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Abstract: In this paper, a second-order operator splitting method combined with the barycentric
Lagrange interpolation collocation method is proposed for the nonlinear Schrödinger equation. The
equation is split into linear and nonlinear parts: the linear part is solved by the barycentric Lagrange
interpolation collocation method in space combined with the Crank–Nicolson scheme in time; the
nonlinear part is solved analytically due to the availability of a closed-form solution, which avoids
solving the nonlinear algebraic equation. Moreover, the consistency of the fully discretized scheme
for the linear subproblem and error estimates of the operator splitting scheme are provided. The
proposed numerical scheme is of spectral accuracy in space and of second-order accuracy in time,
which greatly improves the computational efficiency. Numerical experiments are presented to confirm
the accuracy, mass and energy conservation of the proposed method.

Keywords: nonlinear Schrödinger equation; operator splitting collocation method; barycentric
Lagrange interpolation; consistency analysis; convergence analysis

1. Introduction

In 1926, the famous Schrödinger equation was proposed by the Austrian physicist
Schrödinger [1]. It’s a fundamental equation in the field of quantum mechanics. In recent
years, the Schrödinger equation has been studied in different fields of research, such as
atomic, molecular, nuclear physics and solid state physics, etc.

In this paper, we consider the following nonlinear Schrödinger (NLS) equation iut + ρ∆u + v(x)u + β|u|2u = 0, (x, t) ∈ Ω × (0, T]
u(x, 0) = u0(x), x ∈ Ω
u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T]

, (1)

where i is the imaginary unit, ρ, β are real-valued constants, Ω ⊂ Rd(d = 1, 2) is a bounded
area and ∆ is the Laplace operator. The function u0(x) is a given sufficiently smooth
function and v(x) is a real-valued potential function. This model reflects the quantum
mechanical effects and microscopic system properties and can well describe the state of
microscopic particles over time.

In fact, the NLS Equation (1) also conserves both mass and energy with the following
mass and energy functions:

M(t) =
∫

Ω
|u(x, t)|2dx = M(0) (2)

and
E(t) =

∫
Ω
(ρ|∇u(x, t)|2 − v(x)|u(x, t)|2 − β

2
|u(x, t)|4)dx = E(0). (3)

Recently, many numerical methods have been developed for solving the NLS equation.
Gong et al. [2] presented a conservative Fourier pseudo-spectral method for the nonlinear
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Schrödinger equation. Cui et al. [3] developed mass- and energy-preserving exponential
Runge–Kutta methods for the nonlinear Schrödinger equation. Feng et al. [4] developed
the high-order mass- and energy-conserving SAV-Gauss collocation finite element methods
for the NLS equation. Wang et al. [5] used the two-grid finite element method for the
NLS equation and the given superconvergence analysis of the scheme. Wang et al. [6]
studied leapfrog finite element methods for a class of nonlinear Schrödinger equations
with damped terms. Hu et al. [7] presented the Newton iterative Crank–Nicolson finite
element method for the NLS equation. Chen et al. [8] applied the two-grid finite volume
element method for the time-dependent Schrödinger equation. Deng et al. [9] considered a
second-order SAV scheme for the nonlinear Schrödinger equation in the whole space with
typical generalized nonlinearities and carried out a rigorous error analysis. Su et al. [10]
considered the numerical solution of the nonlinear Schrödinger equation with a highly
oscillatory potential (NLSE-OP) and rigorously analyzed the error bounds of the splitting
schemes for solving the NLSE-OP to a fixed time. Wang et al. [11] proposed finite difference
methods for the coupled Gross–Pitaevskii equations in high dimensions and the given
error estimates.

There are some advantages, such as no dividing elements, simple formulas, no inte-
grals and easy programming, of the collocation method, which is called the barycentric
Lagrange interpolation collocation (BLIC) method. The method has captured the attention
of many scholars because of its high accuracy. The numerical stability of the barycentric
Lagrange interpolation collocation method with Chebyshev points is very good, and it
can also effectively overcome the "Runge" phenomenon. The method has been extended
to solve various partial differential equations, such as the sine-Gordon equation [12], the
Burgers equation [13], the viscoelastic wave equation [14], the Allen–Cahn equation [15,16],
nonlinear convection-diffusion optimal control problems [17] and the fractional telegraph
equation [18], among others.

To the best of our knowledge, there are few studies regarding using the barycentric
interpolation collocation method combined with the operator splitting method [19–21] for
the nonlinear Schrödinger equation. Based on the above work, we focus on the convergence
analysis of the proposed scheme. We analyze the fully discretized consistency of the linear
subproblem. Moreover, the error estimates of the operator splitting scheme are derived.

The remaining parts of the paper are structured as follows. In Section 2, we present
the barycentric Lagrange interpolation collocation method. In Section 3, we present a
second-order operator splitting collocation scheme for the NLS equation. The convergence
analyses of the proposed method are presented in Section 4. Numerical experiments are
conducted in Section 5 to evaluate the accuracy and efficiency of the proposed method,
while Section 6 presents some conclusions derived from these experiments.

2. Preliminary

Suppose that m + 1 distinct interpolation nodes, xj (j = 0, 1, . . . , m), and their corre-
sponding function values, uj, are provided. Therefore, there exists a unique interpolation
polynomial whose degree is not exceeding m, satisfying q(xj) = uj (j = 0, 1, . . . , m). As we
know, q(x) has the Lagrange form as follows,

q(x) =
m

∑
j=0

Gj(x)uj, (4)

where Gj(x) represents the Lagrange interpolation basis function and

Gj(x) =

m
∏

i=0,i ̸=j
(x − xi)

m
∏

i=0,i ̸=j

(
xj − xi

) , j = 0, 1, · · · , m. (5)
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Suppose that

g(x) = (x − x0)(x − x1) . . . (x − xm), (6)

and the barycentric weights are defined as follows:

wj =
1

m
∏

i=0,i ̸=j

(
xj − xi

) , j = 0, 1, · · · , m. (7)

Then, from Equations (5)–(7), we can obtain

Gj(x) = g(x)
wj

x − xj
, j = 0, 1, · · · , m. (8)

By Equations (8) and (4), we have

q(x) = g(x)
m

∑
j=0

wj

x − xj
uj. (9)

If u = 1, it has the following form:

1 = g(x)
m

∑
j=0

wj

x − xj
. (10)

By Equations (10) and (9), the barycentric interpolation formula of q(x) can be derived:

q(x) =

m
∑

j=0

wj

x − xj
uj

m
∑

j=0

wj

x − xj

=
m

∑
j=0

wj

x − xj
m
∑

j=0

wj

x − xj

uj :=
m

∑
j=0

G̃j(x)uj. (11)

To ensure the numerical stability of the barycentric Lagrange interpolation, we adopt
Chebyshev points:

xj = cos(
j

m
π), j = 0, 1, · · · , m. (12)

The v-order derivative of q(x) defined as Equation (11) with respect to x is

q(v)(xi) =
dvq(xi)

dxv =
m

∑
j=0

G̃(v)
j (xi)uj =

m

∑
j=0

P(v)
ij uj, v = 1, 2, · · · , m, (13)

where P(v)
ij denotes the element of the v-order differentiation matrix P(v).

From Equations (11) and (13), we can obtain [22]
P(1)

ij = G̃′
j(xi) =

wj/wi

xi − xj
, j ̸= i,

P(1)
ii = −

m
∑

j=0,j ̸=i
P(1)

ij ,
(14)


P(2)

ij = G̃′′
j (xi) = −2

wj/wi

xi − xj

(
∑

k ̸=i

wk/wi
xi − xk

+
1

xi − xj

)
, j ̸= i,

P(2)
ii = −

m
∑

j=0,j ̸=i
P(2)

ij .
(15)
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Next, we will derive the approximation format for a given function, u(x, y), and its
derivative using the barycentric Lagrange interpolation formula.

For m + 1 distinct nodes, (x0, y), (x1, y), . . . , (xm, y), the unknown function u(x, y),
evaluated at node (xi, y), can be expressed as follows:

u(xi, y), i = 0, 1, . . . , m. (16)

From Equations (16) and (11), we can obtain the approximation function of u(x, y):

u(x, y) =
m

∑
i=0

αi(x)u(xi, y), i = 0, 1, . . . , m. (17)

Similarly, the expression of u(xi, y) is as follows:

u(xi, y) =
n

∑
j=0

β j(y)u(xi, yj), j = 0, 1, . . . , n. (18)

From Equations (17) and (18), we can obtain

u(x, y) =
m

∑
i=0

n

∑
j=0

αi(x)β j(y)u(xi, yj), (19)

and its second-order partial derivative has the following form:

uxx(x, y) =
m

∑
i=0

n

∑
j=0

α′′i (x)β j(y)u(xi, yj), (20)

uyy(x, y) =
m

∑
i=0

n

∑
j=0

αi(x)β′′
j (y)u(xi, yj). (21)

3. Operator Splitting Collocation Method

In this section, we propose an operator splitting collocation scheme for the NLS
equation, which is based on the Strang splitting procedure. Our approach combines the
barycentric Lagrange interpolation collocation method for spatial approximation and a
second-order Crank–Nicolson scheme for temporal approximation.

First, rewrite Equation (1) as follows,

iut = L(u) + N(u), (22)

where L(u) = −ρ∆u and N(u) = −v(x)u − β|u|2u.
Then, Equation (1) is split into the linear part,

iut = L(u) = −ρ∆u, (23)

and the nonlinear part,
iut = N(u) = −v(x)u − β|u|2u. (24)

Next, for a given time step, τ, the solution of Equation (1) evolves from t to t + τ via
the Strang splitting method [23], which consists of three substeps:

u(x, y, t + τ) = SB(
τ

2
)SA(τ)SB(

τ

2
)u(x, y, t) + O(τ3), (25)

where SA and SB are the exact solution operators of Equation (23) and Equation (24),
respectively.



Math. Comput. Appl. 2024, 29, 6 5 of 15

Then, we will provide numerical approximations SA
h and SB

h for the exact solution
operators SA and SB, respectively. Suppose Ω = [a, b]× [c, d] and Ωh = {(xi, yj), i = 0 <
1 < . . . < m, j = 0 < 1 < . . . < n}. Here, xi and yj are Chebyshev mesh points.

To solve Equation (23), the barycentric Lagrange interpolation collocation method
is applied to discretize the spatial derivative. The semi-discretized scheme in space is
obtained based on the barycentric Lagrange interpolation collocation method, as introduced
in Section 2.

iut(xi, yj, t) = −ρ
m

∑
i=0

n

∑
j=0

(
α′′i (x)β j(y) + αi(x)β′′

j (y)
)

u(xi, yj, t). (26)

The matrix form of (26) can be expressed as

i(uh(t))t = −ρ
(

P(2) ⊗ In + Im ⊗ Q(2)
)

uh(t), (27)

where uh(t) = [u00(t), · · · , u0n(t), u10(t), · · · , u1n(t), · · · , um0(t), · · · , umn(t)], uij(t) = u(x

i, yj, t); P(2) and Q(2) are second-order differentiation matrices on nodes x0, x1, . . . , xm and
y0, y1, . . . , yn, respectively; ⊗ represents the Kronecker product of the matrix; Im and In are
the identity matrices of m + 1 and n + 1 order, respectively. Then, setting uk

h = uh(tk), we
can obtain the following fully discretized scheme:

i
uk+1

h − uk
h

τ
= −ρ(

1
2
(P(2) ⊗ In + Im ⊗ Q(2))uk+1

h +
1
2
(P(2) ⊗ In + Im ⊗ Q(2))uk

h). (28)

Therefore, we obtain

SA
h : uk+1

h = (iI +
ρτ

2
W)−1(iI − ρτ

2
W)uk

h, (29)

where I is the identity matrix of order (m + 1)(n + 1), W = P(2) ⊗ In + Im ⊗ Q(2).
Then, Equation (24) can be solved analytically by

SB
h : uk+1

h = ei τ
2 (v(x,y)+β|uk

h |
2)uk

h. (30)

The second-order operator splitting scheme can be derived as follows:

MI:


u(1)

h = ei τ
2 (v(x,y)+β|uk

h |
2)uk

h

u(2)
h = (iI +

ρτ

2
W)−1(iI − ρτ

2
W)u(1)

h

uk+1
h = ei τ

2 (v(x,y)+β|u(2)
h |2)u(2)

h

. (31)

4. Convergence Analysis

Firstly, in this section we analyze the consistency of the semi-discretized scheme (26).
Suppose that q(x, y) is the Lagrange interpolation function of u(x, y), satisfying q(xi, yj) =
u(xi, yj), i = 0 < 1 < . . . < m, j = 0 < 1 < . . . < n.

By defining
r(x, y) = u(x, y)− q(x, y), (32)

we can obtain the following estimates [18],
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Lemma 1. Suppose u(x, y) ∈ C(m̃+1)([a, b]× [c, d]), where m̃ = max{m, n}, we have
∥r(x, y)∥∞ ≤ C1 ∥ u(m+1) ∥∞

(
ehx
2m

)m
+ C2 ∥ u(m+1) ∥∞

(
ehy
2n

)n

∥rxx(x, y)∥∞ ≤ C∗∗
1 ∥u(m+1)∥∞

(
ehx

2(m−2)

)m−2
+ C2∥u(n+1)∥∞

(
ehy
2n

)n

∥ryy(x, y)∥∞ ≤ C1∥u(m+1)∥∞

(
ehx
2m

)m
+ C∗∗

2 ∥u(n+1)∥∞

(
ehy

2(n−2)

)n−2

,

where hx = b−a
2 , hy = d−c

2 , and e is the natural constant.

Let u(x, y, t) be the solution of Equation (1) and u(xi, yj, t) is the numerical solution
of u(x, y, t) discretized by barycentric Lagrange interpolation collocation method; we
then have

T u(xi, yj, t) = 0 (33)

and
lim

i,j→∞
T u(xi, yj, t) = 0, (34)

where T = i
∂

∂t
+

∂2

∂x2 +
∂2

∂y2 .

Based on the above results, we obtain the following theorem.

Theorem 1. Let u(xi, yj, t) : T u(xi, yj, t) = 0, we have

∥u(x, y, t)− u(xi, yj, t)∥∞ ≤ C∗∗
1 ∥ u(m+1)∥∞

(
ehx

2(m − 2)

)m−2

+ C∗∗
2 ∥ u(n+1)∥∞

(
ehy

2(n − 2)

)n−2

.

Proof. As

T u(x, y, t)− T u(xi, yj, t)
= iut(x, y, t) + uxx(x, y, t) + uyy(x, y, t)−

(
iut(xi, yj, t) + uxx(xi, yj, t) + uyy(xi, yj, t)

)
= iut(x, y, t)− iut(xi, yj, t) + uxx(x, y, t)− uxx(xi, yj, t) + uyy(x, y, t)− uyy(xi, yj, t)
:= A1 + A2 + A3,

(35)

where A1, A2 and A3 represent

A1 = iut(x, y, t)− iut(xi, yj, t),

A2 = uxx(x, y, t)− uxx(xi, yj, t),

A3 = uyy(x, y, t)− uyy(xi, yj, t).

(36)

For A1, we obtain

A1 = i(ut(x, y, t)− ut(xi, yj, t))
= i(ut(x, y, t)− ut(xi, y, t) + ut(xi, y, t)− ut(xi, yj, t))
= i(rt(xi, y, t) + rt(xi, yj, t)).

(37)

From Lemma 1, we can derive

∥A1∥∞ = ∥i(rt(xi, y, t) + rt(xi, yj, t))∥∞
≤ ∥rt(xi, y, t)∥∞ + ∥rt(xi, yj, t)∥∞

≤ C1 ∥ u(m+1)∥∞

(
ehx

2m

)m

+ C2 ∥ u(n+1)∥∞

(
ehy

2n

)n

.
(38)
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Similar estimates can be derived as follow:

∥A2∥∞ = ∥rxx(xi, y, t) + rxx(xi, yj, t)∥∞

≤ C∗∗
1 ∥ u(m+1)∥∞

(
ehx

2(m − 2)

)m−2

+ C2 ∥ u(n+1)∥∞

(
ehy

2n

)n

,
(39)

∥A3∥∞ = ∥ryy(xi, y, t) + ryy(xi, yj, t)∥∞

≤ C1 ∥ u(m+1)∥∞

(
ehx

2m

)m

+ C∗∗
2 ∥ u(n+1)∥∞

(
ehy

2(n − 2)

)n−2

.
(40)

From (38)–(40) and (35), the proof is completed.

Next, we consider consistency analysis of the full-discretized scheme (28).

Theorem 2. Suppose u(x, y, t) ∈ C(m̃+1)(Ω) × C2(0, T], Ω = [a, b] × [c, d], where m̃ =
max{m, n} and u(xi, yj, tk+1) is the corresponding numerical solution of u(x, y, t), we have

∥u(x, y, t)− u(xi, yj, tk+1)∥∞ ≤ C3

τ3+ ∥ u(m+1)∥∞

(
ehx

2(m − 2)

)m−2

+ ∥ u(n+1)∥∞

(
ehy

2(n − 2)

)n−2
,

where C3 is a positive constant.

Proof. Let u(x, y, tk+1) be the corresponding numerical solution using the Crank–Nicolson
scheme for temporal approximation of u(x, y, t); we can obtain

iδut(x, y, tk+ 1
2
) = −ρ∆u(x, y, tk+ 1

2
) + Rk, (41)

where δut(x, y, tk+ 1
2
) = u(x, y, tk+1)− u(x, y, tk), and Rk = ut(x, y, tk+ 1

2
)− δut(x, y, tk+ 1

2
)

is the truncation error in time. Based on the principle of Taylor expansion, we can obtain∣∣∣Rk
∣∣∣ ≤ C4τ3. (42)

Equation (41) is discretized by the BLIC scheme, and supposing that u(xi, yj, tk+1) is
the numerical solution of u(x, y, tk+1) based on the BLIC method, it holds that

iδut(xi, yj, tk+ 1
2
) = −ρ∆uh(xi, yj, tk+ 1

2
) + Rk + γi,j, (43)

where γi,j represents the truncation error in space.
Combining Equations (41) and (43), we have

iδut(x, y, tk+ 1
2
)− iδut(xi, yj, tk+ 1

2
) = −ρ∆u(x, y, tk+ 1

2
) + ρ∆uh(xi, yj, tk+ 1

2
)− γi,j. (44)

If we use a similar technique in Theorem 1, we can derive

∣∣∣γi,j
∣∣∣ ≤ C∗∗

1 ∥ u(m+1)∥∞

(
ehx

2(m − 2)

)m−2

+ C∗∗
2 ∥ u(n+1)∥∞

(
ehy

2(n − 2)

)n−2

. (45)

Combining (42) and (45), the proof is completed.

We will now analyze the error results of the operator splitting scheme.
Define a grid function space on Ωh,

Wh =
{

U
∣∣∣U = {Uij | 0 ≤ i ≤ m, 0 ≤ j ≤ n}

}
,
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and a mapping Ih : H̃(Ω) −→ Wh by

Ih(u) = U,

where H̃(Ω) = {u ∈ H2(Ω) | u(x, t) = 0}.

Lemma 2. Supposing that U ∈ Wh, ∥W∥∞ is bounded and τ is small enough, we have

∥ SA
h (τ)U ∥∞≤ (1 + κτ) ∥ U ∥∞ .

Proof. By Taylor expansion, the approximation of (iI +
ρτ

2
W)−1 at the zero matrix is

(iI +
ρτ

2
W)−1 = −iI +

ρτ

2
W + i

(ρτ)2

4
W2 − (ρτ)3

8
W3 +O(τ4). (46)

Then, combining with the above formula, we can obtain

∥ (iI +
ρτ

2
W)−1(iI − ρτ

2
W)∥∞ =∥ I + iρτW − (ρτ)2

2
W2 − (ρτ)4

16
W4∥∞ ≤ 1 + κτ. (47)

Therefore,

∥ SA
h (τ)U∥∞ =∥ (iI +

ρτ

2
W)−1(iI +

ρτ

2
W)U∥∞

≤∥ (iI +
ρτ

2
W)−1(I +

ρτ

2
W)∥∞ ∥ U∥∞

≤ (1 + κτ) ∥ U∥∞

, (48)

where κ is a positive constant independent of τ.

Lemma 3. Supposing that U ∈ Wh, we have

∥ SB
h (

τ

2
)U ∥∞=∥ U ∥∞ .

Proof. ∣∣∣SB
h (

τ

2
)uij

∣∣∣ = ∣∣∣ei τ
2 (v(x,y)+β|uij |2)

∣∣∣∣∣uij
∣∣ = ∣∣uij

∣∣. (49)

By Theorem 2, we can obtain the following result.

Lemma 4. Supposing that u0 ∈ H̃(Ω), we have

∥ IhSAu0 − SA
h Ihu0 ∥∞≤ C∗∗

1 ∥ u(m+1)∥∞

(
ehx

2(m − 2)

)m−2

+ C∗∗
2 ∥ u(n+1)∥∞

(
ehy

2(n − 2)

)n−2

+ C4τ3.

For convenience, suppose

η = C5

(
∥ u(m+1)∥∞

(
ehx

2(m − 2)

)m−2
+ ∥ u(n+1)∥∞

(
ehy

2(n − 2)

)n−2

+ τ3

)
,

where C5 = max
{

C∗∗
1 , C∗∗

2 , C4
}

.

Theorem 3. Let uk+1 ∈ H̃(Ω) be the exact solution of Equation (1) and ũ(x, y, t) and Uk+1 be
the exact solution of Equation (25) and the numerical solution at tk+1 of Equation (31), respectively.
According to Theorem 1 and Lemma 2, we have
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∥ Ihuk+1 − Uk+1 ∥∞≤ C

(
∥ u(m+1)∥∞

τ

(
ehx

2(m − 2)

)m−2
+

∥ u(n+1)∥∞

τ

(
ehy

2(n − 2)

)n−2

+ τ2

)
,

where C is a positive constant independent of τ.

Proof. For k ≥ 0, we obtain

∥ Ihuk+1 − Uk+1 ∥∞≤∥ Ihuk+1 − Ihũk+1 ∥∞ + ∥ Ihũk+1 − Uk+1 ∥∞ . (50)

From [23], we obtain
∥ Ihũk+1 − Ihuk+1 ∥∞≤ C6τ2. (51)

By Lemma 3, we obtain

∥Ihũk+1 − Uk+1 ∥∞

=∥ IhSBSASBũk − SB
h SA

h SB
h Uk ∥∞

≤∥ IhSBSASBũk − SB
h IhSASBũk ∥∞ + ∥ SB

h IhSASBũk − SB
h SA

h SB
h Uk ∥∞

≤∥ IhSASBũk − SA
h SB

h Uk ∥∞

. (52)

From Lemmas 2 and 4, we obtain

∥IhSASBũk − SA
h SB

h Uk ∥∞

≤∥ IhSASBũk − SA
h IhSBũk ∥∞ + ∥ SA

h IhSBũk − SA
h SB

h Uk ∥∞

≤ η + (1 + κτ) ∥ IhSBũk − SB
h Uk ∥∞

. (53)

From Lemma 3, we derive

∥IhSBũk − SB
h Uk ∥∞

≤∥ IhSBũk − SB
h Ihũk ∥∞ + ∥ SB

h Ihũk − SB
h Uk ∥∞

≤∥ Ihũk − Uk ∥∞

. (54)

Due to ∥ Ihũ0 − U0 ∥∞= 0, and by the Gronwall inequality, we can obtain

∥Ihũk+1 − Uk+1 ∥∞

≤η + (1 + κτ) ∥ Ihũk − Uk ∥∞

≤
k

∑
j=0

(1 + κτ)jη + (1 + κτ)k+1 ∥ Ihũ0 − U0 ∥∞

≤ (1 + κτ)k+1 − 1
1 + κτ − 1

η

≤ eκτ

κτ
η

. (55)

By the above estimates and the expression of η, we have

∥Ihuk+1 − Uk+1 ∥∞

≤ eκτ

κ

(
C5

(
∥ u(m+1)∥∞

τ

(
ehx

2(m − 2)

)m−2
+

∥ u(n+1)∥∞

τ

(
ehy

2(n − 2)

)n−2

+ τ2

))

≤C

(
∥ u(m+1)∥∞

τ

(
ehx

2(m − 2)

)m−2
+

∥ u(n+1)∥∞

τ

(
ehy

2(n − 2)

)n−2

+ τ2

) , (56)
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where C = max
{

C5
eκτ

κ
, C5

eκτ

κ
+ C6

}
. The proof is completed.

5. Numerical Experiments

In this section, we will provide some numerical results for the NLS Equation (1) to test
the high accuracy and efficiency of our scheme. For convenience, the error notations are
given as follows,

E∞ =∥ uh − ue ∥∞, (57)

Er =
∥ uh − ue ∥∞

∥ ue ∥∞
, (58)

where uh and ue denote the numerical solution and the exact solution, respectively. ∥ · ∥∞
is the L∞ norm. All computations presented in this work were performed on a standard i5
Intel 1.8GHz laptop in MATLAB R2020b.

5.1. Example 1

This example is used to test the accuracy and convergence of our scheme. Considering
the following 2D NLS equation on [0, 2π]2 × (0, T],

iut +
1
2 ∆u − (1 − sin2xsin2y)u − |u|2u = 0

u(x, y, 0) = sin x sin y
u(0, y, t) = u(2π, y, t) = 0
u(x, 0, t) = u(x, 2π, t) = 0

,

where the exact solution is in the following form:

u(x, y, t) = e−2it sin x sin y.

To verify the accuracy and the convergence rate of the operator splitting scheme based
on the barycentric Lagrange interpolation collocation method MI, the operator splitting
scheme based on the barycentric rational interpolation collocation method [24] MII and the
classical second-order finite difference scheme SI, we choose the simulation parameters
n = m, τ = 0.001 and T = 1.

The results are shown in Tables 1–4 and Figures 1–3. Tables 1–3 show the spatial errors
of the three schemes. By comparing Tables 1 and 3, it can be seen that the MI scheme,
based on the barycentric Lagrange interpolation collocation method in space, can achieve
a higher accuracy using only 8 × 8 mesh points. However, for the same accuracy, the SI
scheme, based on a second-order center difference method in space, requires more than
80 × 80 mesh points. Furthermore, by comparing Tables 1 and 2, it is easy to see that the
MI scheme is slightly more efficient than the MII scheme. The comparison of the three
schemes shows that the barycentric Lagrange interpolation collocation scheme can achieve
higher accuracy with fewer points in space. In addition, the CPU time of the MI scheme is
significantly reduced compared with the SI scheme and is similar to the MII scheme.
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Figure 1. Spatial L∞ errors at t = 1 for NLS equation for Example 1.
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Figure 2. The numerical solution and the exact solution diagrams at T = 1 for Example 1.
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Figure 3. Conservation situation of energy and mass at T = 1 for Example 1.
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Table 1. Error of barycentric Lagrange interpolation collocation scheme for Example 1.

m E∞ Er CPU

6 8.4010 × 10−3 8.4010 × 10−3 0.152 s
8 2.3542 × 10−4 2.7054 × 10−4 0.288 s

10 1.9318 × 10−6 2.0865 × 10−6 0.694 s
12 5.6755 × 10−8 5.6755 × 10−8 1.039 s
16 8.0816 × 10−8 8.3330 × 10−8 2.914 s

Table 2. Error of barycentric rational interpolation collocation method for Example 1.

m E∞ Er CPU

6 2.9302 × 10−3 2.9302 × 10−3 0.178 s
8 2.7122 × 10−3 3.1167 × 10−3 0.289 s

10 5.4257 × 10−6 5.8602 × 10−6 0.735 s
12 2.0948 × 10−6 2.0948 × 10−6 1.082 s
16 8.3994 × 10−8 8.6607 × 10−8 3.066 s

Table 3. Error of difference scheme for Example 1.

m E∞ Er CPU

10 2.9367 × 10−2 3.2467 × 10−2 0.202 s
20 8.1977 × 10−3 8.1977 × 10−3 3.586 s
40 2.0546 × 10−3 2.0546 × 10−3 160.534 s
60 9.1360 × 10−4 9.1360 × 10−4 1665.769 s
80 5.1402 × 10−4 5.1402 × 10−4 8993.522 s

Table 4. Errors and convergence rate in time for Example 1.

τ E∞ Rate Er Rate

1/8 1.2598 × 10−3 - 1.2990 × 10−3 -
1/16 3.1552 × 10−4 1.9975 3.2533 × 10−4 1.9975
1/32 7.8913 × 10−5 1.9994 8.1368 × 10−5 1.9994
1/64 1.9731 × 10−5 1.9998 2.0344 × 10−5 1.9998

If we fix m = n = 16 and vary the temporal step, τ, we can obtain errors and temporal
convergence rate, as shown in Table 2. It shows that the MI scheme based on the barycentric
interpolation collocation scheme for the NLS equation has second-order accuracy in time.
In addition, the spatial convergence rate is also obtained, and the L∞ errors at time T = 1
for NLS equation are shown in Figure 1.

Choose m = n = 20; the numerical solution and the exact solution of the NLS equation
are shown in Figure 2a,b. Moreover, it is necessary to verify the conservation of energy and
mass. We plot images of mass and energy varying over time. From Figure 3, it is obvious
that mass and energy are conserved.

5.2. Example 2

Consider the following 1D problem on [−10, 40]× (0, 9]: iut + ∆u + 2|u|2u = 0,
u(−10, t) = u(40, t) = 0,
u0(x) = sech(x) exp(2ix) + sech(x − 30) exp(−i(x − 30)).

This example shows the collision behavior of two solitary waves. If we provide the
initial value condition, a double solitary wave can be generated. When t = 0, two solitary
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waves are separated. The fast wave will catch up with the slow wave over time, and it will
then surpass the slow wave after the collision, and there is only one phase change between
them. This is consistent with the theory of waves; see Figures 4 and 5.

Figure 4. The interaction of two solitary waves without damping at T = 9 for Example 2.
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Figure 5. Head-on collisions of two solitary waves without damping for Example 2.

6. Conclusions

In this work, we have proposed an effective operator splitting scheme based on the
barycentric Lagrange interpolation collocation method for the nonlinear Schrödinger equa-
tion. The convergence analysis is proved theoretically and verified numerically. Numerical
examples are presented to show the mass and energy conservation of the proposed scheme.
The operator splitting collocation scheme is second-order in time and convergent exponen-
tially in space. The two barycentric interpolation collocation schemes have high accuracy,
and the barycentric Lagrange interpolation collocation method is slightly more efficient
than the barycentric rational interpolation collocation method. Compared with the finite
difference method, the barycentric interpolation collocation method can achieve high accu-
racy with fewer points. In the future, we plan to extend this method to coupled Schrödinger
equations, KdV equations and Klein–Gordon equations, etc.
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