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Abstract: It is frequently observed that adult members of prey species sometimes use their predation
mechanism on juvenile members of predator species. Ecological literature describes this phenomenon
as prey–predator role reversal dynamics.Numerous authors have observed and described the biologi-
cal development behind this feeding behaviour. However, the dynamics of this role reversal have
hardly been illustrated in the literature in a precise way. In this regard, we formulated an ecological
model using the standard prey–predator interactions, allowing for a reverse feeding mechanism. The
mathematical model consisted of a three-species food-web structure comprising the common prey,
intermediate predator, and top predator. Note that a role-reversal mechanism was observed between
the intermediate and top predators based on the scarcity of the prey population. However, we
observed the most critical parameters had a significant effect on this reverse feeding behaviour. The
bifurcation analysis is the primary criterion for this identification. The proposed deterministic model
is then extended to its stochastic analogue by allowing for environmental influences on the tri-trophic
food web structure. The conditional moment approach is applied to obtain the equilibrium distribu-
tion of populations and their conditional moments in the system. The stochastic setup analysis also
supports the stability of this food chain structure, with some restricted conditions. Finally, to facilitate
the interpretation of our mathematical results, we investigated it using numerical simulations.

Keywords: reverse feeding behavior; bifurcation; global stability; sensitivity analysis; conditional
moments

1. Introduction

In recent decades, the prey–predator relationship has been of great interest to all
ecologists. Several authors [1–5] have conducted extensive work to capture all possible
interactions between prey and predators. The most common aspect of the relationship
is the general interactive dynamics, i.e., predator attacks, where the prey avoids preda-
tion. Apart from the general interaction, a special kind of relationship exists where prey
reverse their feeding behavior for the predator species. The ecological literature describes
this phenomenon as prey–predator role reversal dynamics. Although there are several
paradigms of predatory dynamics in our ecosystem, like intraguild predation [6] and pre-
dation due to the switching mechanism [3,4], it is frequently observed that the adult of
the prey species sometimes shows their predation mechanism on the juvenile predator.
Numerous authors have witnessed and explained the biological development behind this
reversed dynamic [7–10], but extensive mathematical modelling is still needed to explore
the inherent dynamics of the role-reversal mechanism in a better way.
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A novel work in the domain of predator–prey role reversal was conducted by Barkai
and McQuaid [10]. The authors identified first the role reversal phenomena on the Malgas
Island of South Africa, between a decapod crustacean (Jasus lalandii) and a marine snail
(Burnupena papyracea). The rock lobster Jasus lalandii was generally found to exert its
predatory behaviour on Burnupena papyracea. However, it was observed that sometimes
the crustacean’s juvenile members were predated by the adult whelks. Consequently,
the abundance of the predatory species, i.e., the crustacean J. lalandii, was expected to
go extinct at some point in time. The authors Barkai and McQuaid [10] performed a
controlled ecological experiment on that island to rescue the population of J. lalandii, so that
an equilibrium was maintained in that marine ecosystem. Fauchald [11] also elicited the
role reversal dynamics between the Atlantic cod (Gadus morhua) and the Atlantic Herring
fish (Clupea harengus) in the northern-shelf ecosystems where cod predated upon herring
fish. The overfishing effect of G. morhua for economic purposes is another reason for their
population decline [12]. The convolution of the role reversal dynamics and the overfishing
effect is responsible for the “ecosystem hysteresis” in that northern-sea region. Based on
the paradigms mentioned earlier, the role reversal dynamics can be classified into three
categories, i.e., (a) the classical role-reversal mechanism; (b) role reversal due to reciprocal
intraguild predation; and (c) role-reversal for reducing only the future predation risk. The
works discussed by the authors of [10,11] described the classical predator–prey role-reversal
mechanism. Seminal experimental works were also performed by the authors of [9,13]
to demonstrate the classical predator–prey role-reversal action. Reciprocal intraguild
predation is defined as the interspecific killing of juvenile family members by the adult
member of those predators for the competition of the resources [14]. The predation of the
predator family’s juvenile offspring by the adult member of the same species is responsible
for the reverse feeding behaviour [15–17]. In this regard, Palomares and Caro [17] provided
a pattern in their research article demonstrating the interspecific killing among carnivores.
The pattern captures all possible interactions between the juvenile and adult members of
the same carnivorous species. The third category of the role reversal dynamics revealed
that sometimes the prey family’s adult member only eradicates the predator’s juvenile
member, but does not consume them. Saito [18] demonstrated the third category through
performing a biological experiment between the spider mite prey Schizotetranychus celarius
and their phytoseiid mite predator Typhlodromus bambusae. The author concluded that the
immobile nature of the phytoseiid mite’s egg was one reason behind this type of killing
and explained the incident as an "arms race" between the prey and the predator to reduce
the future risk of predation. The three categorizations are also expressed through the flow
diagram (see Figure 1).

Most experimental work in the role reversal domain is based on the first category.
One of the important aspects of the classical category is the work of Choh et al. [6]. The
main theme behind the research is that the predation experience of the survived juvenile
prey during their exposure to the predator interaction acts as a major yardstick for the
reverse attack on the juvenile predator during the adult stage of the prey that survived.
Choh et al. [6] claimed that the boldness and aggressiveness of some juvenile prey is the
key regulator for their lower predation risk for other prey species. The author carried out
this experiment by considering the following three predatory (mite) species, i.e., Iphiseius
degenerans (Berlese), Neoseiulus cucumeris (Oudemans), and Amblyseius swirskii (Athias-
Henriot) (Acari: Phytoseiidae). The three mite species are predated on by small insects
and pollens derived from the plants. However, the adults and juveniles of I. degenerans
and N. cucumeris predated on the infant stages of the other species, with adult members
attacking juvenile ones, even when the substitute food (such as pollen) is available [15].
Choh et al. [7] also ensure that the prey species’ ontogenetic development may be another
reason behind the reverse feeding behaviour. Breton and Addicott [19] also documented
the reverse feeding action as the mutualistic behaviour between the prey–predator.

Despite its significance, most ecologists have ignored the role reversal issue. The
importance of the role reverse mechanism lies in the interaction between prey and predators
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and how this impacts the stability of any ecosystem. Sanchez-Garduno et al. [20] and
Lehtinen [21] are some of the authors who have incorporated role reversal dynamics into
their modeling structures. The seminal work of Sanchez-Garduno et al. [20] is based on the
interaction between two predatory species that do not have any common prey. The recent
publication of Lehtinen [21] also described the reverse feeding action in a platform of a
two-dimensional model. Lehtinen [21] assumed several conditions, like prey hiding and
cannibalism, to describe his work. Moreover, the author was more interested in predator
extinction by incorporating the Allee effect phenomena. As a consequence, the novelty of
the role reversal mechanism has been ruled out from both of these works. In light of this,
there is an urgent need to construct a proper mathematical model that can describe the
reverse feeding mechanism in a precise way.

Engen et al. [22] describes that the ecological state of any system can be understood
through the model parameters, but the implication of model parameters in the work of
Sanchez-Garduno et al. [20] is not properly mentioned. The sensitivity of any parameter is
always responsible for both the stability and instability of any ecological system [3], which
is missing in the studies of Sanchez-Garduno et al. [20] and Lehtinen [21]. Moreover, ecosys-
tems are open systems, so the environment’s involvement is seriously reliant on ecological
scenarios. An ecological system’s deterministic stability does not guarantee that an equi-
librium will be established in any random environment [23]. Sanchez-Garduno et al. [20],
Lehtinen [21] also ignored the effect of natural calamities in their modeling structure, de-
spite the fact that all ecological interactions are intertwined with natural processes. It has
been argued the creation of predictive models of role-reversal interactions will greatly alle-
viate efforts towards preventing ecological collapse or understanding alternative ecosystem
states under changing conditions [20].

However, the impact of the reverse feeding (role reversal) mechanism on the interactive
dynamics between prey and their predators for shaping an ecosystem has been less explored.
Although there are some empirical studies that have been conducted in this regard, in
mathematical modeling of an ecological system, there is much less research. This, however,
creates a gap in understanding the effect of the role-reversal mechanism on the conspecific
interaction between prey and predators in an ecosystem. So, in a nutshell, maintaining the
aspects of several experiments [6,10,18] and in the spirit of Sanchez-Garduno et al. [20] and
Lehtinen [21], we provide a new mathematical overlay to the predator–prey role reversal
dynamics. By employing this modeling approach, which depicts a three-species food-
web structure, the influence of the role reversal mechanism on the interactive dynamics
between the prey and their predator becomes more clearly apparent than in other empirical
studies. This model includes common prey—intermediate or mesopredator—along with
a top predator. The top predator predates both the common prey and the intermediate
predator; but, based on circumstantial evidence, the intermediate predator reverses its
feeding role. The modeling structure also addresses the involvement of the environment
in ecological interactions to develop a better ecological understanding. Based on this, we
summarize our manuscript in the following way, i.e., Section 2 is devoted to the discussion
of the model formulation with the ecological synergy and persistence, permanence, and
related dynamical behavior of our proposed model system (5). In Section 3, we describe the
interplay between the top and intermediate predator through the sub-model (6), along with
the corresponding model analysis. We discuss the extension of the proposed deterministic
role-reversal model to its stochastic analogue using stochastic differential equations (SDEs)
in Section 4. The results of our analytical findings are discussed in the context of biological
realization in Section 5. Finally, the paper ends with a conclusion in Section 6. For ease of
reading, some analytical calculations and proofs are shown in the Supplementary Material.
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Predator–prey
role reversal mechanism

Due to the
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(Palomares and Caro,
1999; Montserrat et al.,
2008, 2012; Polis et al.,
1989)
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role-reversal

dynamics

(Choh et al., 2014;
Fauchald, 2010; Barkai
and McQuaid, 1988;
Nilsson et al., 2019)

Role-reversal to
reduce the future
risk of predation

(Saitō, 1986)

Figure 1. Flow diagram for the categorization of the predator–prey role-reversal feeding mechanism
mentioned in some existing literature [7,9–11,14–18].

2. Model Formulation

The main objective behind the development of this section is to create a proper mathe-
matical understanding so as to quantify the role reversal dynamics concerning the species’
feeding behavior. Several paradigms are present, which demonstrate that, based on the
feeding behavior of any species, it can reverse their role in the ecosystem [7]. Based on the
aforementioned evidence, we propose a deterministic growth model describing the role
reversal dynamics between more than one species. For the sake of simplicity, we considered
a three-species food web where one species acts as the prey and the remaining two are
the predators of that prey species. We further classified the predator species into two sub-
groups, i.e., the intermediate predator and the top predator. The superpredator (or the top
predator) can feed on both the intermediate predator and prey, whereas the intermediate
predator shows their predatory behavior on the prey only. However, the scarcity in the prey
population and the predation risk sometimes compel the intermediate predator to reverse
their feeding role. It is evident that the risk factor enables the intermediate predators’ adult
members to predate the juvenile member of the top predator [7]. According to [3], one
of the most important roles in a tri-trophic food-chain system is that of the intermediate
predator, which is responsible for regulating the system’s stability.

Keeping these aspects in mind, we developed a three-species food chain model. Here,
the prey population is denoted by R(t); in the absence of any predator, the prey species
is considered to grow logistically with an intrinsic growth rate of r and with K as their
carrying capacity. The carrying capacity is the maximum population size of any system. So,
the growth rate profile for the prey species can be expressed as

dR(t)
dt

= rR(t)
(

1 − R(t)
K

)
(1)

As two predatory species are present in the food-web structure, their predation on the
prey should profoundly affect the growth of the prey species. In ecological literature, the
prey species’ predatory behavior is captured through the “functional response” term. The
functional response is described as the rate at which a predator captures any prey. It would
be expected that the relationship between the functional response and the prey density
would increase linearly. However, in most of the evidence, for a substantial amount of
prey density, the predator should be limited by the handling time and the time taken to
consume the prey [3,24,25]. Considering both of these aspects, Holling [25] proposed a
functional relationship for the predator’s response on the prey, popularly known as the
“Holling type-II functional response”. The fundamental assumption behind the construction
of the response function is that upon increasing the prey density, the magnitude of the
response function increases very much. Still, because of the effect of predator satiation, the
magnitude of the response function would be unaltered after a certain threshold amount of
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prey density. Mathematically, this type of function is demonstrated through the hyperbolic
function. It is sometimes referred to as the hyperbolic response function, as the prey is
abundant in the system. We can also demonstrate the interaction between the prey and
predators through the “Holling type-II functional response" function.

As discussed above, we considered both the intermediate and top predators as the
two other species in the food chain. So, both of them interact with the prey. Now, the
assumption of a small prey size and the dynamics of both the adult and juvenile members
of the top predator highlights the feeding action of both the juvenile and adult members
of the top predator. In this regard, we consider that the transition rate of the juveniles
to the adult stage is b, with its magnitude lying in the semi-closed interval [0, 1). It is
evident from the interactive dynamics of some species that the juvenile member of the
top predator predates the prey. Based on this event, we consider the response function as
α2R(t)(1−b)P(t)

β2+R(t) , with α2 and β2 as the catching rate and half-saturation constant, respectively,
and P(t) as the density of the super-predator. As the prey species is the basal food source
of the intermediate predator, all members must predate the prey species extensively. In
this regard, the analytic expression of the functional response between the prey and the
intermediate predators should be α1R(t)N(t)

β1+R(t) , with N(t) as the density of the intermediate
predator. Thus, the complete growth function of the prey species is represented by

dR(t)
dt

= rR(t)
(

1 − R(t)
K

)
− α1 R(t) N(t)

β1 + R(t)
− α2 R(t) (1 − b) P(t)

β2 + R(t)
(2)

Predator–prey relationships are often perceived simply as situations in which a preda-
tor enhances its fitness by reducing its prey’s fitness. The predation effect of the intermediate
predator decreased the prey abundance. Similarly, predatory behavior also helps their
growth. So, the component of predation plays a positive role in the growth of the interme-
diate predator, which is captured through the same response function between the prey
and intermediate predator, i.e., e1α1R(t)N(t)

β1+R(t) where e1 is denoted as the rate of conversion of
the consumption of the prey into the growth of the intermediate predator. However, the
relationship between the intermediate predator and the top predator may become reversed
when the intermediate predator feeds on the juvenile member of the top predator [7].

It is frequently observed that during reverse feeding behavior, the juvenile members
from the top predator families are abundant in the ecosystem [14]. So, it becomes convenient
to find the prey species (juvenile members of the top predator) for the intermediate predator.
This clearly specifies that the interaction between the juvenile prey and the predator should
be proportional to their population density, which can be better explained by the principle
of mass action [20,21]. Note that the Holling type-I equation is the best function to express
this scenario [26]. So, we modified the type-I response function to explain the reverse
feeding action. The analytical form of this function is provided by e2α4aN(t)(1 − b)P(t),
with α4 and e2 denoting the predation rate and consumption rate of the intermediate
predator, respectively. This consumption behavior helps the intermediate predator with
their growth, and, in a similar way, the predation of the intermediate predator reduces
the density of the top predator extensively. As both the intermediate and top predator
coexist simultaneously, an intra and inter-specific competition must be present between the
species. The inter-specific competition is reflected through the above functional response
term. But, there remains a competition for the resources between the intermediate and
top predator species, namely intra-specific competition. We assume that the intraspecies
competition acts as a precursor of species extinction in a population of multi-species food-
web model [3]. Similarly, we also considered the natural death of the intermediate predator
to establish an equilibrium in any ecosystem. This means that the intermediate predator’s
mortality rate consists of two components: (i) death due to the intraspecies competition and
(ii) natural death. Motivated by the concept of the logistic growth law, we also considered
the mortality rate as N(t)(γ1N(t)− d1). Hence, the complete growth equation of the
intermediate predator is provided by
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dN(t)
dt

=
e1α1 R(t) N(t)

β1 + R(t)
− α3 N(t) b P(t)

β3 + N(t)
− γ1N2(t) + e2α4 a N(t) (1 − b)P(t)− d1 N(t) (3)

The top predator’s growth rate function similarly consists of the growth and the mortality
term, respectively. The growth function of the top predator is the convolution of the two
predation concepts. One is predation of the juvenile member on the prey species, and
the other is predation of the adult member on the intermediate predator. So, the analytic
expression of the growth term is provided by e3α2R(t)(1−b)P(t)

β2+R(t) + e4α3 N(t)bP(t)
β3+N(t) . Concurrently,

the top predator’s mortality function consists of three components, i.e., mortality due to the
species’ intraspecific competition, natural death rate, and the consumption of the juvenile
member of the top predator by the intermediate predator. The analytic expression of the
death term is provided by γ2P2(t)− α4aN(t)(1 − b)P(t)− d2P(t). So, the growth rate of
the top predator can be expressed as

dP(t)
dt

=
e3 α2 R(t) (1 − b) P(t)

β2 + R(t)
+

e4 α3 N(t) b P(t)
β3 + N(t)

− γ2P2(t)− α4 a N(t)(1 − b) P(t)− d2 P(t) (4)

Combining all these relationships (2)–(4), the complete food web model is given by

dR(t)
dt = rR(t)

(
1 − R(t)

K

)
− α1 R(t) N(t)

β1 + R(t) − α2 R(t) (1−b) P(t)
β2+R(t)

dN(t)
dt = e1α1 R(t) N(t)

β1+R(t) − α3 N(t) b P(t)
β3+N(t) − γ1N2(t) + e2α4 a N(t) (1 − b)P(t)− d1 N(t)

dP(t)
dt = e3 α2 R(t) (1−b) P(t)

β2+R(t) + e4 α3 N(t) b P(t)
β3+N(t) − γ2P2(t)− α4 a N(t)(1 − b) P(t)− d2 P(t)


(5)

The above discussion is also outlined in the schematic diagram in Figure 2. Here, the
compartments of juvenile and adult were created for better representation. The descrip-
tion of state variables and parameters along with their ecological meaning of the model
system (5), are shown in Table 1.

R(t) N(t)

P(t)

Adult

Juvenile

Juvenile

Adult

𝑟𝑅 𝑡 1 −
𝑅 𝑡

𝐾
𝛼1𝑅 𝑡 𝑁(𝑡)

𝛽1 + 𝑅 𝑡

𝑑
1
𝑁
(𝑡
)

𝑑2𝑃(𝑡)

 𝑹 𝒕 → 𝑷𝒓𝒆𝒚
 𝑵 𝒕 → 𝑰𝒏𝒕𝒆𝒓𝒎𝒆𝒅𝒊𝒂𝒕𝒆 𝑷𝒓𝒆𝒅𝒂𝒕𝒐𝒓
 𝑷 𝒕 → 𝑻𝒐𝒑 𝑷𝒓𝒆𝒅𝒂𝒕𝒐𝒓

Figure 2. The schematic representation of the tri-trophic food web (5) is depicted here, where the prey
species (R(t)), middle predator (N(t)), and top predator population (P(t)) are the major concerned
groups. Note that we did not include the juvenile and adult stages of the top and middle predator
as separate compartments in the modeling structure. It is only provided in this figure for better
understanding.
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Table 1. Ecological description of variables and parameters used in the system (5).

Variables
& Ecological Meaning

Parameters

R(t) Population density of prey
N(t) Population density of intermediate predator
P(t) Population density of top predator

r Intrinsic growth rate of prey
K Environmental carrying capacity of prey

α1 and α2 Consumption rate of prey by each intermediate predator and juvenile member of top predator in unit time
β1 and β2 Prey half saturation constant

a Transition rate of intermediate predator from juvenile to adult stage with a ∈ [0, 1)
b Transition rate of top predator from immature to mature stage with b ∈ [0, 1)
e1 Conversion factor from prey to intermediate predator
α3 Consumption rate of adult top predator to adult intermediate predator in unit time
β3 Adult intermediate predator half saturation constant

γ1 and γ2 Intraspecific competition coefficient of intermediate predator and top predator
e3 Conversion factor from prey to juvenile member of top predator
α4 Consumption rate of adult intermediate predator to juvenile top predator

d1 and d2 Mortality rate of intermediate predator and top predator
e2 Conversion factor from immature top predator to mature intermediate predator
e4 conversion factor from mature intermediate predator to mature top predator

2.1. Positivity and Boundedness

Theorem 1. All possible solutions of the system (5) with the corresponding initial conditions
always remain and bounded in the interior of R3

+.

Proof. The proof is given in the supplementary material.

2.2. Persistence and Permanence

Persistence (or permanence) is the intricate property of any dynamical system. It
addresses the long-term behavior of the concerned system, while permanence deals with
the limits of growth for some of the system’s components. Permanence assures that the
populations will recover from the infrequent disturbances often experienced by ecological
systems [27]. Mathematically, persistence and permanence can be described as:

Persistence: The n dimensional dynamical system is said to be persistent if for any forward
trajectory T(c0) = {c(t) = (x1(t), x2(t), . . . , xn(t))|t ≥ 0} with a positive initial condition
c0 ∈ Rn

>0 we have limt→∞ in f xi(t) > 0 ∀ i ∈ {1, 2, . . . , n}. Here, R>0 is the set of strictly
positive real numbers and for any integer n > 1, we call Rn

>0 the positive orthant.

Permanence: The n-dimensional dynamical system is said to be permanent on a forward
invariant set D ⊂ Rn

>0, where Rn
>0 be the positive orthant for any integer n > 1 if ∃ ϵ > 0

such that for any forward trajectory T(c0) with a positive initial condition c0 ∈ D, we have
ϵ < limt→∞ inf xi(t) and limt→∞ sup xi(t) < 1

ϵ .

Theorem 2. The proposed model system (5) is persistent under the following conditions.
(i) r − α1M∗

N − α2(1 − b)M∗
P > 0,

(ii) e1α1mR
β1+K − α3bM∗

P − d1 > 0,

(iii) e3α2(1−b)mR
β2+K + e4α3bmN

β3+M∗
N
− α4a(1 − b)M∗

N − d2 > 0

Proof. The proof is present in the supplementary material.
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Theorem 3. The system (5) is said to be permanent if ∃ positive constants m and M, with
0 < m ≤ M such that

min{lim inf
t→∞

R(t), lim inf
t→∞

N(t), lim inf
t→∞

P(t)} ≥ m

and
max{lim sup

t→∞
R(t), lim sup

t→∞
N(t), lim sup

t→∞
P(t)} ≤ M

for all solutions
(

R(t), N(t), P(t)
)

of the model system (5) with positive initial values.

Proof. The proof is present in the supplementary material.

2.3. Equilibrium Points and Their Stability

The equilibrium point or the stationary point in an ecological system is defined as
those points where the absolute growth velocity of the species vanishes. In our pro-
posed model (5), six such cases arise, i.e., (i) the trivial equilibrium point E0, (ii) predator-
free (axial) equilibrium point E1, (iii) top predator-free (planar) equilibrium point Ē,
(iv) intermediate predator-free (planar) equilibrium point Ê; (v) prey-free (planar) equi-
librium point Ẽ, and (vi) coexisting equilibrium point E∗. A detailed description of the
equilibrium points are provided in Supplementary Material.

Stability Analysis

The intricate property of any ecological or dynamical system is to maintain its stability.
Equilibrium points are the static point, so they do not provide any insight into the influence
of the other activities in any ecosystem. The inert nature of any ecological system will not
always be perpetual, which means a dynamic flow is inevitable in that system. It is essential
to nurture the behavior of the stationary points for that concerned system. The stability
analysis of those equilibrium points would be the only way to serve this purpose. Our
proposed model (5) also contains the six equilibrium points, so it is ubiquitous to analyze
the stability of those six stationary points with respect to the corresponding prey–predator
system. In this regard, we propose the following theorems to examine the stability of our
proposed system (5).

Theorem 4. For the system (5),

• Trivial equilibrium E0 is always unstable.
• Predator-extinction equilibrium E1 is locally asymptotically stable if the following conditions

hold:
α1 < d1

e1

(
β1
K + 1

)
and α2 < d2

e3(1−b)

(
β2
K + 1

)
.

• Top-predator-extinction equilibrium Ē is locally asymptotically stable if
( 2rR̄

K + α1β1 N̄
β1+R̄ +

2γ1N̄ + d1
)
>

(
r + e1α1R̄

β1+R̄

)
, e1α2

1β1R̄N̄
(β1+R̄)3 >

{ α1β1 N̄
β1+R̄ + r( 2R̄

K − 1)
}{ e1α1R̄

β1+R̄ − (2γ1N̄ + d1)
}

and α4 > α∗4 (= threshold value of α4).
• Intermediate predator-extinction equilibrium Ê is locally asymptotically stable if the following

conditions hold:
α3 > β3

bP̂

{
e1α1R̂
β1+R̂

+ e2α4a(1 − b)P̂ − d1

}
= α∗3 (= threshold value of α3) and tr(B) < 0 and

det(B) > 0.
• Prey-extinction equilibrium Ẽ is locally asymptotically stable if r < α1 Ñ

β1
+ (1−b)α2 P̃

β2
and

tr(C) = (D1 + D4) < 0 and det(C) = (D1D4 − D2D3) > 0.

Proof. The whole analytical work is provided in the Supplementary Material.
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Theorem 5. The coexisting equilibrium point (E∗) is locally asymptotically stable if ξ1 > 0, ξ3 > 0
and ξ1ξ2 − ξ3 > 0, where ξ1, ξ2 and ξ3 are the coefficients of the characteristic equation of the
Jacobian matrix [J]E∗ , which is λ3 + ξ1λ2 + ξ2λ + ξ3 = 0.

Proof. The analytical calculation is provided in Supplementary Material.

Furthermore, system (5) may undergo Hopf bifurcation if ξ1ξ2 − ξ3 = 0 holds.
It is worthwhile to note that the stability conditions of the coexisting equilibrium E∗

are very complicated. Consequently, it is difficult to explain the biological meaning of
such mathematical expressions. We use numerical computations to verify and illustrate
the stability of the prey, intermediate predator, and top predator. Figure 3 shows the local
stability of the system (5) around the interior equilibrium point (E∗). It is noted that the
parametric values are mentioned in the figure caption. Figure 4 shows the global stability
of the system (5) at E∗ for different initial conditions and the other parametric values are
mentioned in the corresponding figure caption.

Figure 3. Stable time series of (a) prey population, (b) intermediate predator population, and (c) top
predator population of system (5) around the interior equilibrium point E∗ by considering the
parametric values r = 1.5, K = 35, α1 = 0.05, β1 = 0.6, α2 = 0.18, β2 = 0.4, e1 = 0.4, α3 = 0.08,
a = 0.8, b = 0.55, β3 = 0.1, γ1 = 0.001, γ2 = 0.01, e4 = 0.6, α4 = 0.003, e2 = 0.5, e3 = 0.7, d1 = 0.0432,
d2 = 0.001.

Theorem 6. The positive coexisting equilibrium E∗(R∗, N∗, P∗) is globally asymptotically stable
with respect to all the solutions initiating in the interior of R3

+ if the following conditions hold:
(i) e2 > 1,
(ii) e1 > 1 and A′ < β1(e1 − 1),
(iii) A′

K > α1B
(β1+A′)(β1+R∗)

Proof. The proof is provided in the Supplementary Material.
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Figure 4. Phase portrait of model system (5) indicating E∗(23.7, 224.2, 6.821) is globally stable for
the parametric values r = 1.5, K = 35, α1 = 0.05, β1 = 0.6, α2 = 0.18, β2 = 0.4, e1 = 0.4, α3 = 0.08,
a = 0.8, b = 0.55, β3 = 0.1, γ1 = 0.001, γ2 = 0.01, e4 = 0.6, α4 = 0.003, e2 = 0.5, e3 = 0.7, d1 = 0.0432,
d2 = 0.001 with different initial conditions.

2.4. Bifurcation Analysis of Main Model

The stability of any ecosystem does not always depend on its dynamic movement,
rather it also sometimes relies on the intrinsic growth behavior of the species. The un-
derlying growth actions of any species should be extensively judged through the model
parameters involved in that ecosystem [22]. It is evident that certain changes in the model
parameters result in disturbances in the stability of the corresponding ecosystem [3,5]. The
efficacy of the bifurcation analysis is too structured to demonstrate the issue. The bifurca-
tion of any system is defined as the qualitative change in the behavior of the equilibrium
points when changing the parameter values. The selection of the model parameter as the
bifurcation parameter is one of the important aspects from an ecological point of view. Here,
we select the transition rate, a and b, of the intermediate and top predator, respectively,
as bifurcation parameters because the prey shifts from being prey to a predator when it
transitions from the juvenile to adult stage. For the predators, the scenario is different as
they are always the predator during the adult stage, but during the juvenile stage, they are
the victims (prey) of the adult prey.

Theorem 7. The necessary and sufficient condition for the occurrence of Hopf bifurcation of the
system (5) at b = b∗ are

(i) ξi(b∗) > 0 for i = 1, 2, 3 and ξ1(b∗)ξ2(b∗)− ξ3(b∗) = 0
(ii) Re[ dλi

db ]b=b∗ ̸= 0 for i = 1, 2, 3
where λi are the roots of the characteristic equation corresponding to the coexisting equilibrium
point E∗.

Proof. The proof is provided in the Supplementary Material.

Remark 1. In a similar manner, we check that Hopf bifurcation also occurs with respect to the
transition rate (a) of intermediate predator from the juvenile to adult stage.

3. Interplay between the Top and Intermediate Predators

Ecological literature depicts that in any tri-trophic food-chain system, the intermediate
predator tends to change their role from prey to predator with respect to the top predator,
due to a lack of prey or to reduce the predation risk. Although biologists routinely assign
the species as prey or predator, there is sometimes no conspicuous winner, as prey can
sometimes predate or inflict harm on their predators. This indicates that cyclic dominance
is also noteworthy for prey–predator interactions. Indeed, role reversal between prey and
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predators is an evolutionary adaptation developed over time, which collaborates prey
organisms in their constant struggle against their predators.

It is well documented that prey can reduce predation risk in several ways, such as
through behavioral changes. Role reversals or exchanges of roles are a more common
occurrence in interactive dynamics than what was once believed. In prey–predator interac-
tions, a species’ ecological roles may change during development, from the earliest stage
to maturity. It is also observed, depending on the scarcity of the prey population, that
the middle or intermediate predator will switch their predation behavior on the juvenile
member of the top predator. The prey–predator reversal is a biological interaction in which
a species plays the role of predator in the prey–predator interaction rather than functioning
as the usual prey. In population ecology, it is infrequently observed that a species act as
prey during its juvenile stage and may become a predator in their adult stage [7,9,11]. In
this context, it is essential to analyze the dynamics between the middle and top predators.
We considered the following sub-model from the proposed system (5).

dN(t)
dt = e2α4 a N(t) (1 − b)P(t)− α3 N(t) b P(t)

β3+N(t) − γ1N2(t)− d1 N(t)

dP(t)
dt = e4 α3 N(t) b P(t)

β3+N(t) − γ2P2(t)− α4 a N(t)(1 − b) P(t)− d2 P(t)

 (6)

with non-negative initial conditions N(0) > 0 and P(0) > 0. The notations were the
same with the system (5). The above discussion is also outlined in the following schematic
diagram (see Figure 5). Note that in this flow diagram, we create the compartment of
juvenile and adult for better convenience.

P(t)N(t)

Adult

JuvenileJuvenile

Adult

𝑑
2
𝑃
(𝑡
)

𝛼4𝑎 1 − 𝑏 𝑁 𝑡 𝑃(𝑡)

 𝑵 𝒕 → 𝑰𝒏𝒕𝒆𝒓𝒎𝒆𝒅𝒊𝒂𝒕𝒆 𝑷𝒓𝒆𝒅𝒂𝒕𝒐𝒓
 𝑷 𝒕 → 𝑻𝒐𝒑 𝑷𝒓𝒆𝒅𝒂𝒕𝒐𝒓

𝛼3𝑏𝑁 𝑡 𝑃(𝑡)

𝛽3 + 𝑁 𝑡

𝑑
1
𝑁
(𝑡
)

Figure 5. The schematic representation of the food web (6) is depicted here. The main objective in
of this figure is to describe the role-reversal action between juvenile and adult stages of the middle
(N(t)) and top predator populations (P(t)). Note that we did include the juvenile and adult stages of
the top and middle predator as the separate compartment into the modeling structure. This was only
provided in this figure for a better understanding.

3.1. Analysis of Sub-Model

In this segment of the analysis, we are considered a situation where both the inter-
mediate predator (N(t)) and top predator (P(t)) coexisted simultaneously and could live
together in a diverse environment. So, we considered only the interior equilibrium (E∗

s ) of
the sub-model (6).
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Theorem 8. The interior equilibrium point E∗
s (N∗

s , P∗
s ) is locally stable if µ1 > 0 and µ2 > 0.

Proof. The characteristic equation of the Jacobian matrix J(E∗
s ) is provided by

λ2 + µ1λ + µ2 = 0

where µ1 = −(Q11 + Q22) and µ2 = Q11Q22 − Q12Q21

Also, Q11 = e2α4a(1 − b)P − α3β3bP
(β3 + N)2 − 2γ1N − d1

Q12 = e2α4a(1 − b)N − α3bN
β3 + N

Q21 =
e4α3β3bP
(β3 + N)2 − α4a(1 − b)P

Q22 =
e4α3bN
β3 + N

− α4a(1 − b)N − 2γ2P − d2

Now, the eigenvalues of the above characteristic equation will be negative if µ1 > 0 and
µ2 > 0.

Therefore, the interior equilibrium point E∗
s is locally stable if µ1 > 0 and µ2 > 0.

The stability condition of the interior equilibrium E∗
s signifies that the intermediate

predator (N(t)) and top predator (P(t)) populations coexist in a stable manner. However,
it is difficult to interpret the explicit biological meanings of the existence and stability
conditions of the coexisting equilibrium E∗

s of the sub-model (6). On account of this, we
demonstrated the existence and stability of the intermediate and top predator populations
(see Figure 6) using numerical computations with α3 = 0.73, α4 = 0.65, e2 = 0.27, e4 = 0.5,
β3 = 0.2, a = 0.65, b = 0.55, γ1 = 0.0003, γ2 = 0.002, d1 = 0.05, d2 = 0.002. The status of
stability is also reflected by the phase portrait (Figure 7a) of the system (6).
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Figure 6. Time series solution of (a) the intermediate predator and (b) the top predator population
of the sub-model (6) by considering the parametric values α3 = 0.73, α4 = 0.65, e2 = 0.27, e4 = 0.5,
β3 = 0.2, a = 0.65, b = 0.55, γ1 = 0.0003, γ2 = 0.002, d1 = 0.05, d2 = 0.002.
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Figure 7. (a) Phase space of the sub-system around the coexisting equilibrium point and (b) stable
limit cycle of the sub-model (6).

3.2. Bifurcation Analysis

The survivability of the predator species may become uncertain depending on the
scarcity of the prey population. The prey switching mechanism [3], reverse feeding ac-
tion [11], etc., are several important aspects that ensure the sustainability of the predator
when there is a sparse amount of prey population. The studies of several authors [7,9,11]
revealed that on a three-species food web, the low abundance of the common prey compels
both the intermediate and top predator to change their feeding behavior. Fauchald [11]
delineated this incident through the biological realms of the Atlantic cod (Gadus morhua)
and the Atlantic Herring fish (Clupea harengus), where cod predates the herring fishes. Al-
though both species have a common prey, the low abundance of the zooplankton copepod
Calanus finmarchicus offered a chance to show the predatory behavior of the adult member
of the herring fish on the larvae, the eggs of the cod family. The author [11] observed
a reverse-feeding action in February, as this was the time of spawning for the cod fish.
Again, when entering the spring season, the increase in the abundance of copepods caused
C. harengus to predate C. finmarchicus, but this resulted in a greater scarcity in the cod
population due to the reverse predation. So, it is quite important to nurture the underlying
dynamics between the meso and top predators in the absence of the prey population.

We feel that the most critical phase that drives this growth dynamics (6) is the transition
of the juvenile to the adult stage. The rate of transition should be one of the key parameters
when maintaining the stability of the ecosystem. Note that any ecosystem’s strength
does not always depend on its dynamic movement; instead, it also sometimes depends
on the intrinsic growth behavior of the species. The underlying growth actions of any
species should be extensively considered through the model parameters involved in that
ecosystem [22]. It is evident that due to specific changes in the model parameters, the
stability of the corresponding ecosystem is disturbed [3,5]. The efficacy of the bifurcation
analysis is too well structured to demonstrate the issue. The bifurcation on any system is
defined by the qualitative change of the equilibrium points’ behavior with changing the
parameter values. Here, we selected both the transition rate a and b of the intermediate
and top predator, respectively, for the bifurcation analysis.

For numerical computations, we chose the following set of parameter values in such
a way that the sub-model (6) of the intermediate predator and top predators underwent
Hopf bifurcation. α3 = 0.75, α4 = 0.7, e2 = 0.5, e4 = 0.6, β3 = 0.2, γ1 = 0.0001, γ2 = 0.0002,
d1 = 0.001, d2 = 0.001 We also gradually increased the transition rates (a and b) from
the juvenile to adult stage of the intermediate predator and top predator, respectively.
We observed that the sub-system (6) undergoes Hopf bifurcation from the stable stage
during the increase in transition rates (a and b). To make this conspicuous, we drew
bifurcation diagrams of the sub-system (6) with respect to a and b (see Figures 8 and 9). We
observed an interesting dynamical behavior of the system (6) for the variation in transition
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parameters. The intermediate and top predator populations coexist with the stable pattern
for 0.45 < a < 0.7 and the two-point limit cycle oscillation for 0.7 < a < 0.95 (see Figure 8).
Likewise, the system shows the stable coexistence of the species for 0.5 < b < 0.63 and the
two-point limit cycle oscillation for 0.63 < b < 0.9 (see Figure 9). The existence of a stable
limit cycle oscillation is shown in Figure 7b for b = 0.88.
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Figure 8. Bifurcation diagram of the sub-model (6) for the bifurcation parameter a, transition rate
of the intermediate predator from the juvenile to the adult stage, where a ∈ [0.45, 0.95], and all
other parametric values are α3 = 0.75, α4 = 0.7, e2 = 0.5, e4 = 0.6, β3 = 0.2, b = 0.45, γ1 = 0.0001,
γ2 = 0.0002, d1 = 0.001, d2 = 0.001. (a) the intermediate predator population and (b) the top
predator population.
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Figure 9. Bifurcation diagram of the sub-model (6) for the bifurcation parameter b, transition rate
of top predator from juvenile to adult stage, where b ∈ [0.5, 0.9], and all other parametric values
are α3 = 0.75, α4 = 0.7, e2 = 0.5, e4 = 0.6, β3 = 0.2, a = 0.55, γ1 = 0.00025, γ2 = 0.0002, d1 = 0.05,
d2 = 0.002. (a) the intermediate predator population and (b) the top predator population.

Remark 2. Generally, the increase or decrease in transition rate does not happen regularly. However,
it has been observed that Great Lakes whitefish matured at younger ages, grew faster, and achieved
larger asymptotic sizes than the inland lake fish. The transition rate of fish species from the juvenile
stage to the adult stage is influenced by environmental factors, such as temperature and food
availability [28,29]. Therefore, the transition rate involves the randomness of the environment, as
any ecological system is an open system. In this connection, it would be best to analyze the stability
of the proposed tri-trophic food chain model (5) under the stochastic environment. To meet this
objective, we developed the next section where the stochastic stability of the proposed ecosystem 5
will be nurtured extensively.

Remark 3. The selection of the bifurcation parameter is also conducted based on the sensitivity
analysis of our proposed model (6). We used the concept of Marino et al. [30] to perform this
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analysis. Figure 10 supports that among all the model parameters a, b turned out to be the most
sensitive concerning the tri-trophic food-web system.
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Figure 10. The sensitivity analysis is performed based on the proposed model (5). Here, we draw
1000 samples using the Latin Hypercube Sampling (LHS) method regarding this analysis.

4. Stochastic Model

Fluctuations are the linchpin of any dynamical system. Population dynamics always
confront the effect of fluctuation in several ways. Any ecological system is exposed to
variations in two primary ways: the first is due to environmental factors, and the second
is related to demographic factors. The demographic effect is followed by the variation
among the species population. The incorporation of the environmental effect is due to
the involvement of external affairs in any dynamical system. The intrinsic nature of the
fluctuation fills any ecological system with a sense of randomness. Thus, the population
dynamics elaborate the effect of fluctuation or randomness through the corresponding
ecological system’s stochastic analysis. The (white) noise term in the stochastic analysis
reflects the randomness in any ecosystem. Noise in any stochastic system can be introduced
through an additive, multiplicative fashion [31] or through the model parameters [22].
Now, in general, the stochastic analog of any deterministic system can be described through
the following general Itô-type structure

dX(t) = f (t, X(t), Θ)dt + g(t, X(t), Θ)dW(t), t ≥ 0, X(0) = x0 (7)

Here f : R × Θ × [0, T] → R, g : R × Θ × [0, T] → R+ represents the corresponding
slowly varying continuous component, i.e., the drift coefficient and the rapidly fluctuating
continuous random component, i.e., the corresponding diffusion coefficient of the con-
cerned stochastic differential Equation (7), respectively. Ecologically, both the drift and
the diffusion coefficient of any SDE can be viewed as the corresponding deterministic
trend of the concerned process and the counterpart of the external factors involvement,
respectively [12]. The general terms X(t), Θ, t involved in both the diffusion and drift
coefficient indicate the corresponding state variable, parameter space, and the time domain,
respectively. Moreover, the term W(t) is the corresponding white noise term, defined as
the standard Wiener process following a Gaussian distribution N(0, t). Now, if we consider
ϵ(t) as a white noise process and use ϵ(t)dt = dW(t), where dW(t) denotes differential
form of Brownian motion, then Equation (7) becomes the following form:

dX(t) = f (t, X(t), Θ)dt + g(t, X(t), Θ)ϵ(t)dt
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i.e.,
dX(t)

dt
= f (t, X(t), Θ) + g(t, X(t), Θ)ϵ(t)

Based on the corresponding differential equation’s construction, one can view the state
variable (X(t)), and the drift part, the diffusion part of the SDE as the matrix-like structure.
So, the stochastic version of our proposed tri-trophic food-web model (5) can be written as

dR(t)
dt = rR(t)

(
1 − R(t)

K

)
− α1R(t)N(t)

β1+R(t) − α2R(t)(1−b)P(t)
β2+R(t) + σ1(

R
R∗ )ϵ1(t)

dN(t)
dt = e1α1R(t)N(t)

β1+R(t) − α3 N(t)bP(t)
β3+N(t) − γ1N2(t) + e2α4aN(t)(1 − b)P(t)− d1N(t) + σ2(

N
N∗ )ϵ2(t)

dP(t)
dt = e3α2R(t)(1−b)P(t)

β2+R(t) + e4α3 N(t)bP(t)
β3+N(t) − γ2P2(t)− α4aN(t)(1 − b)P(t)− d2P(t) + σ3(

P
P∗ )ϵ3(t)


(8)

Now, the state variables R(t), N(t), and P(t) are converted to the stochastic variables with
the Ito-type solution. In the system (8), the noise structure has been amalgamated with the
set of deterministic Equations (5). Consequently, the behavior of the variables R(t), N(t),
and P(t) will no longer be deterministic. Hence, the incorporation of the noise structure con-
verts the tri-trophic system into the stochastic process, which is reflected by the stochastic
differential equations in the expression (8). As the construction of the model (8) is governed
by the Wiener process, the analytical solution can be obtained through the Ito-calculus. In
principle, solving a system of Ito differential equations is generally intractable. So, here, we
follow the approach of Bhattacharya et al. [32], who proposed a simple approach for deter-
mining the equilibrium distribution of several populations in a system through a natural
extension of the classical variational matrix approach. According to Bhattacharya et al. [32],
this approach does not require the assumption of an underlying density for the population.
The equilibrium distribution of the rate of change of each variable, given the others and
their conditional moments, ensures the equilibrium distribution of the whole system. The
explanation for the consideration of the deterministic counterpart is provided in Section 2.
The term ϵi(t) can be viewed as the error of the process, i.e., the random variable with zero
mean and the unit variance. The compilation of these errors along with the noise intensity
structure form the diffusion coefficient. Here, we discuss the consideration of the diffusion
coefficient for our model (8) in the subsequent Section 4.1.

4.1. Selection of Diffusion Coefficient: An Ecological Relevance

The growth process in any species mainly passes through the three important zones,
i.e., the lag, log, and stationary phases, respectively [33,34]. During the lag phase, the
species tries to cope with the environmental conditions to initiate their growth cycle. The
log phase of any species shows its natural propensity towards nature to enhance its popula-
tion exponentially. As time passes on, as both the intraspecific and interspecific competition,
as well as several external constraints, exert their influence, they collectively contribute to
maintaining the maximum population size of that system during its stationary phase. As
any dynamical system is maintained through both demographic and environmental fluctu-
ations, the random component in the growth cycle of any species should be the convolution
of the environmental and demographic effect. The demographic fluctuation generally
occurs due to the variation in the population density. The environmental fluctuation is
depicted through natural calamities like floods, drought, fire, etc.

Thus, we consider the diffusion coefficient of the population density as the complica-
tion of the environmental noise intensity (σ) and the ratio of the population abundance with
its steady-state size, i.e., X(t)

X∗ , with X∗ as the magnitude of the population density during
its steady state. In the expression (8), the stochasticity is incorporated by the error structure
mediated by the Wiener process, which possesses the characteristics of white noise. The
significance of using white noise is that (i) the distribution of noise follows the Gaussian
density and (ii) has an independent increment structure. As we know, various factors
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such as changes in temperature, humidity, and light intensity, as well as environmental
pollution, pathogens, and food quality, are responsible for uncertain growth and death of
interacting populations. But, these factors cannot be predetermined flawlessly. For this
reason, we extended the deterministic model (5) to its stochastic analogue by introducing
environmental fluctuations. Initially, in the growth process, during the lag phase, the
population count was quite low with respect to the species abundance in its steady state,
which indicates a smaller variation in population size. Upon entering into the log phase,
the variation among the population sizes increases rapidly, and continues to its steady state.
The expression X(t)

X∗ specifies the same issue. So, the fluctuation term in the dynamical

system (8) can be described by the analytical expression σ
X(t)
X∗ . Bhattacharya et al. [32] also

used the same expression to establish the stability of the equilibrium distribution of any
multidimensional stochastic system.

4.2. Stability Analysis

The stability among the species population always maintains a healthy equilibrium in
the concerned ecosystem. Most of the literature on species dynamics is delineated through
the deterministic model. All of the environmental parameters involved in that deterministic
system are invariant with respect to the time or any environmental fluctuations, which does
not elicit the actual scenario. Most ecosystems do not follow the deterministic laws firmly;
instead, they oscillate randomly about some average value. The deterministic equilibrium
is no longer a fixed state [35,36]. It speculates the importance of the stability analysis
for the corresponding state variables under the stochastic setup. One of the promising
ways to deal with any ecological system’s stochastic stability is the method of Lyapunov
function (LF). Several authors [37,38] analyzed the stability of a stochastic system through
the construction of that LF. Bhattacharya et al. [35] revealed that the identification of LF
for any stochastic system was a completely blind search as no such strict laws exist to
construct the LF. But, it can be achieved in another way. The study of Stuart and Ord [39]
delineates that the convergence of the conditional moments up to the third-order provide
the equilibrium distribution of the concerned stochastic system. Bhattacharya et al. [32]
demonstrated this issue and put a great effort into establishing all possible aspects of the
equilibrium distribution for any stochastic prey–predator multidimensional model. The
work of Bhattacharya et al. [32] is mainly characterized by four important benchmarks, i.e.,
the equilibrium distribution of the (i) conditional means; (ii) conditional variances; (iii) con-
ditional covariances; and (iv) conditional skewnesses of the corresponding state variables.
In the spirit of Bhattacharya et al. [32], we are also interested in nurturing the stability of
our proposed stochastic system (8). The following subsections (Sections 4.2.1–4.2.4) deal
with the equilibrium distributions of the corresponding stochastic state variables.

4.2.1. Equilibrium Distribution of the Conditional Means

Bhattacharya et al. [32] stated that the necessary conditions for the convergence of
any population in any stochastic setup are the existence of the equilibrium distribution
of the conditional means of the corresponding state variables. Here, we demonstrate this
proposition for our stochastic model (8). The negative eigenvalues associated with the
variational matrix of the conditional means, i.e., E(xi/xj) with xi, xj = R(t), N(t), P(t),
will fulfill our requirements. The conditional means of the corresponding system (8) is
provided by

ER = E
[dR(t)

dt

]
= rR(t)

(
1 − R(t)

K

)
− α1R(t)N(t)

β1 + R(t)
− α2R(t)(1 − b)P(t)

β2 + R(t)

EN = E
[dN(t)

dt

]
=

e1α1R(t)N(t)
β1 + R(t)

− α3N(t)bP(t)
β3 + N(t)

− γ1N2(t) + e2α4aN(t)(1 − b)P(t)− d1N(t)

EP = E
[dP(t)

dt

]
=

e3α2R(t)(1 − b)P(t)
β2 + R(t)

+
e4α3N(t)bP(t)

β3 + N(t)
− γ2P2(t)− α4aN(t)(1 − b)P(t)− d2P(t)


(9)
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So, the variational matrix of (9) at the interior equilibrium point E∗ is provided by

JE =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 (10)

The expressions of all the Aij’s are provided in Table 2.

Table 2. Expressions of Aij for i, j = 1, 2, 3 in the Jacobian matrix (10).

A11 =
∂ER
∂R

= r(1 − 2R
K

)− α1β1N
(β1 + R)2 − (1 − b)α2β2P

(β2 + R)2

A12 =
∂ER
∂N

= − α1R
β1 + R

A13 =
∂ER
∂P

= −α2(1 − b)R
β2 + R

A21 =
∂EN
∂R

=
e1α1β1N
(β1 + R)2

A22 =
∂EN
∂N

=
e1α1R
β1 + R

− bα3β3P
(β3 + N)2 − 2γ1N + e2α4a(1 − b)P − d1

A23 =
∂EN
∂P

= − α3bN
β3 + N

+ e2α4a(1 − b)N

A31 =
∂EP
∂R

=
(1 − b)e3α2β2P

(β2 + R)2

A32 =
∂EP
∂N

=
be4α3β3P
(β3 + N)2 − α4a(1 − b)P

A33 =
∂EP
∂P

=
(1 − b)e3α2R

β2 + R
+

e4α3bN
β3 + N

− 2γ2P − α4a(1 − b)N − d2

Thus, the characteristic equation of the Jacobian matrix JE at the interior equilibrium
point E∗ be

λ3 + η1λ2 + η2λ + η3 = 0 (11)

where,

η1 = −(A11 + A22 + A33)

η2 = A11 A22 + A22 A33 + A33 A11 − A12 A21 − A23 A32 − A13 A31

η3 = A11 A23 A32 + A22 A13 A31 + A33 A12 A21 − A11 A22 A33 − A12 A23 A31 − A21 A32 A13

The roots of the characteristic equation provide the eigen values of the above variational
matrix JE. Instead of finding the closed form solution to that cubic Equation (11), we prefer
some numerical techniques.

4.2.2. Equilibrium Distribution of the Conditional Variances

The expression of the conditional variance of dR(t)
dt , dN(t)

dt and dP(t)
dt in (8) have the

following representation by our pre-consideration

VR = σ2
R

(
R(t)
R∗

)2

VN = σ2
N

(
N(t)
N∗

)2

VP = σ2
P

(
P(t)
P∗

)2


(12)
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The expression σ
X(t)
X∗ ensures that upon achieving a steady state, the conditional variance

of the equilibrium distribution will be independent of the effect of population abundance.
This indicates that during the stationary phase for those species, the role reversal dynamics
are only affected by the environmental noise intensity.

Now, differentiating (12) with respect to t, we have

V̇R = 2σ2
R

(
R(t)
R∗2

)
dR
dt

V̇N = 2σ2
N

(
N(t)
N∗2

)
dN
dt

V̇P = 2σ2
P

(
P(t)
P∗2

)
dP
dt


(13)

where ˙( ) = d
dt ( ).

If we replace the term dR
dt , dN

dt and dP
dt by their expectation, then we have the following

representation of the estimated rate of change for the conditional variance

̂̇VR = 2σ2
R

(
R(t)
R∗2

)
{rR(t)

(
1 − R(t)

K

)
− α1 R(t)N(t)

β1+R(t) − α2R(t)(1−b)P(t)
β2+R(t) }

̂̇VN = 2σ2
N

(
N(t)
N∗2

)
{ e1α1R(t)N(t)

β1+R(t) − α3 N(t)bP(t)
β3+N(t) − γ1N2(t) + e2α4aN(t)(1 − b)P(t)− d1N(t)}

̂̇VP = 2σ2
P

(
P(t)
P∗2

)
{ e3α2R(t)(1−b)P(t)

β2+R(t) + e4α3 N(t)bP(t)
β3+N(t) − γ2P2(t)− α4aN(t)(1 − b)P(t)− d2P(t)}


(14)

Now, the variational matrix of (14) at E∗ is provided by

JV =



∂̂̇VR
∂R

∂̂̇VR
∂N

∂̂̇VR
∂P

∂ ̂̇VN
∂R

∂ ̂̇VN
∂N

∂ ̂̇VN
∂P

∂̂̇VP
∂R

∂̂̇VP
∂N

∂̂̇VP
∂P


(15)

The detailed expression of the elements of the variational matrix JV is provided in Table 3.

Table 3. Expressions related to the all entries of the Jacobian matrix (15).

∂̂̇VR
∂R =

2σ2
R

R∗

{
2r − 3rR∗

K − α1 N∗(2β1+R∗)
(β1+R∗)2 − α2(1−b)P∗(2β2+R∗)

(β2+R∗)2

}
∂̂̇VR
∂N = − 2σ2

Rα1
β1+R∗

∂̂̇VR
∂P = − 2σ2

Rα2(1−b)
β2+R∗

∂ ̂̇VN
∂R =

2σ2
N e1α1

β1+R∗

∂ ̂̇VN
∂N =

2σ2
N

N∗

{
2e1α1R∗

β1+R∗ − α3bP∗(2β3+N∗)
(β3+N∗)2 − 3γ1N∗ + 2e2α4a(1 − b)P∗ − 2d1

}
∂ ̂̇VN
∂P = 2σ2

N

{
e2α4a(1 − b)− α3b

β3+N∗

}
∂̂̇VP
∂R =

2σ2
Pe3α2(1−b)β2
(β2+R∗)2

∂̂̇VP
∂N = 2σ2

P

{
e4α3bβ3

(β3+N∗)2 − α4a(1 − b)
}

∂̂̇VP
∂P =

2σ2
P

P∗

{
2e3α2(1−b)R∗

β2+R∗ + 2e4α3bN∗

β3+N∗ − 3γ2P∗ − 2α4a(1 − b)N∗ − 2d2

}
4.2.3. Equilibrium Distribution of the Conditional Covariances

In ref. [32], if xi(t) and xj(t) are the time-dependent (i, j)-th pair of the stochastic
variable, xi

∗ and xj
∗ are their respective equilibrium values and ϵi(t) and ϵj(t) are random

variables with zero mean and unit variance, then the covariance between ϵi(t) and ϵj(t) for
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the (i, j)-th pair is a function of |xi(t)− xj(t)| and is provided by ρ(|xi(t)− xj(t)|) and the
conditional covariance has the form

Ci,j = ρ(|xi(t)− xj(t)|)σi

( xi
xi

∗

)
σj

( xj

xj
∗

)
In order to keep the discussion simple, we considered ρ to be a constant to avoid complexity.
So, the simplifies form is

Ci,j = ρ σi

( xi
xi

∗

)
σj

( xj

xj
∗

)
Now, differentiating the above equation with respect to t, we have,

Ċi,j =
dCi,j

dt
= ρ

σiσj

xi
∗xj

∗

{
xj

dxi
dt

+ xi
dxj

dt

}
Keeping the above discussion in mind, according to the stochastic model (8), we can write
the conditional covariance as follows

ĊR,N = ρ
σRσN
R∗N∗

(
N

dR
dt

+ R
dN
dt

)
ĊN,P = ρ

σNσP
N∗P∗

(
P

dN
dt

+ N
dP
dt

)
ĊP,R = ρ

σPσR
P∗R∗

(
R

dP
dt

+ P
dR
dt

)
If we replace the terms dR

dt , dN
dt , and dP

dt by their expectations, then we have the following
representation of the estimated rate of change for the conditional covariance

̂̇CR,N = ρ
σRσN

R∗N∗

[
N
(

rR(1 − R
K
)− α1RN

β1 + R
− α2R(1 − b)P

β2 + R

)
+ R

( e1α1RN
β1 + R

− α3 NbP
β3 + N

− γ1 N2 + e2α4aN(1 − b)P − d1 N
)]

̂̇CN,P = ρ
σN σP

N∗P∗

[
P
( e1α1RN

β1 + R
− α3 NbP

β3 + N
− γ1 N2 + e2α4aN(1 − b)P − d1 N

)
+N

( e3α2R(1 − b)P
β2 + R

+
e4α3 NbP
β3 + N

− γ2P2 − α4aN(1 − b)P − d2P
)]

̂̇CP,R = ρ
σPσR

P∗R∗

[
R
( e3α2R(1 − b)P

β2 + R
+

e4α3 NbP
β3 + N

− γ2P2 − α4aN(1 − b)P − d2P
)
+ P

(
rR(1 − R

K
)− α1RN

β1 + R
− α2R(1 − b)P

β2 + R

)]

Now,

∂̂̇CR,N

∂R
= ρ

σRσN

R∗

[
r − 2rR∗

K
+

e1α1R∗(2β1 + R∗)− α1 β1 N∗

(β1 + R∗)2 − α3bP∗

β3 + N∗ − α2(1 − b)β2P∗

(β2 + R∗)2 − γ1 N∗ + e2α4a(1 − b)P∗ − d1

]
∂̂̇CR,N

∂N
= ρ

σRσN

N∗

[
r − rR∗

K
+

e1α1R∗ − 2α1 N∗

β1 + R∗ − α2(1 − b)P∗

β2 + R∗ − α3 β3bP∗

(β3 + N∗)2 − 2γ1 N∗ + e2α4a(1 − b)P∗ − d1

]
∂̂̇CN,P

∂N
= ρ

σN σP

N∗

[
e1α1R∗

β1 + R∗ +
e4α3bN ∗ (2β3 + N∗)− α3 β3bP∗

(β3 + N∗)2 +
e3α2(1 − b)R∗

β2 + R∗ + α4a(1 − b)(e2P∗ − 2N∗)

−2γ1 N∗ − γ2P∗ − (d1 + d2)

]
∂̂̇CN,P

∂P
= ρ

σN σP

P∗

[
e1α1R∗

β1 + R∗ +
e3α2(1 − b)R∗

β2 + R∗
α3b(e4 N∗ − 2P∗)

β3 + N∗ + α4a(1 − b)(2e2P∗ − N∗)− γ1 N∗ − 2γ2P∗ − (d1 + d2)

]
∂ ̂̇CP,R

∂P
= ρ

σPσR

P∗

[
α2(1 − b)(e3R∗ − 2P∗)

β2 + R∗ +
e4α3bN∗

β3 + N∗ − 2γ2P∗ − α4a(1 − b)N∗ − d2 + r(1 − R∗

K
)− α1 N∗

β1 + R∗

]
∂ ̂̇CP,R

∂R
= ρ

σPσR

R∗

[
α2(1 − b){e3R∗(2β2 + R∗)− β2P∗}

(β2 + R∗)2 +
e4α3bN∗

β3 + N∗ − γ2P∗ − α4a(1 − b)N∗ − d2 + r(1 − 2R∗

K
)

− α1 β1 N∗

(β1 + R∗)2 − α2(1 − b)β2P∗

(β2 + R∗)2

]
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4.2.4. Equilibrium Distribution of the Conditional Skewnesses

The third order conditional central moment of xi(t) is provided by (xi − cxi
∗)3 with

xi = R(t), P(t), N(t). The nature of the skewness, i.e., positivity and negativity, depends

on whether c is less than or greater than
(

xi
xi

∗

)
. So, the parameter c acts as the tuning

parameter responsible for determining the sign of the skewness, as the denominator of
the skewness formula is always positive. So, the conditional skewness of Rxi (t) has the
following representation

Sxi =
(xi − cxi

∗)3

σi
3
(

xi(t)
xi

∗

)3

Now, according to proposed stochastic model (8), the conditional skewnesses of dR(t)
dt , dR(t)

dt ,

and dR(t)
dt in (8) have the following representation

SR =
(R − cR∗)3

σR3
(

R
R∗

)3

SN =
(N − cN∗)3

σN3
(

N
N∗

)3

SP =
(P − cP∗)3

σP3
(

P
P∗

)3



(16)

Now, differentiating the above Equation (16) with respect to t, we have

ṠR =
3c

σR3
R∗4

R4 (R − cR∗)2 dR
dt

ṠN =
3c

σN3
N∗4

N4 (N − cN∗)2 dN
dt

ṠP =
3c

σP3
P∗4

P4 (P − cP∗)2 dP
dt


(17)

If we replace the terms dR
dt , dN

dt , and dP
dt by their expectations, then we the following

representation of the estimated rate of change of the conditional skewness

̂̇SR =
3c

σR3
R∗4

R4 (R − cR∗)2
[
rR(1 − R

K
)− α1RN

β1 + R
− α2R(1 − b)P

β2 + R

]
̂̇SN =

3c
σN3

N∗4

N4 (N − cN∗)2
[ e1α1RN

β1 + R
− α3NbP

β3 + N
− γ1N2 + e2α4aN(1 − b)P − d1N

]
̂̇SP =

3c
σP3

P∗4

P4 (P − cP∗)2
[ e3α2R(1 − b)P

β2 + R
+

e4α3NbP
β3 + N

− γ2P2 − α4aN(1 − b)P − d2P
]


(18)
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Now, the expected Jacobian matrix of (18) at E∗ is provided by

JS =



∂̂̇SR
∂R

∂̂̇SR
∂N

∂̂̇SR
∂P

∂ ̂̇SN
∂R

∂ ̂̇SN
∂N

∂̂̇VS
∂P

∂̂̇SP
∂R

∂̂̇SP
∂N

∂̂̇SP
∂P


(19)

The detailed expression of the elements of the variational matrix JS is provided in Table 4.

Table 4. Expressions related to all the entries of the Jacobian matrix (19).

M1 =
3cR∗4

σR3 M2 =
3cN∗4

σN 3 M3 =
3cP∗4

σP3

∂̂̇SR

∂R
=

M1(1 − c)
R∗2

[
r(3c − 1)− 2rcR∗

K
− α1 N∗{2(2c − 1)R∗ + β1(3c − 1)}

(β1 + R∗)2 − α2(1 − b)P∗{2(2c − 1)R∗ + β2(3c − 1)}
(β2 + R∗)2

]
∂̂̇SR

∂N
= −M1

α1(1 − c)2

R∗(β1 + R∗)

∂̂̇SR

∂P
= −M1

α2(1 − b)(1 − c)2

R∗(β2 + R∗)

∂ ̂̇SN

∂R
= M2

e1α1(1 − c)2β1

N∗(β1 + R∗)2

∂ ̂̇SN

∂N
=

M2(1 − c)
N∗2

[ e1α1(3c − 1)R∗

β1 + R∗ − α3bP∗{2(2c − 1)N∗ + β3(3c − 1)}
(β3 + N∗)2 − 2γ1cN∗ + e2α4a(1 − b)(3c − 1)P∗ − d1(3c − 1)

]
∂ ̂̇SN

∂P
= M2

(1 − c)2

N∗

[
e2α4a(1 − b)− α3b

β3 + N∗

]
∂̂̇SP

∂R
= M3

e3α2(1 − b)(1 − c)2β2

P∗(β2 + R∗)2

∂̂̇SP

∂N
= M3

(1 − c)2

P∗

[ e4α3bβ3

(β3 + N∗)2 − α4a(1 − b)
]

∂̂̇SP

∂P
=

M3(1 − c)
P∗2

[ e3α2(1 − b)(3c − 1)R∗

β2 + R∗ +
e4α3b(3c − 1)N∗

β3 + N∗ − 2γ2cP∗ − α4a(1 − b)(3c − 1)N∗ − d2(3c − 1)
]

The system (18) converges to the interior equilibrium point E∗ if the eigenvalues
associated with the Jacobian matrix (19) have negative real parts.

5. Results and Discussion

The interactive dynamics of the role-reversal mechanism between the three categories
of species, i.e., the common prey, the intermediate predator, and the top predator, are
reflected through the modeling framework (5). We developed Sections 2.3 and 3 to analyze
the intricate property of the proposed model (5). The theoretical analysis on the equilibrium
points (Theorems 4 and 5) delineated several important conditions for the system stability
around those six equilibrium points. We figured out the time-series profile for all six
equilibrium points by following our proposed conditions. Note that the whole numerical
simulation work was conducted in MATLAB, using R-software. MATLAB has several
facilities for finding numerical solutions for initial value differential equation problems.
For this purpose, we used the ode 45 solver in our problem. This solver was used to solve
non-stiff initial value ordinary differential equations (ODEs).

Here, we chose the following set of parameter values to continue our numerical
experiments.

r = 1.5, K = 35, α1 = 0.05, β1 = 0.6, α2 = 0.18, β2 = 0.4, e1 = 0.4, α3 = 0.08,
a = 0.8, b = 0.55, β3 = 0.1, γ1 = 0.001, γ2 = 0.01, e4 = 0.6, α4 = 0.003, e2 = 0.5, e3 = 0.7,
d1 = 0.0432, d2 = 0.001.



Math. Comput. Appl. 2024, 29, 3 23 of 33

The above set of parametric values give us that the positive coexisting equilibrium
point which is E∗ (23.7, 224.2, 6.82). Since the characteristic equation of the Jacobian
matrix around coexisting equilibrium E∗ is λ3 + ξ1λ2 + ξ2λ + ξ3 = 0. By calculation
we have ξ1 = 3.7179(> 0), ξ2 = 1.8850(> 0) and ξ3 = 0.2763(> 0). Now according
to Routh-Hurwitz criterion, since ξ1 > 0, ξ3 > 0 and ξ1ξ2(= 7.0082) > ξ3(= 0.2763),
the eigenvalues of the characteristic equation must be negative or roots have a negative
real part. After calculating, we obtained the three eigenvalues, which were −3.1468 and
−0.2856± 0.0791i. As one eigenvalue is negative and other two eigenvalues have a negative
real part, this clearly depicts the stability of the coexisting equilibrium point E∗. Thus, we
can conclude from here that the prey, intermediate predator, and top predator population
coexist simultaneously (see Figure 11). Moreover, in order to analyze any dynamical
behavior, a phase plane diagram is treated as one of the major tools in the non-linear
system. In this connection, in Figure 12, we illustrate the phase plane nature among prey,
intermediate predator, and top predator populations around the coexisting equilibrium
point E∗. The figure also demonstrates the stable characteristics of the system (5).
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Figure 11. Time-series evolution of (a) the prey, (b) the intermediate predator, and (c) the top predator
population for the system (5) around the interior equilibrium point E∗ by considering the parametric
values r = 1.5, K = 35, α1 = 0.05, β1 = 0.6, α2 = 0.18, β2 = 0.4, e1 = 0.4, α3 = 0.08, a = 0.8, b = 0.55,
β3 = 0.1, γ1 = 0.001, γ2 = 0.01, e4 = 0.6, α4 = 0.003, e2 = 0.5, e3 = 0.7, d1 = 0.0432, d2 = 0.001.

Co-existence between species is one of the essential aspects in any ecosystem. This
phenomenon is well explained by Figure 3. The size profile ( see Figure 3) delineates
the prey population’s logistic growth with an intrinsic growth rate of r = 1.5 and other
model parameter’s magnitudes are present in the caption of that Figure 3. At the initial
stage, because of the low abundance of intermediate and top predator populations, the
prey population increases at a rate of r = 1.5. But, when both the intermediate predator
and top predator start to predate the prey, the predator population density begins to
increase, and that of the prey population decreases rapidly. The profile 3 also describes
that with increasing time, i.e., 25 < t < 60, the reverse-feeding mechanism takes place,
i.e., the density of both the intermediate and top predators decrease simultaneously. The
total feeding action is then continued between the middle and top predator, so the entire
predation pressure is removed from the prey population. As a consequence, the prey
species increases rapidly. Finally, all three populations achieve their steady state after a
specific time (t = 60), and the system (5) shows stable behavior. So, it is evident that
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species’ co-existence is always an important issue in any ecosystem. In this regard, we
propose the Theorem 6 describing the condition on which the food chains of the three
species can always maintain their stability in any ecosystem.
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Figure 12. Phase space of the system (5) around the coexisting equilibrium point E∗.

The stability of the prey-free equilibrium point Ẽ(0, Ñ, P̃) is also demonstrated by the
Figure 13a. The figure illustrates that in the absence of the prey population, intermediate
predators will face a huge amount of predation risk. The above set of parameter values pro-
vides us the prey-free equilibrium point Ẽ(0, 63.76, 10.58), which is depicted in Figure 13b.

We also justify the analytical conditions: (i) r(= 1.5) <
{

α1 Ñ
β1

+ (1−b)α2 P̃
β2

}
(= 7.45),

(ii) tr(C) = D1 + D4 = −0.0145 (<0) and (iii) det(C) = D1D4 − D2D3 = 0.0037 (>0)
for the stability of the system (5) at the equilibrium point Ẽ. From this observation, we
determined that the predation pressure on intermediate predators by top predators should
be high, as there is not enough common prey for both predators to survive. As a conse-
quence, intermediate predators change their role from prey to predator with respect to
the super-predator, i.e., the role reversal mechanism takes place in the community for the
survival prospect.
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Figure 13. (a) Tim-series solution and (b) phase portrait of the system (5) around the prey-free
equilibrium point Ẽ for r = 1.5, K = 10, α1 = 0.05, β1 = 0.6, α2 = 0.18, β2 = 0.4, e1 = 0.4, α3 = 0.08,
a = 0.8, b = 0.55, β3 = 0.1, γ1 = 0.001, γ2 = 0.01, e4 = 0.6, α4 = 0.003, e2 = 0.5, e3 = 0.7, d1 = 0.0432,
d2 = 0.001.
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Similarly, in Figure 14, the stability of the intermediate-predator-free equilibrium
point Ê(R̂, 0, P̂) is studied, where r = 1.7, K = 35, α1 = 0.05, β1 = 0.6, α2 = 0.25, β2 = 0.4,
e1 = 0.4, α3 = 0.08, a = 0.8, b = 0.55, β3 = 0.1, γ1 = 0.001, γ2 = 0.01, e4 = 0.6, α4 = 0.001,
e2 = 0.5, e3 = 0.7, d1 = 0.0432, d2 = 0.001, and we find that the capture rate (α2) of the
immature top predator on prey and the conversion coefficient (e4) from intermediate
predator to mature top predator increases. On the other hand, the value of the consumption
rate (α4) of the mature intermediate predator on their immature top predator decreases,
and that is why the conversion efficiency (e2) from immature top predator to mature
intermediate predator also decreases due to the low rate of predation.
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Figure 14. (a) Time-series solution and (b) phase portrait of the system (5) around the intermediate
predator-free equilibrium point Ê for r = 1.7, K = 35, α1 = 0.05, β1 = 0.6, α2 = 0.25, β2 = 0.4,
e1 = 0.4, α3 = 0.08, a = 0.8, b = 0.55, β3 = 0.1, γ1 = 0.001, γ2 = 0.01, e4 = 0.6, α4 = 0.001,
e2 = 0.5, e3 = 0.7, d1 = 0.0432, d2 = 0.001.

In Figure 15, the stability behavior of the top-predator-free equilibrium point Ē(R̄, N̄, 0)
is analyzed using the parameter set r = 1.5, K = 35, α1 = 0.05, β1 = 0.6, α2 = 0.18, β2 = 0.4,
e1 = 0.4, α3 = 0.08, a = 0.8, b = 0.25, β3 = 0.1, γ1 = 0.001, γ2 = 0.01, e4 = 0.6, α4 = 0.01,
e2 = 0.5, e3 = 0.7, d1 = 0.0432, d2 = 0.001, and we find that the value of consumption rates
(α2 and α4) of intermediate predator on prey and top predator, respectively, increase and the
coefficient of intra-specific competition (γ1) of the intermediate predator decreases due to
the availability of their food. For this reason, the axial equilibrium point E1(K, 0, 0) becomes
unstable and the planar top predator-free equilibrium point Ē(R̄, N̄, 0) becomes stable.
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Figure 15. (a) Time-series solution and (b) phase portrait of the system (5) around the top predator-
free equilibrium point Ē for r = 1.5, K = 35, α1 = 0.05, β1 = 0.6, α2 = 0.18, β2 = 0.4, e1 = 0.4,
α3 = 0.08, a = 0.8, b = 0.25, β3 = 0.1, γ1 = 0.001, γ2 = 0.01, e4 = 0.6, α4 = 0.01, e2 = 0.5, e3 = 0.7,
d1 = 0.0432, d2 = 0.001.
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In Figure 16, we show the stability of both of the (intermediate and top) predator-
free equilibrium points E1(K, 0, 0) by using time series with parameter values r = 1.5,
K = 35, α1 = 0.01, β1 = 0.6, α2 = 0.01, β2 = 0.6, e1 = 0.4, α3 = 0.02, a = 0.2, b = 0.15,
β3 = 0.1, γ1 = 0.03, γ2 = 0.02, e4 = 0.6, α4 = 0.003, e2 = 0.5, e3 = 0.7, d1 = 0.0432, d2 = 0.1,
and we find that the system (5) achieved stability at the equilibrium point E1, where
both intermediate and top predator populations reach extinction and the prey population
reaches K (=35).

Apart from the co-existing structure, sometimes it is noticed that, in some seasons, the
abundance of the prey population decreases much lower [11]. Consequently, the dynamical
system of the three species is then restricted between the middle and top predators only. In
this connection, we provide a necessary condition (Theorem 8) for the co-existence of the
intermediate predator and the top predator in any ecosystem. This theoretical consideration
is also illustrated with the numerical means in Figure 7a,b. Both of these two-dimensional
figures illustrate the stability condition of the model (6). Note that the proposed condition of
stability in Theorem 8 highly depends on the model parameters a, b, i.e., the transition rates
from the immature to the adult stage of the intermediate and the top predator, respectively.
Thus, the changing magnitudes of these transition rates will surely alter the stability of the
sub-model (6). In this context, we also propose the Theorem 7 to analyze the dynamical
system’s stability under the variability of the model parameters a and b. The Theorem 7
with Figures 8 and 9 indicate that the system (6) shows the Hopf bifurcation about the
two transition rate parameters of a and b, respectively. We considered the range of these
rate parameters as the semi-closed interval [0, 1). The bifurcation diagram (see Figure 8)
indicates that the low rate of transition from the juvenile to adult stage maintains a healthy
equilibrium among the intermediate and top predators. However, the high transition rates
from the juvenile to adult stage enhance the effect of predation for both predatory species.
As a consequence, the system (6) will show its unstable behavior. These phenomena is
well explained in both of the Figures 8 and 9, where it is claimed that upon exceeding the
threshold values of a (i.e. 0.7) and b (i.e. 0.63), the total system becomes unstable.
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Figure 16. (a) Time-series solution and (b) phase portrait of the system (5) around both predator-free
equilibrium points E1 for r = 1.5, K = 35, α1 = 0.01, β1 = 0.6, α2 = 0.01, β2 = 0.6, e1 = 0.4, α3 = 0.02,
a = 0.2, b = 0.15, β3 = 0.1, γ1 = 0.03, γ2 = 0.02, e4 = 0.6, α4 = 0.003, e2 = 0.5, e3 = 0.7, d1 = 0.0432,
d2 = 0.1.

Hitherto, we have discussed the deterministic scenario of the proposed tri-trophic food-
web system (5). But, ecological systems are open systems, which deal with environmental
influences, making any ecosystem random. Thus, it is essential to analyze the stability of
any system under a stochastic environment. In this regard, we constructed the model (8)
under Section 4 to discuss the stochastic nature of the tri-trophic food-web system. We
followed the concept of [32] to nurture the stability in the stochastic model (8), which uses
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population density as the random variable. The authors elucidated that the steady state
behavior of any stochastic system depends on the stability of the first three conditional
central moments, i.e., the mean, variance, and skewness of the concerned random variable.
To meet this objective, we established some theoretical facts for the stability of the first three
conditional moments of the population random variables R(t), N(t), and P(t), respectively.
The theoretical means are also supported by the numerical scheme. In Figure 17, we
see that all of the conditional moments of the species abundance converge towards their
equilibrium distribution. Note that this phenomenon is justified by the time series diagram
(Ref. Figure 18) and this figure shows that the solution curves of the stochastic system
oscillate around the solution curves of the deterministic system. The oscillation that
occurred for the stochastic system was due to the environmental noise. If the noise level is
very low (Ref. Figure 19), then the solution curves for both deterministic and stochastic
systems are almost identical. This clearly shows that for a certain range of parameter values,
the tri-trophic food-web attains its stability in both the deterministic and stochastic case.
However, we also performed a case study to observe the convergence of the equilibrium
distributions for the population density as the function of control parameters. We feel
that this situation can be well demonstrated by the scale parameter σi (i = 1, 2, 3). We
considered two sets of triplet values of intensity of noise: in the first set, we considered
the comparatively low intensity of noise σ1 = 0.04, σ2 = 0.05, and σ3 = 0.09, and in the
second set, we considered the comparatively high intensity of noise σ1 = 0.2, σ2 = 0.3, and
σ3 = 0.5, where the initial conditions were R(0) = 0.9, N(0) = 0.8, and P(0) = 0.2 and the
other model-associated parametric values were the same. The fluctuations generated in
Figure 18 for the stochastic system (8) were due to the set of triplet values of intensity of
noise σ1 = 0.04, σ2 = 0.05, and σ3 = 0.09 and the other parametric values are mentioned
in the caption of Figure 18. Taking the second set of triplet values for intensity of noise,
i.e., σ1 = 0.2, σ2 = 0.3, and σ3 = 0.5, with the same initial conditions and the same
parametric values as for Figure 18, we created Figure 20. From this figure (see Figure 20),
it is observed that all species of the deterministic system (5) remained stable, the same as
Figure 18, but all species of the stochastic system (8) disappeared completely due to the
high intensity of noise. Hence, it can be concluded that various factors, such as changes
in temperature, humidity, light intensity, environmental pollution, pathogens, and food
quality, are responsible for the uncertain growth and deaths of interacting populations.
However, these factors cannot be predetermined flawlessly. Thus, consideration of the
stochastic model is more justified than the deterministic model setup.

Next, we slowly raised the noise level from low to high to see what happened in the
tri-trophic prey–predator interactive food chain system. Then, we showed the solution
curves for both deterministic and stochastic systems for different values of the intensity of
noise. In Figures 19–22, we took the initial conditions R(0) = 0.9, N(0) = 0.8, P(0) = 0.2
and parameters r = 1.5, K = 35, α1 = 0.2, β1 = 0.6, α2 = 0.18, β2 = 0.4, a = 0.75, b = 0.5,
e1 = 0.4, α3 = 0.8, e2 = 0.5, β3 = 0.1, γ1 = 0.03, γ2 = 0.01, α4 = 0.1, e3 = 0.7, e4 = 0.6,
d1 = 0.002, d2 = 0.001. The only difference among Figures 19–22 is the intensities of
environmental changes. Specially, we choose σ1 = σ2 = σ3 = 0.01 in Figure 19; in Figure 21,
we chose σ1 = σ2 = σ3 = 0.055 and in Figure 22, we chose σ1 = σ2 = σ3 = 0.09. From
Figures 19–22, we observed that the coexisting equilibrium E∗(R∗, N∗, P∗) solution curves
of the stochastic model (8) always oscillated with respect to the curves of the deterministic
model (5). Those figures depicted that if the intensity of the environmental changes
increased, the fluctuations of the solution also increased. So, from Figures 19–22, we arrived
at the conclusion that the decrease in values of σ1, σ2, and σ3 fluctuations fo the solution
curves of the stochastic system were reduced and coincided with that of the solution curves
of the deterministic system.
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Figure 17. (a) The transient phases and equilibrium distributions of the conditional means, (b)
the transient phases and equilibrium distributions of the conditional mean rates, (c) the transient
phases and equilibrium distributions of the conditional variances and (d) the transient phases and
equilibrium distributions of the conditional skewnesses for the three-species competition model (8).
We consider r = 1.5, K = 35, α1 = 0.2, β1 = 0.6, α2 = 0.18, β2 = 0.4, a = 0.75, b = 0.5, e1 = 0.4, α3 =

0.8, e2 = 0.5, β3 = 0.1, γ1 = 0.03, γ2 = 0.01, α4 = 0.1, e3 = 0.7, e4 = 0.4, d1 = 0.002, d2 = 0.001 as the
magnitude of the hypothetical parameters with σ1 = 0.07, σ2 = 0.09 and σ3 = 0.08.
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Figure 18. Time series evolution of (a) the prey population, (b) the intermediate predator population
(c) the top predator population and (d) the phase portrait of the deterministic system (5) and stochastic
system (8) by considering r = 1.5, K = 35, α1 = 0.2, β1 = 0.6, α2 = 0.18, β2 = 0.4, a = 0.75, b = 0.5,
e1 = 0.4, α3 = 0.8, e2 = 0.5, β3 = 0.1, γ1 = 0.03, γ2 = 0.01, α4 = 0.1, e3 = 0.7, e4 = 0.4, d1 = 0.002,
d2 = 0.001 as the magnitude of the hypothetical parameters. We also chose σ1 = 0.04, σ2 = 0.05, and
σ3 = 0.09 for a stochastic environment.
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Figure 19. Simulation showing the solution curves of (a) the prey population, (b) the intermediate
predator population, (c) the top predator population of the deterministic system (5) and corresponding
stochastic system (8) with noise σ1 = σ2 = σ3 = 0.01.

Time

0 500 1000

P
re

y

0

10

20

30

40
Deterministic

Stochastic

Time

0 500 1000

In
t.

 p
re

d
a

to
r

0

200

400

600
Deterministic

Stochastic

Time

0 500 1000

T
o

p
 p

re
d

a
to

r

0

20

40

60
Deterministic

Stochastic

(b)(a) (c)

Figure 20. Time-series evolution of (a) the prey population, (b) the intermediate predator population,
(c) the top predator population of the deterministic system (5), and stochastic system (8) for parameters
r = 1.5, K = 35, α1 = 0.2, β1 = 0.6, α2 = 0.18, β2 = 0.4, a = 0.75, b = 0.5, e1 = 0.4, α3 = 0.8, e2 = 0.5,
β3 = 0.1, γ1 = 0.03, γ2 = 0.01, α4 = 0.1, e3 = 0.7, e4 = 0.6, d1 = 0.002, d2 = 0.001 and high intensity of
noise σ1 = 0.2, σ2 = 0.3 and σ3 = 0.5.
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Figure 21. Simulation showing the solution curves of (a) the prey population, (b) the intermediate
predator population, (c) the top predator population of the deterministic system (5) and corresponding
stochastic system (8) with noise σ1 = σ2 = σ3 = 0.055.
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Figure 22. Simulation showing the solution curves of (a) the prey population, (b) the intermediate
predator population, (c) the top predator population of the deterministic system (5) and corresponding
stochastic system (8) with large noise σ1 = σ2 = σ3 = 0.09.

Under parametric values r = 0.02, K = 10, α1 = 0.6, β1 = 0.6, α2 = 0.8, β2 = 0.4,
a = 0.75, b = 0.5, e1 = 0.4, α3 = 0.8, e2 = 0.5, β3 = 0.1, γ1 = 0.03, γ2 = 0.01, α4 = 0.5,
e3 = 0.7, e4 = 0.6, d1 = 0.23, d2 = 0.3 and initial conditions R(0) = 0.1, N(0) = 0.7, and
P(0) = 0.1, we created Figure 23 by taking a low intensity of noise, i.e., σ1 = 0.01, σ2 = 0.02,
and σ3 = 0.02, and we created Figure 24 by considering a high intensity of noise σ1 = 0.4,
σ2 = 0.3, and σ3 = 0.8. From both figures (Ref. Figures 23 and 24), it is seen that all the
species of the stochastic system (8), as well as the corresponding deterministic system (5),
disappeared completely. Therefore, if the deterministic system experienced extinction, the
stochastic system also experienced extinction, in which case the solution was not dependent
on the intensity of the noise value (compare Figure 23 and Figure 24).
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Figure 23. The solution curves for (a) the prey population, (b) the intermediate predator population
and (c) the top predator population of both the deterministic system (5) and the related stochastic
system (8) with noise σ1 = 0.01, σ2 = 0.02 and σ3 = 0.02 go to extinct.
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Figure 24. The solution curves for (a) the prey population, (b) the intermediate predator population
and (c) the top predator population of both the deterministic system (5) and the related stochastic
system (8) with high intensity of noise σ1 = 0.4, σ2 = 0.3 and σ3 = 0.8 go to extinct.

6. Conclusions

It is frequently observed that the adults of prey species sometimes show their preda-
tion mechanism on juvenile predators. Ecological literature has described this phenomenon
as prey–predator role-reversal dynamics. Numerous authors have observed and explained
the biological mechanism behind this feeding behavior [7,11]. However, the development
of models addressing role of reversal dynamics have hardly been found in the literature,
except in a few publications [20,21]. We explained the role reversal mechanism with a catas-
trophic change in population towards extinction through a simple prey–predator dynamic
governed by two-dimensional differential equations. We believe the entire dynamics will
change if an intermediate predator and stochasticity are introduced to the system. The
predation mechanism of juvenile and adult members of the top and intermediate predators
has a substantial impact on this reversal mechanism. Keeping these things in mind, we
frame a tri-trophic food-web structure to incorporate the role-reversal dynamics. The model
contains common prey with intermediate and top predators. The top predator has the
ability to predate both the intermediate predator and the prey simultaneously. Because
of the scarcity of the prey population and to reduce the predation risk, the intermediate
predators exhibit a reverse feeding strategy towards the top predator.

A feeding mechanism due to role reversal is inevitable in ecosystems. Still, the rate
at which both the intermediate and top predator populations move from being young to
adults can affect how well the species can survive. The bifurcation analysis conveys that
the rate of transformation rate from juvenile to adult is the key parameter for maintain-
ing stability in this ecosystem. The transition from adolescence to adulthood creates a
significant change in the characteristics of any population and achieving the subsequent
reproductive qualifications of that population. The transition rate from the juvenile to
adult stage of a species plays a meaningful role in predator–prey interactive dynamics.
From this study, it is observed that the model system (5) transitions from a stable state
to an unstable state due to the increasing value of transition rates (a and b) from juvenile
to adult stage of the intermediate predator and top predator populations, respectively
(Ref Figures 8 and 9). The intermediate and top predator populations coexist with a stable
pattern for 0.45 < a < 0.7 and 2-point limit cycle oscillation for 0.7 < a < 0.95. Likewise,
the system shows stable coexistence of the species for 0.5 < b < 0.63 and 2-point limit
cycle oscillation for 0.63 < b < 0.9. Therefore, a low transition rate from adolescence to
adulthood maintains a healthy equilibrium among intermediate and top predators. But, the
high transition rate from the juvenile to adult stage results in the model system (5) changing
from a steady state to an unstable state. However, the high transition rate enhances the
predation efficiency of both of the predatory species.

Moreover, we introduced stochasticity through additive noise and studied the stochas-
tic stability of the system based on the first three-order conditional moments of the pop-
ulation. The convergence of the equilibrium distributions supports that under stochastic
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perturbation, the system (8) attains its stability. As depicted in Figure 20, the species ex-
hibit stability in the deterministic system (5), but in the stochastic system (8), all species
undergo extinction due to the exceedingly elevated noise level. Changes in light inten-
sity, temperature, humidity, environmental pollution, pathogens, and dietary quality are,
therefore, among the variables that contribute to the unpredictability of the growth and
mortality of interacting populations. However, these factors cannot be perfectly predicted
in a deterministic way. Therefore, the stochastic model configuration is more reasonable as
a consideration in comparison with the deterministic model. To sum up, the high level of
environmental noise during reversal dynamics with stochasticity causes the population
to completely disappear, which is a catastrophic change compared with the deterministic
counterpart.
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