBG, T)T4 − εBG(TBG)σT4
BG, (6)

qradG = αGσ(TG, T)T4 − εG(TG)σT4
G, (7)

where σ = 5.6704 × 10−8 Wm−2K−4 is the Stefan–Boltzmann constant, α is the absorption
of the gas, ε is the emissivity of the gas [16], and TBG and TG stand for the temperature
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of the burning gas and inner gas, respectively. TBG is obtained from the balance of the
heat flux at the central point of the front furnace wall when the furnace is empty. The
temperature of the inner gas is considered the same as the temperature of the nearest
furnace wall (see [17]).

2.2.2. Convective Heat Flux

The convective heat flux qconv is specified as

qconv = h(T − TGas), (8)

where h and TGas stand for the heat transfer coefficient and inner gas temperature, respectively.

3. Solution Procedure

The temperature field is solved by the LRBFCM [18] on a 2D slice, representing the
billet cross-section, described in the Cartesian coordinate system. Instead of a grid genera-
tion over the computational domain, such as in FEM, collocation nodes without any special
geometrical connectivity are uniformly distributed over the domain and at the boundaries.
An unknown scalar or vector component field θ(p) at position p = pxix + pyiy (px, py are
Cartesian components and ix, iy are orthonormal Cartesian base vectors) is interpolated
with multi-quadric RBF ψ(p) together with the augmented first-order

(
Np = 3

)
polynomi-

als ϑ(p) over the neighboring (N = 7) nodes (see Figure 3)

ψi(p) =

√(
c

px − pxi
xmax

)2
+

(
c

py − pyi

ymax

)2
+ 1; i = 1, 2, . . . , N,

ϑN+1(p) = 1, ϑN+2(p) = px − px0, ϑN+3(p) = py − py0.
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xmax and ymax are the maximum horizontal and vertical distances between the consid-
ered nodes. px0, py0 are the coordinates of the central node inside the influence domain,
and c is the multi-quadric shape parameter. The collocation thus reads

θ(p) =
N

∑
i=1

ψi(p)αi +
Np

∑
i=1

ϑi(p)αN+i. (9)



Math. Comput. Appl. 2024, 29, 30 6 of 14

The first and second partial derivatives are obtained from the interpolation as follows

∂θ(p)
∂pxj

=
N

∑
i=1

∂ψi(p)
∂pxj

αi +
Np

∑
i=1

∂ϑi(p)
∂pxj

αN+i,
∂2θ(p)

∂p2
xj

=
N

∑
i=1

∂2ψi(p)
∂p2

xj

αi +
Np

∑
i=1

∂2ϑi(p)
∂p2

xj

αN+i. (10)

The explicit solution of the governing equation of the thermal model is considered

ρcp
Ti − T0i

∆t
= ∇ · (k∇T0i). (11)

The temperature field T(p) in the thermal model is interpolated in the sense of Equation (9)

T(p) =
N

∑
i=1

ψi(p)Tαi +
Np

∑
i=1

ϑi(p)TαN+i. (12)

The details of the solution procedure are provided in [19].

4. Numerical Examples

This section shows the verification of the calculation of view factors (Example 1) and
the thermal model (Example 2). Afterwards, the simulation results of an actual reheating
furnace are demonstrated with different process parameter configurations. Case 1 is
calculated with three different ray densities. Case 2 is calculated with two different stopping
times. Case 3 is calculated with different spacing between billets. In all the simulations,
emissivity ε and absorption coefficients α are 0.8, and the time-step ∆t for the explicit
solution is 0.1 s. The shape parameter c = 10−3 is used in the meshless method (MM).
Since the interpolation function is based on the scaled RBF, the results are not sensitive to c.
A suitable shape parameter is obtained during the comparison with the reference solution
and used in our related similar simulations. The details of the choice of c are shown in [19].
Results in Sections 4.1 and 4.2 are compared with Finite Volume Method (FVM).

4.1. Verification of Calculation of View Factors

The computational model’s accuracy strongly depends on the accuracy of the calcula-
tion of view factors. First, it has to be proven that the view factors are correctly calculated,
and second, as the number of rays increases, the results should converge to the exact solu-
tion. For this purpose, we have created a sample test environment, as shown in Figure 4.
A steel billet is put inside a very long furnace, and only a small section, 400 mm long, is
considered. Both ends of this section are considered to have perfect reflectivity. Just like in
the reheating furnace simulations, we have calculated the view factors in 3D. The heat flux
results are calculated at the middle thickness.

To verify the view factors, we focused on calculating the radiative heat flux on the
boundaries of the billet. We compared our heat flux results with the results obtained
by a reference solution computed with [20]. In this case, the only source of heat flux at
the boundaries is due to radiation from the other surfaces. Each furnace wall is divided
into 160 planes, and each of the billet’s sides are divided into 18 planes. Each of these
planes has a dimension of 10 mm × 400 mm (width × length). There is no need for
division along the 400 mm length of the furnace since the results do not change on that
axis. Since the wall temperatures of the furnace and billet are fixed, the only error would
come from the calculation process of the view factors. The results are shown in Figure 5.
The computational domain is considered to be in the middle cross-section of the billet with
a size of 180 mm × 180 mm. Uniform node distribution with 25 nodes at each side of the
billet is used, and three different ray densities (106/m2, 107/m2, 108/m2) are randomly
sent from each square meter. It is evident from Figure 5 that the view factors are correctly
calculated, and with the increase in the number of the rays, the results converge to the
reference value. The reference solution is also obtained by the ray tracing algorithm, and
both simulations use the same number of planes.
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Figure 5. Heat flux on boundary with different rays emitted from each plane with Monte Carlo
method at t = 0 s.

4.2. The Verification of the Simulation Model of the Reheating Furnace

Once the calculation of the view factors is verified, the results in terms of temperature
should also be verified. This time, the steel billet is positioned just above the bottom, like
in a real furnace. This is a time-dependent process, and simulations are run up to 8000 s.
in both simulations based on five reference points that are chosen in the billet, as shown
in Figure 6. Both the MM and FVM temperature results for those five points are shown
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in Figure 7 as a function of time. In Figure 8, the temperature fields of the steel billet at
8000 s are shown. As expected, good agreements have been once again obtained. All the
parameters used in the verification processes are listed in Table 2.
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Table 2. Benchmark parameters.

Density (ρ) kg/m3 7500

Specific heat (cp) J/kg K 600

Thermal conductivity (k) W/m K 40

Initial temperature (T) ◦C 25

Observed time (t_end) s 8000

4.3. Sensitivity Studies of an Industrial Reheating Furnace Simulation

We focus on the central cross-section of the billets by assuming no heat transfer along
the length direction, since the longitudinal dimensions of the billets are large compared
to the transversal dimensions. The billets with a square cross-section of 0.18 m × 0.18 m
(WB × HB) and length of 4 m (LB) were studied. The internal dimensions of the furnace are
31.6 m × 4.8 m × 1.6 m (LF × WF × HF). The distance of the center of the first billet from
the start surface of the furnace is DLBe = 0.72 m There are 126 positions (pos in Figure 9)
with a width of 0.24 m in the furnace. The distance between the bottom of the billets and
furnace bottom is DFB = 0.002 m (see Figure 9). The billets are positioned centrally along
the width of the furnace, so only 0.4 m space is left at both ends. In this work, the surface
of the furnace is divided into 128 planes (NL = 30, NH = 4). The surface of each billet is
divided into 32 planes (top, bottom, left, and right: six planes. Head and tail: four planes), as
in Figure 1b. The temperature of the surface of the furnace Tj is the same as that used in [17].
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All the billets move from the previous position to the next in a stopping time interval
∆t. One new billet is transported in the furnace from the start side, and one is transported
out of it from the end side when the furnace is full. Natural gas burners are positioned at the
top of the furnace. The billets are made of steel type 70MnVS4. The temperature-dependent
material properties are considered as obtained from JmatPro [21]. A total of 725 uniformly
distributed points on the middle slice (see Figure 10) of each billet and subdomains with
seven nodes are used in the LRBFCM. The room temperature of 25 ◦C is used as the initial
temperature of the billets.
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4.3.1. Case 1: Different Number of Rays Used in View Factors

In Case 1, the space between the billets is SB = 0.27 m between each neighboring
two billets. The billets stop at each position for 60 s. 105/m2, 106/m2, 107/m2 ray densities
are used for the Monte Carlo method to calculate the view factor, respectively. The results
are shown in Figure 11.
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In Case 1, three different view factors’ results are used for different positions and
compared. The Monte Carlo ray tracing method is probabilistic. Therefore, each time the
view factors are calculated, the results fluctuate. The magnitude of fluctuation may be
reduced by increasing the number of ray samples. When the results are summed up, parts
of the errors (over/under fluctuations) are cancelled out. That is why the difference in
the results in this case is so small. Moreover, the result of the Monte Carlo method for
calculating the view factors depends on the number of random trials. It takes approximately
2 days to calculate the view factors when 63 billets are in the furnace by using Intel Xeon
6146 CPU.

4.3.2. Case 2: Different Stopping Times at Each Position

In Case 2, the space between the billets is SB = 0.27 m between each neighboring
two billets. The cross-section of the furnace with the billets is shown in Figure 9. The billets
stop at each position for 60 s and 90 s, respectively. Additionally, 106/m2 ray densities are
used in the Monte Carlo method to calculate the view factors. The results are shown in
Figure 12.
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We see that the temperatures for the 90 s stopping time are higher than those with the
60 s stopping time. However, both results reach 1200 ◦C at the furnace end, and the billet
has almost a uniform temperature. We observe a slightly different behavior of the billet
center at temperatures between 700 ◦C and 800 ◦C because of the changes in the material
properties due to phase change.
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4.3.3. Case 3: Different Spacing between Two Billets

In Case 3, we consider SB = 0.27 m and SB = 0.51 m, respectively. The cross-section
of the furnace with two different spacings between the billets is shown in Figures 9 and 13.
The billets stop at each position for 60 s. Additionally, 106/m2 ray densities are used in the
Monte Carlo method to calculate the view factor. The results are shown in Figure 14.
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In this case, the temperatures with larger spacing are slightly higher than those
with shorter spacing. This is because the billets received more energy from the walls of
the furnace.
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5. Conclusions

The steel billets in a reheating furnace are simulated by using the LRBFCM. The
temperature fields depend on the radiative and convective heat fluxes on the boundaries
at different positions in the furnace. The Monte Carlo method is employed to determine
the radiative heat flux. To verify the presented model, two comparisons with the reference
solution have been made. In the first, a small part of the billet is placed in the middle of a
furnace with uniform wall temperatures. The convergence of the results of the view factors
with an increasing number of rays is observed. In this way, we were sure that the boundary
conditions were correctly implemented. In the second case, the billet is placed close to the
bottom, and realistic wall temperatures are applied. The temperature results of the billet in
the simulation after 8000 s match perfectly with the reference result.

Three test cases were performed to show the capabilities of this simulation system
while using a real reheating furnace environment. These test cases are as follows: a different
number of ray densities emitted for calculating the view factors, different stopping time
of the billets at each position, and different spacing between two billets, respectively. We
obtained the temperature results of the billets for any position and time in the furnace.

Case 1 demonstrates that there is no obvious difference in temperature results when
more than 105/m2 ray samples are used in the Monte Carlo method. In the simulations,
view factors are calculated once for each position independently of time and we also know
from example 5.1 that the magnitude of fluctuations decreases with increasing ray density.
Hence, by using the same stopping time at each position, the effect of the ray density may
not be so noticeable in the results throughout the simulation. Case 2 demonstrates that a
suitable billet stopping time can be found using the described model. Case 3 demonstrates
that when a longer distance between each two billets is used, the increase in the temperature
is more rapid, especially at the beginning. This simulator can help the steel industry to
save energy and optimize productivity. It is extremely complicated to also simulate the
temperature of the furnace walls simultaneously. The temperatures of the furnace walls are
kept constant in present simulations; however, they would change when a billet enters or
leaves the furnace. The presented temperature model of the furnace represents a crucial first
step towards optimizing the billets’ quality, furnace productivity, energy, and consumption.
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