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Abstract: Free vibrations of porous functionally graded material (FGM) plates with complex shapes
are analyzed by using the R-functions method. The thickness of the plate is variable in the direction
of one of the axes. Two types of porosity distributions through the thickness are considered: uniform
(even) and non-uniform (uneven). The elastic foundation is defined by two parameters (Winkler
and Pasternak). To obtain the mathematical model of the problem, the first-order shear deformation
theory of the plate (FSDT) is used. The effective material properties in the thickness direction are
modeled by means of a power law. Variational Ritz’s method joined with the R-functions theory is
used for obtaining a semi-analytical solution of the problem. The approach is applied to a number of
case studies and validated by means of comparative analyses carried out on rectangular plates with
a traditional finite element approach. The proof of the efficiency of the approach and its capability to
handle actual engineering problems is fulfilled for FGM plates having complex shapes and various
boundary conditions. The effect of different parameters, such as porosity distribution, volume
fraction index, elastic foundation, FGM types, and boundary conditions, on the vibrations is studied.

Keywords: functionally graded material; R-function method; elastic foundation

1. Introduction

FGMs represent modern materials that are going to be widely used in many industries,
with applications in aircraft and rockets, ships, nuclear reactors, and a number of components
used in mechanical engineering. The intensive use of functionally graded materials has
led to the need for a thorough study of their behavior during operation, considering such
characteristics as porosity, elastic foundation, and varying plate or shell thickness. In
this regard, many scientists focused their investigations on both theories related to the
development of mathematical models [1–11] and experiments [12,13].

It can be noted that porosity can occur in functionally graded structures during the
manufacturing process. So, many researchers took into account the influence of porosity
while they were investigating mechanical, thermal, and other characteristics of FGM
structures. Kim et al. [14] used the classical and first-order shear deformation theory to
investigate buckling, bending, and free vibration characteristics of porous FG plates. Higher-
order shear deformation theory (HSDT) was applied by Cong et al. [15] for analytical
modeling of the buckling and post-buckling behavior of porous FGM plates subjected
to thermal and mechanical loads. Zur and Jankowski [16] carried out a multiparametric
investigation of the free vibration behavior of circular porous FGM plates using the classical
plate theory. Li et al. [17] considered a semi-analytical approach to investigate the free
vibration behavior of porous FG cylindrical shells. Wang and Wu [18] examined the free
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vibration characteristics of porous FG cylindrical shells with different boundary conditions
by applying the sinusoidal shear deformation theory (SSDT). In the last few decades,
functionally graded materials have been increasingly applied to nanocomposite structures
in thermal and magnetic environments [19].

The literature on the vibration analysis of FGM plates resting on elastic foundations has
been enriched by many scientific contributions in the last few years; the elastic foundation
model based on the Winkler and Pasternak interaction has been widely applied: the Winkler
model was developed for railroad tracks, and the Pasternak model introduced a new parameter
to include the spring displacement in the longitudinal and lateral directions. Yang and
Shen [20] conducted a vibration analysis of an initially stressed FGM plate resting on an elastic
foundation; they used a simple power law for material gradation with clamped boundary
conditions. Amini et al. [21] carried out a three-dimensional vibration analysis of the FGM
plate resting on a Winkler foundation; Chebyshev polynomials and the Ritz method were
applied to obtain the vibration modes. Results for free vibration and buckling analysis of
an S-FGM (Sigmoid FGM) sandwich plate supported on an elastic foundation were reported
by Singh and Harsh [22]. Malekzaden and Karami [23] studied the free vibration behavior
of a homogeneous linearly varying thick plate resting on an elastic foundation using differ-
ential quadrature methods. Investigations on porous FGM structures with even and uneven
distributions of porosity have been observed in the last few years. Rezaei and Saidi [24,25]
analyzed the free vibration and flexural response of porous plates with different boundary
conditions. Zenkour [6] investigated the static response of porous FGM single-layered and
sandwich plates using a quasi-3D shear deformation theory. Trinh et al. [26] examined the
effect of evenly distributed and unevenly distributed porosities on the dynamic behaviors of
FG cylindrical, spherical, and hyperbolic paraboloid shells by means of the FSDT.

Nguen et al. [27] used the first-order shear deformation theory for deriving theoretical
formulations and illustrating the nonlinear response of FG porous plates under thermal
and mechanical loads supported by Pasternak’s model of an elastic foundation. Evenly and
unevenly distributed porosities were included in a distribution law for the calculation of
the effective properties of FGM plates. Thrin et al. [28] developed a three-variable refined
shear deformation theory to investigate the free vibration and bending behavior of porous
FG doubly curved shallow shells exposed to uniform and sinusoidal pressure. Two porosity
types influence parameters that influence the material properties and structure behaviors
in different aspects. Kumar et al. [29] applied the first-order shear deformation theory for
the presentation of a displacement model of the kinematic equations for tapered, porous
FGM plates with variable thickness resting on a two-parameter elastic foundation. The
solutions for constant and varying thick plates were investigated. Vinh and Huy [30]
examined the static bending, free vibration, and buckling of FG sandwich plates with
porosity using the finite element model based on a hyperbolic shear deformation theory.
Most of the works cited above and the most of scientific literature dealt with rectangular
plates. Balak et al. [31] studied the dynamic behavior of an elliptical multilayer plate with
a saturated porous filler resting on an elastic foundation; these authors considered the case
of the face sheet layers being piezoelectric. To solve the problem, the authors applied the
first-order shear deformation theory and Galerkin’s method.

Based on the above literature, it seems that many studies were conducted for the
vibration analysis of FGM plates. But investigations in the field of porous FGM plates and
shells with variable thickness resting on an elastic foundation are in demand now and are
still limited. In particular, there is a need to investigate FGM plates and shells with complex
planform and different boundary conditions.

In Ref. [32], nonlinear dynamics of spherical caps were numerically investigated, with
an exploration of chaos-induced symmetry breaking. Nonlinear random vibrations of
circular cylindrical shells were experimentally investigated in Ref. [33]. Modal localizations
due to small imperfections in circular cylindrical shells were numerically investigated in
Ref. [34]. A complex dynamic scenario of shells in contact with a non-Newtonian fluid was
experimentally investigated in Ref [35].
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In the present paper, the authors propose an approach combining the R-functions
theory and variational Ritz method for studying the free vibration behavior of porous
FGM plates of different forms with a hole of complex geometry. These plates are resting
on an elastic foundation. The method allows the construction of admissible functions in
an analytical form and the consideration of different boundary conditions for the hole and
outside border. The thickness of the FGM plate can be varied using a linear or nonlinear
law. Moreover, FEM analyses have been carried out with COMSOL Multiphysics in order
to investigate the advantages and disadvantages of finite element modeling and boundary
condition sensitivity and to carry out comparisons with the analytical method.

2. Formulation of the Problem

Consider a porous plate on an elastic foundation with variable thickness. Assume that
a plate (Figure 1A) is made of functionally graded material (FGM), namely a mixture of
ceramics (top of the plate) and metal (bottom). The distribution law of thickness for the
general case is shown in Figure 1B. The plate may have an arbitrary shape.
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Figure 1. (A) FGM plate on elastic foundation with variable thickness; (B) distribution law of
thickness for general case.

Two porosity distribution types are studied: even (Figure 2a) and uneven (Figure 2b).
The effective material properties through the thickness such as Young’s modulus E and
mass density ρ can vary with a power law for an FGM with the porosity distribution
factor α [24–26]:
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Type I (even) is given as follows:

Pe f (z) = (Pm(T)− Pc(T))
(

z
h
+

1
2

)p
+ Pc(T)−

α

2
(Pc(T) + Pm(T)) (1)

Type II (uneven) is presented as follows:

Pe f (z) = (Pm(T)− Pc(T))
(

z
h
+

1
2

)p
+ Pc(T)−

α

2
(Pc(T) + Pm(T))

(
1 − 2

|z|
h(x, y)

)
(2)

Here, p is the positive volume fraction index (gradient index). The mechanical charac-
teristics of ceramics Pc and metal Pm depend on temperature T. This dependence is defined
by known formulas presented in Refs. [6–8].
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Equations (1) and (2) represent the general formulas for the determination of the elastic
modulus E and the density ρ of the composite.

The stress and strain resultants in matrix form are as follows:

{N} = [A ]
{

ε0
}
+ [B]{χ}, {M} = [B]

{
ε0
}
+ [D]{χ}, {Q} = Ks A33{γ13, γ23}T (3)

where {N} = {N11, N22, N12}T are forces per unit edge length in the middle surface
of a plate, {M} = {M11, M22, M12}T are bending and twisting moments per unit edge
length, and Q =

(
Qx, Qy

)T are transverse resultants; the coefficient K2
s denotes the

shear correction factor. The components of the vectors
{

ε0} =
{

ε0
11, ε0

22, γ0
12
}T and

{χ} = {χ11, χ22, χ12}T are defined in the following way:

ε0
11 = u,x ε0

22 = v,y γ0
12 = u,y +v,x, γ13 = w,x +ψx, γ23 = w,y +ψy, (4)

χ11 = ψx,x , χ22 = ψy,y , χ12 = ψx,y +ψy,x

where u and v are middle surface displacements along the axes Ox and Oy, respectively; w
is the transverse deflection of the plate along the axis Oz; and ψx, ψy are angles of rotations
of the normal to the middle surface about the axes Oy and Ox. Matrices [A ], [B], [D] have
the following form:

[A ] =

 A11 A12 0
A12 A22 0
0 0 A66

,[B] =

 B11 B12 0
B12 B22 0
0 0 B66

,[D] =

 D11 D12 0
D12 D22 0
0 0 D66

, (5)

Elements of the matrixes [A ], [B], [D] are calculated as follows:

([A ], [B], [D])

h(x,y)
2∫

− h(x,y)
2

Ee f f (z)[C]
(

1, z, z2
)

dz, [C] =
1

1 − ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 (6)

Assuming that Poisson’s ratio ν is constant and the same for metal and ceramics, we
can calculate exactly the values of the elements Aij, Bij, Dij(i, j = 1, 2, 6) of matrices (5):

A11 = A22 = 1
1−ν2

(
Em−Ec

p+1 + Ec − α
2 (Ec + Em) + δ

(
α(Ec+Em)

4

))
h(x, y),

A12 = νA11, A66 = A44 = A55 = A11(1−ν)
2

(7)

B11 = B22 =
(Em − Ec)p

(1 − ν2)(p + 1)(p + 2)
h2(x, y)

2
, B12 = νB11, B66 = B44 = B55 =

B11(1 − ν)

2
(8)

D11 = D22 =
h3(x, y)
1 − ν2

(
Ec

12
− α

24
(Ec + Em) + (Em − Ec)

(
1

p + 3
− 1

p + 2
+

1
4(p + 1)

)
+ δ

(
α(Ec + Em)

32

))
,

D12 = νD11, D66 = D44 = D55 =
D11(1 − ν)

2
(9)

where α is the porosity distribution factor; the indicator δ is the tracing, and this constant is
equal to 0 for the even porosity and 1 for the uneven porosity.

The influence of the elastic foundation is taken into account as the reaction–deflection
relation of Pasternak using the following formula [4,27]:

p0 = Kww − KP∇2w (10)

where ∇2w = ∂2w
∂x2 + ∂2w

∂y2 , and Kw, KP are the Winkler foundation stiffness and the shear
stiffness of the Pasternak foundation, respectively.



Math. Comput. Appl. 2024, 29, 10 5 of 17

The equations of motion for the FGM plates are the following:

∂N11

∂x
+

∂N12

∂y
= I0

∂2u
∂t2 + I1

∂2ψx

∂t2 ;

∂N22

∂y
+

∂N12

∂x
= I0

∂2v
∂t2 + I1

∂2ψy

∂t2 ;

∂Qx

∂x
+

∂Qy

∂y
−
(

Kww − KP∇2w
)

= I0
∂2w
∂t2 ;

∂M11

∂x
+

∂M12

∂y
− Qx = I2

∂2ψx

∂t2 + I1
∂2u
∂t2 ;

∂M22

∂y
+

∂M12

∂x
− Qy = I2

∂2ψy

∂t2 + I1
∂2v
∂t2 , (11)

where

(I0, I1, I2) =

h(x,y)
2∫

−h(x,y)
2

ρ(z)
(

1, z, z2
)

dz (12)

By integrating relation (12), we obtain analytical expressions of these coefficients in
the following form:

I0 =

(
ρm − ρc

p + 1
+ ρc −

α

2
(ρc + ρm) + δ

(
α(ρc + ρm)

4

))
h(x, y) (13)

I1 =
(ρm − ρc)p

(1 − ν2)(p + 1)(p + 2)
h2(x, y)

2
, (14)

I2 = h3(x, y)
(

ρc

12
− α

24
(ρc + ρm) + (ρm − ρc)

(
1

p + 3
− 1

p + 2
+

1
4(p + 1)

)
+ δ

(
α(ρc + ρm)

32

))
(15)

The total potential energy of the system is expressed as

Π = U + Ve − T (16)

where strain energy U, potential Ve and kinetic energy T in this case are defined by the
following expressions:

U =
∫
Ω

(
N11ε

(0)
11 + N22ε

(0)
22 + N12γ

(0)
12 + M11χ11 + M22χ22 + M12χ12 + Q1γ13 + Q2γ23

)
dΩ (17)

Ve =
1
2

∫
Ω

(
Kww2 + Kp

( →
∇w

)2
)

dΩ (18)

T =
1
2

∫
Ω

((
I0

((
∂u0

∂t

)2
+

(
∂v0

∂t

)2
+

(
∂w0

∂t

)2
)
+ 2I1

(
∂ψx

∂t
∂u0

∂t
+

∂ψy

∂t
∂v0

∂t

)
+ I2

((
∂ψx

∂t

)2
+

(
∂ψy

∂t

)2
))

dΩ (19)

3. Solution Method

To solve this problem, we use the Ritz method, which is an effective method with
some drawbacks in application. For example, the main difficulty, arising in the case of
complex geometry, is the construction of admissible functions; such a problem can be
solved by using the R-functions theory. The application of the Ritz method in combination
with the R-functions theory (RFM) allows one to represent the unknown solution in
an analytical form. This is a great advantage of this method compared to other numerical
methods. The R-functions theory offers approaches to the construction of so-called solution
structures [36–39]. Those solution structures are the base for constructing the system of
admissible functions. For example, let us construct the solution structures and set of
admissible functions for the clamped plate shown in Figure 3a.
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The boundary conditions for a plate clamped on the whole border including the cut
(CL-CL) are

w = 0, u = 0, v = 0, ψx = 0, ψy = 0, ∀(x, y) ∈ ∂Ω (20)

For these boundary conditions, the solution structure has the following form:

w = ωΦ1, u = ωΦ2, v = ωΦ3, ψx = ωΦ4, ψy = ωΦ5 . (21)

The functions ω(x, y) are constructed using the R-functions theory and satisfy the
following conditions:

ω(x, y) = 0, ∀(x, y) ∈ ∂Ω,
ω(x, y) > 0, ∀(x, y) ∈ Ω .

In the given case, the functions ω(x, y) have the following form:

ω(x, y) = ( f1 ∧0 f2) ∧0 ωcut (22)

ωcut(x, y) = −( (( f3 ∨0 f4) ∨0 f12) ∧0 (( f5 ∨0 f6) ∨0 f11) ∧0 ( ( f7 ∧0 f8 ) ∧0 ( f9 ∧0 f10) ) ) (23)

where symbols ∧0,∨0 denote the R-operations of the R0-system [36], which have the
following form:

• x1 ∧0 x2 ≡ x1 + x2 −
√

x2
1 + x2

2 is the R-conjunction, which describes the intersection
of the domains;

• x1 ∨0 x2 ≡ x1 + x2 +
√

x2
1 + x2

2 is the R-disjunction, which describes the union of
the domains.

Functions fi, i = 1, 12 in relations (22) and (23) are defined as follows:

f1 =
(
a2

1 − x2)/2a1 ≥ 0, f11 =
(
a2 − x2)/2a ≥ 0,

f2 =
(
b2

1 − y2)/2b1 ≥ 0, f12 =
(
a2 − y2)/2a ≥ 0,

f3 =
(

r2
1 − x2 − (y − a)2

)
/2r1 ≥ 0, f4 =

(
r2

1 − x2 − (y + a)2
)

/2r1 ≥ 0,

f5 =
(

r2
1 − (x − a)2 − y2

)
/2r1 ≥ 0, f6 =

(
r2

1 − (x + a)2 − y2
)

/2r1 ≥ 0,

f7 =
(
(x − a)2 + (y + a)2 − r2

2

)
/2r2 ≥ 0, f8 =

(
(x + a)2 + (y − a)2 − r2

2

)
/2r2 ≥ 0,

f9 =
(
(x − a)2 + (y − a)2 − r2

2

)
/2r2 ≥ 0, f10 =

(
(x + a)2 + (y + a)2 − r2

2

)
/2r2 ≥ 0,

(24)
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In Formulas (21), the functions Φi(x, y),
(
i = 1, 5

)
are indefinite components of the

structure solutions. These components are expanded in series on some complete system of
functions

{
φ
(k)
i

}
, (k = 1, 2, 3, 4, 5):

Φ1 =
N1

∑
i = 1

ai φ
(1)
i , Φ2 =

N2

∑
i = N1+1

ai φ
(2)
i , Φ3 =

N3

∑
i = N2+1

ai φ
(3)
i ,Φ4 =

N4

∑
i = N3+1

ai φ
(4)
i , Φ5 =

N5

∑
i = N4+1

ai φ
(5)
i , (25)

where ai, i = 1, 2, · · · N5 are indefinite coefficients.
After the substitution of expressions (25) into (21), the following representation of the

sought solution can be obtained:

w(x, y) =
N1
∑

i = 1
aiwi(x, y), u(x, y) =

N2
∑

i = N1+1
aiui(x, y), v(x, y) =

N3
∑

i = N2+1
aivi(x, y),

ψx(x, y) =
N2
∑

i = N3+1
aiψxi(x, y), ψy(x, y) =

N3
∑

i = N4+1
aiψyi(x, y)

(26)

The functions

wi = ω(x, y)φ
(1)
i (x, y), ui = ω(x, y)φ

(2)
i (x, y), vi = ω(x, y)φ

(3)
i (x, y),

ψxi = ω(x, y)φ
(4)
i (x, y), ψyi = ω(x, y)φ

(5)
i (x, y)

(27)

are basic functions that satisfy boundary conditions (20) for any choice of the indefinite
coefficients. These coefficients are sought by the Ritz method from the condition for the
corresponding functional to have a stationary point. It is easy to show that in the given
case, for harmonic vibrations, this functional has the following form:

J = U + Ve − λ2P (28)

where U, Ve and P are the maximum potential and kinetic energies, respectively. Let us
note that expressions for U and Ve coincide with (17) and (18).

The maximum kinetic energy T takes the following form:

P =
1
2

x

Ω

(
I0

(
u2 + v2 + w2

)
+ 2I1

(
uψx + vψy

)
+ I2

(
ψx

2 + ψy
2
))

dxdy (29)

Here, λ is a natural frequency of the harmonic vibrations in Equation (28).

4. Numerical Results and Discussion
4.1. Validation of the Approach

To prove the effectiveness of the proposed method and the accuracy of numerical results,
a validation analysis was carried out for square FGM plates; different cases were considered
by changing the parameters of porosity, volume exponent, elastic foundation, FGM type,
and boundary conditions. The following five tests describe several comparative examples.

Test 1

Free vibrations of a simply supported FGM Si3N4/SUS304 square plate with porosity
(Type 1) are considered. The mechanical characteristics of the mixture are as follows:

Si3N4 : E = 322.27 GPa, ν = 0.3, ρ = 2370 kg/m3;
SUS304 : E = 207.78 GPa, ν = 0.3, ρ = 8166 kg/m3.

This plate is porous with porosity distribution factor α = 0, 0.1, 0.2 and changing
gradient index p = 0, 1, 2, 5, 10, 100. Values of non-dimensional fundamental frequency
Λ = λ (2a)2h0

√
ρc/Ec for this study are presented in Table 1. A comparative analysis was

carried out via comparisons with Ref. [28]. It is observed that there is an excellent agreement.
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Table 1. Comparison of non-dimensional fundamental frequency Λ = λ (2a)2h0
√

ρc/Ec for simply
supported porous Si3N4/SUS304 FG plates ( a

b = 1, h
2a = 0.1) with Ref. [28].

p α = 0 α = 0.1 α = 0.2

RFM [28] RFM [28] RFM [28]

0 0.0249 0.0250 0.0241 0.0241 0.0231 0.0231
1 0.0348 0.0348 0.0347 0.0348 0.0347 0.0347
2 0.0394 0.0394 0.0399 0.0399 0.0406 0.0406
5 0.0460 0.0460 0.0477 0.0477 0.0502 0.0501

10 0.0503 0.0503 0.0531 0.0530 0.0572 0.0571
100 0.0567 0.0567 0.0613 0.0614 0.0688 0.0688

Test 2

An investigation of the free vibration of a square FGM plate on an elastic foundation
made of aluminum and alumina (Al/Al2O3) without porosity (α = 0) is conducted. The
mechanical characteristics are as follows:

Al: E = 70 GPa, ν = 0.3, ρ = 2707 kg/m3

Al2O3: E = 380 GPa, ν = 0.3, ρ = 3800 kg/m3

Non-dimensional fundamental frequencies Λ = λ (2a)2h0
√

ρm/Em were obtained
for Ks = π2

12 using the FSDT. The elastic stiffnesses of Winkler and Pasternak foundations
are defined as follows:

KW =
KW h3

0

(2b)412(1 − νmνc)
, KP =

KPh3
0

(2b)212(1 − νmνc)

Four different values of the volume exponent index p = 0, 1, 2, 5 are taken. Table 2
shows a comparison with results from Refs. [29,40]; an additional comparison with the
finite element method (FEM) using COMSOL Multiphysics V6.2 is presented in Table 2.

Table 2. Comparison of non-dimensional fundamental frequency Λ = λ (2a)2h0
√

ρm/Em for
simply supported (without porosity) FG (Al/Al2O3) plates ( a

b = 1, h0
2a = 0.05, Ks = π2

12 ) on elastic
foundation with Refs. [29,40] and FEM.

Kw Kp Method p = 0 p = 1 p = 2 p = 5

0 0 RFM 0.0291 0.0222 0.0202 0.0191
[29] 0.0291 0.0222 0.0202 0.0191
[40] 0.0291 0.0222 0.0202 0.0191
FEM 0.0286 0.0219 0.0199 0.0187

0 100 RFM 0.0406 0.0378 0.0374 0.0377
[29] 0.0406 0.0378 0.0374 0.0377
[40] 0.0406 0.0378 0.0374 0.0377
FEM 0.0384 0.0352 0.0347 0.0347

100 0 RFM 0.0298 0.0233 0.0214 0.0205
[29] 0.0298 0.0233 0.0214 0.0205
[40] 0.0298 0.0233 0.0214 0.0205

100 100 RFM 0.0411 0.0384 0.0381 0.0384
[29] 0.0411 0.0384 0.0381 0.0384
[40] 0.0411 0.0384 0.0381 0.0384

A comparison of the results obtained shows that the deviation of the frequencies
calculated using the FEM is over 7% for the case of Pasternak’s elastic foundation, while the
results obtained using the RFM are in good agreement with the values from Refs. [29,40].
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Test 3

Verification of the proposed method for square isotropic plates with various thick-
nesses a/h0 = 5, 10, 100 and different boundary conditions is performed. The following
conditions are considered: The plate is simply supported on the whole boundary (SSSS);
the plate is completely clamped on the whole boundary (CCCC); the plate has two opposite
sides clamped and two other sides simply supported (CSCS); the plate has two adjacent
sides clamped and two other adjacent sides simply supported (CCSS). The thickness of the
plate varies linearly in the y-direction [29]. Taper ratio β is set equal to 0.25. A comparison
of the present fundamental frequencies Λ = λ (2a)2√ρm/Em/h0 with Refs. [27,31] is
presented in Table 3.

Table 3. Comparison of the fundamental frequencies Λ = λ (2a)2√ρm/Em/h0 for isotropic square
tapered plates, β = 0.25, with different boundary conditions and thicknesses with Refs. [27,31].

a/h0 Method SSSS CCCC CSCS CCSS

100 RFM 22.176 40.310 35.578 32.473
[31] 22.164 40.309 - 32.441
[27] 22.308 41.998 - 32.306

10 RFM 21.209 35.668 31.909 29.273
[31] 21.224 35.65 - 29.339
[27] 21.351 38.098 - 29.856

5 RFM 19.012 28.192 25.645 23.590
[31] 19.057 28.154 23.887
[27] 19.1493 30.976 25.043

Table 4 shows the fundamental frequencies Λ = λ (2a)2√ρm/Em/h0 given by
the present approach for isotropic square simply supported tapered plates with different
thicknesses a/h = 5, 10, 100 and values of ratio tapers, β = 0.5 and β = 1, compared with
the results of Refs. [29,41] and with finite element method (COMSOL Multiphysics) for the
case a/h0 = 100.

Table 4. Comparison of the fundamental frequencies Λ = λ (2a)2√ρm/Em/h0 for isotropic square
simply supported square tapered plates with different thicknesses and taper ratios with Refs. [29,41].

Taper Ratio β Method a/h0 = 100 a/h0 = 10 a/h0 = 5

0.5 RFM 24.554 23.258 20.450
[41] 24.543 23.282 20.518
[29] 25.059 23.728 20.834
FEM 21.570 - -

1 RFM 29.193 27.062 22.882
[41] 29.184 27.120 23.031
[29] 30.897 28.511 23.928
FEM 25.430 - -

For plates having a variable thickness, the deviation of the results obtained using the
RFM does not exceed 2% compared to the results presented in Ref. [29], and the results
obtained have a good agreement with the results in Ref. [41]. The results obtained using the
FEM differ significantly from the results presented in Refs. [29,41], and the error is about
13%. The authors can suppose that the FEM is not very useful for this specific problem of
plates with variable thickness due to the ratio between length and thickness.



Math. Comput. Appl. 2024, 29, 10 10 of 17

Test 4

This example presents vibration analysis of square FGM plates (Al/Al2O3) with
different boundary conditions (SSSS, CCCC, CSCS), changing gradient index p = 3, 5, and
porosity distribution factor α = 0, 0.1, 0.2. Two porosity distribution types (even and
uneven) are considered; the taper ratio is β = 0.4. The shear deformation factor is taken
as Ks = π2

12 . The results are shown in Table 5. Good agreement was found with Ref. [29]
and with the finite element method (COMSOL Multiphysics) for the even distribution
of porosity.

Table 5. Comparison of non-dimensional frequency parameter Λ = λ (2a)2√ρm/Em/h0 for square
FGM (Al/Al2O3) plates with different boundary conditions, gradient index values, and porosity
parameters (Type I and Type II), Ks = π2

12 , a/h0 = 20, β = 0.4, with Ref. [29] and FEM.

p Method α = 0 α = 0.1 α = 0.2

Even Uneven Even Uneven

SSSS

3 RFM 9.4060 8.7741 9.3335 7.7039 9.2250
[29] 9.4611 8.8289 9.3890 7.7603 9.2819
FEM 9.2800 8.6400 - 7.5500 -

5 RFM 9.1969 8.5106 9.1143 7.2713 8.9880
[29] 9.2501 8.5637 9.1687 7.3255 9.0437
FEM 9.2300 8.5300 - 7.2500 -

CCCC

3 RFM 16.7182 15.6250 16.5544 13.7710 16.3894
[29] 17.5125 16.3599 17.3756 14.4083 17.1745
FEM 16.9200 15.7600 - 13.8100 -

5 RFM 16.2971 15.1072 16.4071 12.9621 15.9080
[29] 17.0913 15.8377 16.9332 13.5777 16.6951
FEM 16.8000 15.5000 - 13.2000 -

CSCS

3 RFM 13.5327 12.6407 13.4251 11.1286 13.2670
[29] 13.5449 12.6487 13.4400 11.1319 13.1480
FEM 13.6100 12.6700 - 11.1000 -

5 RFM 13.2024 12.2324 13.0778 10.4829 12.8912
[29] 13.2271 12.2532 13.1069 10.4967 12.9247
FEM 13.5300 12.4800 - 12.1000 -

The comparison with the literature leads to the conclusion that the present approach is
quite accurate, and the model can be considered validated for porous FGM plates of variable
thickness resting on an elastic foundation. Note that in this case, the results obtained using
the RFM and FEM methods are close and differ by no more than 2%. In the following
section, further analyses will be presented, focused on plates having a complex geometry.
In certain instances, such as when p = 5, alpha = 0.2, and CSCS, a discrepancy arises, which
may be attributed to an edge (boundary) layer issue that eludes detection in the FEM, as
indicated in Ref. [11]. In the following section further analyses will be presented, focused
on plates having a complex geometry.

4.2. Free Vibration Analysis for Porous FGM Plates with a Complex Geometry

In actual engineering problems, professionals often face complex geometries, including,
for example, holes having regular (circles or squares) or other shapes. These geometries
are typically very difficult to handle with analytical or semi-analytical methods. Here, we
prove that the use of the R-functions method allows the aforementioned difficulties to be
overcome in an efficient way.

In this section, a porous plate with variable thickness resting on an elastic foundation
with different elastic stiffnesses of Winkler and Pasternak types is investigated. The Planform
of the plate with complex geometry and the distribution law of its thickness are shown
in Figure 3a,b.
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The geometric parameters are

a1/a= 3; a1/b1= 1; r1/2a = 0.15; r2/2a = 0.35; h0/2a = 0.05.

The thickness of the plate varies linearly in the y-direction:

h(y) = h0

(
1 + β

(
y + b

2b

))
, β =

hb − h0

ho
. (30)

The shear correction factor Ks = 5
6 was chosen for the current analysis. The following

boundary conditions were considered for the numerical experiment:

1. CL-CL—the outside boundary and hole are clamped.
2. CL-F—outside boundary is clamped, hole is free.
3. SS-CL—outside boundary is simply supported, hole is clamped.
4. F-CL—outside boundary is free, hole is clamped.

The non-dimensional natural frequency is defined as Λ = Ω (2a)2√ρm/Em/h0 for
all cases.

Case 1

An investigation of the influence of the gradient index (p = 0, 0.5, 1, 2, 5, 10) on the
natural frequency for an ideal FGM plate with constant thickness and complex geometry
(Figure 3a) made of Al/Al2O3 for four types of boundary conditions is fulfilled; the results
are shown in Table 6.

Table 6. Effect of gradient index on natural frequency of FGM (Al/Al2O3) plate (Figure 3a) with
different boundary conditions.

p CL-CL CL-F SS-CL F-CL

0 12.3781 2.7204 8.2491 1.9158
0.5 10.6016 2.3044 7.0379 1.6449
1 9.6044 2.0768 6.3645 1.4923
2 8.7202 1.8881 5.7809 1.3546
5 8.1172 1.7889 5.4146 1.2559
10 7.7652 1.7316 5.2021 1.1991

From this analysis, it follows that for all boundary conditions, the natural frequencies
decrease with an increase in the gradient index p. The results obtained for plates with the
boundary condition CL-CL are essentially greater than frequencies for plates with other
types of boundary conditions. The smallest values of frequency and minor changes are
observed for boundary condition F-CL.

Case 2

An investigation of the free vibrations of a clamped (CL-CL) FGM (Al/Al2O3) plate
resting on an elastic foundation with various combinations of Winkler and Pasternak
types and different values of the gradient index p = 0, 0.5, 1, 2, 5, 10 is conducted. The
non-dimensional fundamental frequencies are graphically illustrated in Figure 4.

It can be seen that the influence of the Pasternak foundation parameter exceeds that of
the Winkler foundation parameter in all cases. A Pasternak foundation contains the effect
of transverse shear deformation of elastic springs.
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Case 3

An investigation of the vibrations of clamped (CL-CL) FGM plates having a complex
geometry (Figure 3), resting on an elastic foundation (stiffness coefficients Kw = 100,
Kp = 100), for different values of the porosity parameter α = 0, 0.1, 0.2, 0.3 is performed.
The gradient index is varied as follows: p = 0, 0.5, 1, 2, 5, 10; three types of porosities are
considered: ideal, even, and uneven. The non-dimensional fundamental frequencies are
reported in Table 7. For this case, all of the natural frequencies do not increase significantly
with an increase in the porosity parameter for both types—even and uneven distribution.

Table 7. Effect of the porosity parameter Type I and Type II on natural frequency of FGM (Al/Al2O3)

clamped plate on elastic foundation (β = 0, Kw = 100, Kp = 100).

p α = 0 α = 0.1 α = 0.2 α = 0.3

Ideal Even Uneven Even Uneven Even Uneven
0 15.2845 15.6671 15.5264 16.1161 15.7863 16.6514 16.0661

0.5 14.1874 14.5062 14.4108 14.8842 14.6519 15.3404 14.9133
1 13.6306 13.8831 13.8305 14.1729 14.0455 14.5053 14.2773
2 13.1943 13.3658 13.3646 13.5266 13.5434 13.6234 13.7305
5 12.9451 13.0728 13.0998 13.1276 13.2553 12.8635 13.4066

10 12.7809 12.9191 12.9407 12.9787 13.1009 12.5886 13.2544

Case 4

An investigation of free vibration behavior for a clamped (CL-CL) FGM plate (Al/Al2O3)
with variable thickness on an elastic foundation is performed. For this experiment, the
taper ratio is varied as follows: β = [0, 0.1, 0.2, 0.3]; the porosity parameter is α = 0.2, and
the foundation stiffness coefficients are Kw = 50, Kp = 100. Two porosity distribution types
are considered: even and uneven. The effect of the taper ratio β on the natural frequency of
an FGM plate is tabulated in Table 8 and shown in Figure 5.
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Table 8. Effect of taper ratio β and gradient index p on natural frequency of clamped FGM plate on
elastic foundation (α = 0.2, Type I, II, Kw = 50, Kp = 100).

p β = 0 β = 0.1 β = 0.2 β = 0.3

Even Uneven Even Uneven Even Uneven Even Uneven
0 15.9938 15.6732 16.4946 16.1629 16.8211 16.4823 17.0981 16.2578

0.5 14.7343 14.5156 15.1997 14.9725 15.5032 15.2705 15.7629 15.5251
1 14.0044 13.8944 14.4487 14.3306 14.7388 14.6197 14.9889 14.8662
2 13.3365 13.3762 13.7609 13.7988 14.0396 14.0767 14.2821 14.3177
5 12.9157 13.0722 13.3287 13.4858 13.6052 13.7621 13.8484 14.0049

10 12.7579 12.9093 13.1689 13.3206 13.4500 13.5988 13.6981 13.8439
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The frequencies increase with the taper ratio, but they decrease with the increase in
the gradient index, which is reasonable for this specific problem. The values of frequency
for Type II (uneven distribution) are slightly lower than the frequencies for Type I for all
values of the gradient index.

Case 5

An investigation of various types of FG materials is conducted. Two materials are
considered in the FGM: ZrO2 and Ti − 6Al − 4V; their mechanical properties are indicated
as follows:

ZrO2: E = 200 GPa, ν = 0.3, ρ = 5700 kg/m3;
Ti − 6Al − 4V: E = 105.698 GPa, ν = 0.3, ρ = 4427 kg/m3.

Further numerical experiments have been carried out for four FG materials:

• FGM-1: Al/Al2O3;
• FGM-2: Al/ZrO2;
• FGM-3: Si3N4/SU S304;
• FGM-4: ZrO2/Ti-6 Al-4V.

The FGM plate of Figure 3a is investigated. The variable thickness parameter is β = 0.3;
the plate rests on an elastic foundation (Kw = 50, Kp = 100) and is clamped (CL-CL). The
porosity parameter is α = 0.2 for two porosity distribution types—even and uneven; the
power-law index is varied as follows p = 0, 0.5, 1, 2, 5, 10. The non-dimensional fundamental
frequency is reported in Table 9 and Figure 6.
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Table 9. Effect of the power index on natural frequency of clamped plates on elastic foundation
Kw = 50, Kp = 100, with porosity α = 0.2 and variable thickness β = 0.3, fabricated using different
FGMs: FGM-1, FGM-2, FGM-3, FGM-4.

p Al/Al2O3 Al/ZrO2 Si3N4/SU S304 ZrO2/Ti-6 Al-4V

Even Uneven Even Uneven Even Uneven Even Uneven
0 17.0981 16.2578 11.3984 11.2181 33.1099 28.6338 13.4604 13.0954

0.5 15.7629 15.5251 11.7884 11.5483 20.4428 19.4449 13.4819 13.0915
1 14.9889 14.8662 12.1286 11.8418 17.7114 17.1402 13.5442 13.1377
2 14.2821 14.3177 12.6761 12.3071 15.7946 15.4595 13.6646 13.2342
5 13.8484 14.0049 13.5197 12.9885 14.3382 14.1478 13.8201 13.3554

10 13.6981 13.8439 13.9614 13.3197 13.7529 13.6123 13.8579 13.3784
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types of materials) on elastic foundation Kw = 50, Kp = 100 (α = 0.2, β = 0.3).

For the case under consideration, there are several interesting points to discuss. First,
as volume fraction index p increases, the frequencies decrease for the FGM-1 and FGM-3
materials, while for the other two, they increase insignificantly. Secondly, for all materials,
the frequencies for FGM-2 are less than those for FGM-1. Thirdly, the frequencies for the
FGM-3 material are significantly higher than those in other cases. Fourth, the frequencies
for the FGM-4 material practically do not change.

Another free vibration analysis with four types of FG materials is fulfilled for clamped
(CL-CL) FGM plates with different values of the porosity parameter: α = 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6. Now, the gradient index is p = 1, the taper ratio is β = 0.3, and the foundation
stiffness parameters of Winkler and Pasternak are Kw = 50, Kp = 100. The non-dimensional
fundamental frequencies for even and uneven porosity distribution types are presented in
Table 10 and shown in Figure 7.
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Table 10. Effect of the porosity parameter α of Types I and II on natural frequency of clamped plates,
on elastic foundation Kw = 50, Kp = 100, made of different FGMs with taper ratio β = 0.3 and gradient
index p = 1.

α Al/Al2O3 Al/ZrO2 Si3N4/SU S304 ZrO2/Ti-6 Al-4V

Even Uneven Even Uneven Even Uneven Even Uneven
0 14.4329 14.4329 11.4219 11.4219 16.4712 16.4712 12.6371 12.6371

0.1 14.6921 14.6417 11.7449 11.6236 17.0368 16.7923 13.0508 12.8773
0.2 14.9889 14.8662 12.1286 11.8418 17.7114 17.1402 13.5443 13.1377
0.3 15.3278 15.1082 12.5927 12.0789 18.5328 17.5187 14.1448 13.4209
0.4 15.7058 15.3699 13.1659 12.3376 19.5526 17.9325 14.8945 13.7305
0.5 16.0847 15.6541 13.8924 12.6213 20.8891 18.3873 15.8628 14.0707
0.6 16.1709 15.9633 14.8381 12.9341 22.6927 18.8903 17.1731 14.4467
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It can be noted that with an increase in the porosity parameter, the natural frequencies
increase for all FG material types. A common trend is observed for all the materials in
a small reduction in the frequency parameter for the uneven case of porosity. Material
FGM-3 shows again the biggest values of non-dimensional frequency; frequencies of
material FGM-1 are very close for cases of even and uneven porosity types.

5. Conclusions

This work considers for the first time the application of the R-functions theory to
free vibration problems of porous FGM plates of a complex form, with variable thickness,
resting on an elastic foundation. A mathematical formulation of the problem is developed in
the framework of the first-order shear deformation theory for FGM plates. It is shown that
the application of the R-functions theory together with the Ritz variational method makes
it possible to solve a wide range of vibration problems for porous plates. The use of the
Ritz variational method allows for taking into account the variability of the plate thickness
analytically. A set of admissible functions, constructed using the R-functions theory, exactly
satisfies the main boundary conditions, both on the outside region boundary and for holes.
The approach was validated in a large number of case studies. New achievements of this
work include the following:
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(1) The highlight of this work is a demonstration of the effectiveness of the application
of the R-functions theory for porous FGM plates of variable thickness resting on
an elastic foundation with complex shapes.

(2) The method was used to investigate the free vibration of square plates with clamped
holes having a complex form;

(3) A numerical experiment was conducted to study the effects of parameters such as the
taper ratio, porosity distribution, foundation stiffness coefficients, volume fraction
index, and type of FGM on the natural frequencies.

(4) The application of the R-functions theory is validated by means of a comparative
analysis with a traditional finite element approach (COMSOL Multiphysics).

All these issues also allowed the identification of advantages and disadvantages of
finite element modeling and boundary condition sensitivity for porous FGM plates with
variable thickness.
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