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Abstract: In this research work, we investigate the asymptotic behavior of a nonlinear swelling (also
called expansive) soil system with a time delay and nonlinear damping of variable exponents. We
should note here that swelling soils contain clay minerals that absorb water, which may lead to
increases in pressure. In architectural and civil engineering, swelling soils are considered sources of
problems and harm. The presence of the delay is used to create more realistic models since many
processes depend on past history, and the delays are frequently added by sensors, actuators, and
field networks that travel through feedback loops. The appearance of variable exponents in the
delay and damping terms in this system allows for a more flexible and accurate modeling of this
physical phenomenon. This can lead to more realistic and precise descriptions of the behavior of
fluids in different media. In fact, with the advancements of science and technology, many physical
and engineering models require more sophisticated mathematical tools to study and understand. The
Lebesgue and Sobolev spaces with variable exponents proved to be efficient tools for studying such
problems. By constructing a suitable Lyapunov functional, we establish exponential and polynomial
decay results. We noticed that the energy decay of the system depends on the value of the variable
exponent. These results improve on some existing results in the literature.

Keywords: swelling porous problem; multiplier method; exponential and polynomial decay; time
delay; variable exponents

MSC: 35B40; 93D20; 93D23

1. Introduction

The concept of time delay appears naturally when modeling some physical processes
involving the displacement of a material or the transmission of energy or information.
Therefore, taking this and/or such phenomena into account in the differential equations
describing the evolution of such physical processes leads to more accurate models. How-
ever, it is well known that time delays may be the source of instability for some initially
stable systems. In order to overcome this problem of instability, some additional damping
terms should be added to the systems. In this work, we consider the following nonlinear
delay swelling system:
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

ρzztt − a1zxx − a2uxx + ξ1|zt|m(x)−2(x, t)zt(x, t) + ξ2zt(x, t− τ)|zt|m(·)−2(x, t− τ) = 0,

ρuutt − a3uxx − a2zxx = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), z(x, 0) = z0(x), zt(x, 0) = z1(x)

z(0, t) = z(1, t) = u(0, t) = u(1, t) = 0

zt(x,−t) = d(x, t),

(1)

in (0, 1)× (0, ∞), where the constituents z and u represent the displacement of the fluid
and the elastic solid material. The positive constant coefficients ρu and ρz are the densities
of each constituent, the coefficients a1, a3 > 0 and a2 6= 0 are the coupling constants
of the materials of the system, and d is a history function. In addition, ξ1 is a positive
constant, ξ2 is a real number, and τ is the time delay. By using the multiplier method, we
prove that the energy of the system (1) sometimes decays exponentially and other times
decays polynomially based on the value of the variable exponents. The appearance of
variable exponents in the delay and damping terms in our system is important for several
reasons. For example, the use of variable exponents allows for more flexible and accurate
modeling of physical phenomena. They can capture the nonlinearity and heterogeneity of
the damping terms, which can vary in space and time. This can lead to more realistic and
precise descriptions of the behavior of fluids in different media.

Swelling soils are an environmental problem characterized by a swell in soil volume
when subjected to humidity or water. The clay minerals in swelling soils attract and
absorb water. When water is introduced into swelling soils, the water molecules are
pulled into the gaps between the soil plates. See Figure 1 for the swelling process. As
more water is absorbed, the plates are forced further apart, leading to an increase in soil
pore pressure. Consequently, swelling soils lead to problems in architecture and civil
engineering. They have been found all over the world. In 1997, Nelson and Miller [1]
reported that the American Society of Civil Engineers estimates that one in four homes has
some damage caused by swelling soils. Typically, such soils cause property owners more
significant financial losses than earthquakes, floods, hurricanes, and tornadoes combined.
Consequently, it is crucial to study the practical ways and means to eliminate or minimize
the damages caused by swelling soils.

Figure 1. Swelling process.
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The basic field equations for the linear theory of swelling porous elastic soils are
mathematically given by: {

ρzztt = P1x − I1 + E1

ρuutt = P2x + I2 + E2,
(2)

where the constituents z and u represent the displacement of the fluid and the elastic solid
material, respectively. The positive constant coefficients ρz and ρu are the densities of the
constituents z and u, respectively. The functions (I1, E1) represent the internal body forces
and external forces acting on the displacement, respectively. This definition is the same for
(I2, E2) but acts on the elastic solid equation. The equations of the partial tensions (P1, P2)
are given by: [

P1
P2

]
=

[
a1 a2
a2 a3

]
︸ ︷︷ ︸

A

[
zx
ux

]
, (3)

where a1, a3 are positive constants and a2 is a non-zero real number, which is the coupling
of the physical properties in the materials of the system. The coefficient matrix A is
positive definite; that is, a1a3 ≥ a2

2. It is important to mention that the system (2) was first
proposed in 1991 by Ieşan [2] and simplified in 2003 by Quintanilla [3]. The stability of the
system (2) has been investigated in the literature for different damping terms. For example,
Quintanilla [3] considered the following 1− D swelling elastic system:{

ρzztt = a1zxx + a2uxx − ξ(zt − ut) + a3zxxt in (0, L)× IR+

ρuutt = a2zxx + a3uxx + ξ(zt − ut), in (0, L)× IR+,
(4)

where ξ > 0 is the constant feedback gain and a1a3 > a2
2. Using the energy method, the

author proved that the system can be exponentially stabilized by employing three internal
dampings: ut, zt, and zxxt. Wang and Guo [4] tried to answer the same question from
control theory by considering the following one-dimensional swelling elastic system:{

ρzztt = a1zxx + a2uxx − ρzτ(x)zt,
ρuutt = a2zxx + a3uxx,

(5)

where γ(x) is an internal viscous damping function with a positive mean. Using a spectral
method approach with some specific conditions on the coefficients, the authors show
that the whole system can be exponentially stabilized by only one damping. After that,
Ramos et al. [5], Apalara [6], and Al-Mahdi et al. [7] also considered (2) with frictional and
viscoelastic damping terms, and they established explicit and general decay results under
some conditions on the damping functions. For more results in porous–elasticity systems,
porous–thermo-elasticity systems, porous–viscoelasticity systems, and other systems, we
refer the reader to [3,4,8–19].

We notice that all the above-mentioned works are systems of partial differential
equations that are independent of previous states or rates. However, systems of differential
equations that are dependent on previous states are called systems of delay differential
equations (DDEs). Delay differential equations are introduced to create more realistic
models since many processes depend on past history. Delays rarely have an impact on
how frequently the control systems operate, and delays are frequently added by sensors,
actuators, and field networks that travel through feedback loops. The stability of high-
speed communication networks or networked control systems are two fascinating fields of
information technology and communication, where delays play a significant role. Models
with delays include vehicle tracking, neural networks, population dynamics, and epidemic
models, as well as sampled-data control and networked control systems, congestion control
in communication networks, drilling system models, long lines with tunnel diodes, and
models of lasers [20–22]. Controlling the behavior of partial differential equations’ solutions
with delay effects has gained scientific attention in recent years. In general, delay effects
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can be found in a wide range of applications and real-world issues, including thermal,
economic, chemical, biological, and physical issues. Time delays frequently have an
impact on instability [23]. In recent years, there has been an increasing interest in treating
equations with the variable exponent of nonlinearity. This great interest is motivated by
the application to the mathematical modeling of non-Newtonian fluids. One of these fluids
is the electro-rheological fluid, which has the ability to drastically change when applied
to some external electromagnetic field. The variable exponent of nonlinearity is a given
function of density, temperature, saturation, electric field, etc. For more information about
the mathematical model of electro-rheological fluids, we refer the reader to [24,25]. The
list of references concerning existence, blow-up, and stability of viscoelastic problems with
variable exponents is very long, so we recall a few of them here [26–32].

To prove the stability of the system (1), we start introducing a new function (similar
to [33]):

v(x, ρ, t) = zt(x, t− τρ), x ∈ (0, 1), ρ ∈ (0, 1), t > 0.

Hence, we see that v satisfies

τvt(x, ρ, t) + vρ(x, ρ, t) = 0, x ∈ (0, 1), ρ ∈ (0, 1), t > 0.

Therefore, the system (1) takes the form

ρzztt − a1zxx − a2uxx + ξ1|zt|m(x)−2(x, t)zt(x, t) + ξ2v(x, 1, t)|v|m(·)−2(x, 1, t) = 0,

ρuutt − a3uxx − a2zxx = 0,

τvt(x, ρ, t) + vρ(x, ρ, t) = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), z(x, 0) = z0(x), zt(x, 0) = z1(x),

z(0, t) = z(1, t) = u(0, t) = u(1, t) = 0,

v(x, ρ, 0) = d(x,−τρ).

(6)

Therefore, we consider system (6) and we prove that the system is stable under
Assumptions (A1)–(A3) (below). The paper is organized as follows: In Section 2, we state
some assumptions and the transformation. In Section 3, we state the main decay results,
and we establish some technical lemmas in Section 4. The proofs of the stability theorems
are presented in Section 5.

2. Preliminary and Assumptions

In this section, we consider the following assumptions:
(A1): m : [0, 1]→ [1, ∞) is a continuous function such that

m1 := essinfx∈[0,1]m(x), m2 := esssupx∈[0,1]m(x)

and 1 < m1 ≤ m(x) ≤ m2 < ∞.
(A2): The coefficients ai, i = 1, . . . , 3 satisfy a1a3 − a2

2 > 0.
(A3): The constant ξ1 and ξ2 satisfy the following

|ξ2| < ξ1, (7)

and for a continuous function ξ,

τ|ξ2|(m(x)− 1) < ξ(x) < τ(ξ1m(x)− |ξ2|), x ∈ [0, 1]. (8)
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For completeness, we state, without proof the global existence and regularity result,
which can be established by a standard Galerkin argument as in [29,34].

Theorem 1. Assume that conditions (A1)–(A3) hold, then problem (6) admits a unique weak solution

z, u ∈ L∞([0, T); H1
0(0, 1)

)
,

v ∈ L∞([0, 1]; Lm(.)((0, 1)× [0, T)),

zt ∈ L∞([0, T); L2(0, 1)
)
∩ Lm(.)((0, 1)× [0, T)),

ut ∈ L∞([0, T); L2(0, 1)
)
.

Lemma 1. Assume that (A1)–(A3) hold. The energy of the problem (6) is defined as

E(t) =
1
2

∫ 1

0

[
ρzz2

t + ρuu2
t + a3u2

x + a1z2
x + 2a2zxux

]
dx

+

1∫
0

1∫
0

ξ(x)|v(x, ρ, t)|m(x)

m(x)
dxdρ, (9)

and satisfies

E′(t) ≤ −C0

[∫ 1

0
|zt(t)|m(x)dx +

∫ 1

0
|v(x, 1, t)|m(x)dx

]
< 0. (10)

Proof. By multiplying the first two equations of (6) by zt and ut, respectively, and integrat-
ing over (0, 1) and multiplying the third equation of (6) by 1

τ ξ(x)|v(x, 1, t)|m(x)−2v(x, 1, t)
and integrating over (0, 1)× (0, 1) using integration by parts and some manipulations,
we obtain

1
2

d
dt

∫ 1

0

[
ρzz2

t + ρuu2
t + a3u2

x + a1z2
x + 2a2zxux

]
+

d
dt

1∫
0

1∫
0

ξ(x)|v(x, ρ, t)|m(x)

m(x)
dxdρ

= −ξ1

1∫
0

|zt|m(x)dx− 1
τ

1∫
0

1∫
0

ξ(x)|v(x, ρ, t)|m(x)−2vvρ(x, ρ, t)dρdx

− ξ2

1∫
0

ztv(x, 1, t)|v(x, 1, t)|m(x)−2dx. (11)

From (11), we see that

E′(t) = −ξ1

1∫
0

|zt|m(x)dx− 1
τ

1∫
0

1∫
0

ξ(x)|v(x, ρ, t)|m(x)−2vvρ(x, ρ, t)dρdx

− ξ2

1∫
0

ztv(x, 1, t)|v(x, 1, t)|m(x)−2dx. (12)

Using Young’s inequality, q = m(x)
m(x)−1 and q′ = m(x) for the last term to obtain

−ξ2

1∫
0

ztv(x, 1, t)|v(x, 1, t)|m(x)−2dx ≤ |ξ2|

 1∫
0

1
m(x)

|zt|m(x)dx +

1∫
0

m(x)− 1
m(x)

|v(x, 1, t)|m(x)dx

.
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Then, (11) becomes

E′(t) ≤ −
1∫

0

ξ1 −
(

ξ(x)
τm(x)

+
|ξ2|

m(x)

)
︸ ︷︷ ︸

f1(x)>0

|zt|m(x)dx

−
1∫

0

 ξ(x)
τm(x)

− |ξ2(m(x)− 1)|
m(x)︸ ︷︷ ︸

f2(x)>0

|v(x, 1, t)|m(x)dx. (13)

Since m(x), then ξ(x) is bounded. Hence, we infer that f1(x) and f2(x) are also bounded.
So, if we define C0(x) = min{ f1(x), f2(x)} > 0 for any x ∈ [0, 1], and take C0(x) =
inf[0,1]{C0(x)}, so C0(x) ≥ C0 > 0. Moreover, by using assumptions (A1)–(A2), the proof
of (10) is completed.

3. The Main Results

In this section, we state our decay results.

Theorem 2. Assume that (A1)–(A3) hold, and 1 < m1 < 2. Then, the energy functional (9)
satisfies for a positive constants C, depends on m1,

E(t) < C
(

1
t+1

)(m1−1
2−m1

)
, ∀ t > 0. . (14)

Theorem 3. Assume that (A1)–(A3) hold. Then, the energy functional (9) satisfies for two positive
constants λ1, λ2 and for any t ≥ 0,

E(t) ≤ λ1e−λ2t, if m1 = m2 = 2, (15)

and

E(t) ≤ λ1

(
1

t + 1

)( 2
m2−2

)
, if m1, m2 > 2. (16)

4. Technical Lemmas

In this part, we state and prove some needed lemmas.

Lemma 2. For any η > 0 and m1 ≥ 2, we have the following∫ 1

0
z|zt|m(·)−2ztdx ≤ c1η

∫ 1

0
z2

xdx +
∫ 1

0
cη(x)|zt|m(x)dx. (17)

and if 1 < m1 < 2, we have

∫ 1

0
z|zt|m(·)−2ztdx ≤ 2cη||zx||22 + cη

[ ∫ 1

0
|zt|m(x)dx +

( ∫ 1

0
|zt|m(x)

)m1−1

dx
]

. (18)

Lemma 3. For any γ > 0 and m1 ≥ 2, we have the following∫ 1

0
u(x, t)|v(x, 1, t)|m(·)−2v(x, 1, t)dx ≤ c2γ

∫ 1

0
u2

xdx +
∫ 1

0
cγ(x)|v(x, 1, t)|m(x)dx. (19)



Math. Comput. Appl. 2023, 28, 94 7 of 17

and if 1 < m1 < 2, we have∫ 1

0
u|v(x, 1, t)|m(·)−2v(x, 1, t)dx ≤ c2γ

∫ 1
0 u2

xdx +
∫ 1

0 cγ(x)|v|m(x)dx

+

( ∫ 1
0 |v|

m(x)
)m1−1

dx. (20)

Proof. We will prove Lemma 2 and the proof of Lemma 3 will be the same. We start
by applying Young’s inequality with with p(x) = m(x)

m(x)−1 and p′(x) = m(x). So, for a.e
x ∈ [0, 1] and any δ1 > 0, we have

|zt|m(x)−2ztz ≤ δ1|z|m(x) + cδ1(x)|zt|m(x),

where
cδ1(x) = δ

1−m(x)
1 (m(x))−m(x)(m(x)− 1)m(x)−1.

Hence, ∫ 1

0
z|zt|m(x)−2ztdx ≤ δ1

∫ 1

0
|z|m(x)dx +

∫ 1

0
cδ1(x)|zt|m(x)dx. (21)

Next, using (9) and (10), Poincaré’s inequality and the embedding property, we get∫ 1

0
|z|m(x)dx =

∫
Ω+

|z|m(x)dx +
∫

Ω−
|z|m(x)dx

≤
∫

Ω+

|z|m2 dx +
∫

Ω−
|z|m1 dx

≤
∫ 1

0
|z|m2 dx +

∫ 1

0
|z|m1 dx

≤ cm1
e ||zx||m1

2 + cm2
e ||zx||m2

2

≤
(

cm1
e ||zx||m1−2

2 + cm2
e ||zx||m2−2

2

)
||zx||22

≤
(

cm1
e

(
2
a1

E(0)
)m1−2

+ cm2
e

(
2
a1

E(0)
)m2−2)

||zx||22

≤ c1||zx||22,

(22)

where ce is the embedding constant,

Ω+ = {x ∈ [0, 1] : |z(x, t)| ≥ 1}, Ω− = {x ∈ [0, 1] : |z(x, t)| < 1}

and

c1 =

(
cm1

e

(
2
a1

E(0)
)m1−2

+ cm2
e

(
2
a1

E(0)
)m2−2)

. (23)

Then, (21) and (22) yield∫ 1

0
z|zt|m(x)−2ztdx ≤ δ1c1||zx||22 +

∫ 1

0
cδ1(x)|zt|m(x)dx. (24)

Hence, the proof of (17) is completed. To prove (18), we set

Ω1 = {x ∈ [0, 1] : m(x) < 2} and Ω2 = {x ∈ [0, 1] : m(x) ≥ 2}.
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Then, we have∫ 1

0
z|zt|m(x)−2ztdx = −

∫
Ω1

z|zt|m(x)−2ztdx−
∫

Ω2

z|zt|m(x)−2ztdx. (25)

We notice that on Ω1, we have

2m(x)− 2 < m(x), and 2m(x)− 2 ≥ 2m1 − 2. (26)

Therefore, by using Young’s and Poincaré’s inequalities and (26) leads to

−
∫

Ω1

z|zt|m(x)−2utdx ≤ η
∫

Ω1

|z|2dx +
1

4η

∫
Ω1

|zt|2m(x)−2dx

≤ η||zx||22 + cη

[ ∫
Ω+

1

|zt|2m(x)−2dx +
∫

Ω−1
|zt|2m(x)−2dx

]
≤ η||zx||22 + cη

[ ∫
Ω+

1

|zt|m(x)dx +
∫

Ω−1
|zt|2m1−2dx

]
≤ η||zx||22 + cη

[ ∫ 1

0
|zt|m(x)dx +

( ∫
Ω−1
|zt|2dx

)m1−1]
≤ η||zx||22 + cη

[ ∫ 1

0
|zt|m(x)dx +

( ∫
Ω−1
|zt|m(x)dx

)m1−1]
≤ η||zx||22 + cη

[ ∫ 1

0
|zt|m(x)dx +

( ∫ 1

0
|zt|m(x)dx

)m1−1]
,

(27)

where

Ω+
1 = {x ∈ Ω1 : |zt(x, t)| ≥ 1} and Ω−1 = {x ∈ Ω1 : |zt(x, t)| < 1}. (28)

Next, we have, by the case m(x) ≥ 2,∫
Ω2

z|zt|m(x)ztdx ≤ η||zx||22 +
∫ 1

0
cη(x)|zt|m(x)dx. (29)

Combining (25)–(29), so estimate (18) is established.

Lemma 4. Assume that (A1)–(A3) hold. The functional

χ1(t) = −ρuε
∫ 1

0
utudx (30)

satisfies, for 0 < ε < 1, ε1 > 0, and c > 0 depends on a1, a2, a3, α,

χ′1(t) ≤ −ρuε
∫ 1

0
u2

t dx + cεε1

∫ 1

0
u2

xdx +
cε

ε1

∫ 1

0
z2

xdx. (31)

Proof. Differentiating χ1 and using (6) gives

χ′1(t) = −ρuε
∫ 1

0
u2

t dx + a3ε
∫ 1

0
u2

xdx + a2ε
∫ 1

0
uxzxdx. (32)

Using Young’s inequality, we have for ε1 > 0,

a2

∫ 1

0
uxzxdx ≤ ε1

∫ 1

0
u2

xdx +
a2

2
4ε1

∫ 1

0
z2

xdx. (33)

Combining the above estimate, then the proof of (31) is completed.
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Lemma 5. Assume that (A1)–(A3) hold. The functional

χ2(t) = a2ρz

∫ 1

0
uzt dx− a2ρu

∫ 1

0
zut dx (34)

satisfies, for any ε2 > 0 and c > 0,

χ′2(t) ≤ ε2

∫ 1

0
u2

t dx +
c
ε2

∫ 1

0
z2

t dx + c
∫ 1

0
z2

xdx−
a2

2
2

∫ 1

0
u2

xdx

+ c
∫ 1

0
|zt|m(x)dx + c

∫ 1

0
|v(x, 1, t)|m(x)dx. (35)

Proof. By exploiting (6), we have

χ′2(t) = a2ρz

∫ 1

0
utzt dx− a2ρu

∫ 1

0
utzt dx− a2a1

∫ 1

0
uxzx dx− a2

2

∫ 1

0
u2

xdx

− a2ξ1

∫ 1

0
u|zt|m(·)−2ztdx− a2ξ2

∫ 1

0
u|v(x, 1, t)|m(·)−2v(x, 1, t)dx

+ a2a3

∫ 1

0
zxuxdx + a2

2

∫ 1

0
z2

xdx.

Using Young’s inequality, we have for ε2 > 0,

a2(ρz − ρu)
∫ 1

0
utztdx ≤ ε2

∫ 1

0
u2

t dx +

(
a2

2ρ2
z

4ε2
+

a2
2ρ2

u
4ε2

) ∫ 1

0
z2

t dx. (36)

Similarly,

a2(a3 − a1)
∫ 1

0
uxzxdx ≤ a2

2η2

∫ 1

0
u2

xdx +
(a2

1 + a2
3)

4η2

∫ 1

0
z2

x dx. (37)

Using (17) and (19), we have

I1 := −a2ξ1

∫ 1

0
u|zt|m(·)−2ztdx ≤ a2ξ1c1η

∫ 1

0
u2

xdx +
∫ 1

0
cη(x)|zt|m(x)dx, (38)

and

I2 : = −a2ξ2
∫ 1

0 u(x, t)|v(x, 1, t)|m(·)−2v(x, 1, t)dx

≤ c2a2|ξ2|γ
∫ 1

0 u2
xdx +

∫ 1
0 cγ(x)|v(x, 1, t)|m(x)dx. (39)

Combining (38) and (47), choosing γ = η, c0 = min{c1ξ1, c2ξ1}, we obtain

I1 + I2 ≤ c0η
∫ 1

0
u2

xdx +
∫ 1

0
cη(x)|zt|m(x)dx +

∫ 1

0
cγ(x)|v(x, 1, t)|m(x)dx. (40)

Choosing η =
a2

2
2c0

and combining all the above estimations, then the proof of (35) is
completed.

Lemma 6. Assume that (A1)–(A3) hold. The functional

χ3(t) = ρz

∫ 1

0
zzt dx− a2

a3
ρu

∫ 1

0
utz dx (41)
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satisfies, for any ε3 > 0 and c > 0,

χ′3(t) ≤ −α0

2

∫ 1

0
z2

xdx +
c
ε3

∫ 1

0
z2

t dx + ε3

∫ 1

0
u2

t dx

+ c
∫ 1

0
|zt|m(x)dx + c

∫ 1

0
|v(x, 1, t)|m(x)dx. (42)

where α0 = a1 −
a2

2
a3

> 0.

Proof. In view of (6) and integration by parts, we obtain

χ′3(t) = ρz

∫ 1

0
z2

t dx−
[

a1 −
a2

2
a3

] ∫ 1

0
z2

x dx− a2

a3
ρu

∫ 1

0
utztdx

−ξ1

∫ 1

0
z|zt|m(x)−2ztdx︸ ︷︷ ︸

I3

−ξ2

∫ 1

0
z|v(x, 1, t)|m(x)−2v(x, 1, t)dx︸ ︷︷ ︸

I4

. (43)

Using Young’s inequality, we have for ε3 > 0,

− a2

a3
ρu

∫ 1

0
utztdx ≤ ε3

∫ 1

0
u2

t dx +
a2

2
a2

3ε3
ρ2

u

∫ 1

0
z2

t dx. (44)

Using (17) and (19), we have

I3 ≤ ξ1c1η
∫ 1

0
z2

xdx +
∫ 1

0
cη(x)|zt|m(x)dx, (45)

and

I4 ≤ |ξ2|c1γ
∫ 1

0
z2

xdx +
∫ 1

0
cγ(x)|v(x, 1, t)|m(x)dx. (46)

Combining (45) and (46), choosing γ = η, we obtain

I3 + I4 ≤ c1ξ1η
∫ 1

0
z2

xdx +
∫ 1

0
cη(x)|zt|m(x)dx +

∫ 1

0
cγ(x)|v(x, 1, t)|m(x)dx. (47)

Inserting the last estimates in (43), choosing η = α0
c1ξ1

, the proof of (42) is completed.

Lemma 7. Assume that (A1)–(A3) hold. The functional

χ4(t) = −ρz

∫ 1

0
zztdx (48)

satisfies, for some ε > 0,

χ′4(t) ≤ −ρz

∫ 1

0
z2

t dx + ε4

∫ 1

0
u2

xdx +
c
ε4

∫ 1

0
z2

xdx

+ c
∫ 1

0
|zt|m(x)dx + c

∫ 1

0
|v(x, 1, t)|m(x)dx. (49)

Proof. Direct computations, using (6), give

χ′4(t) = −ρz

∫ 1

0
z2

t dx + a1

∫ 1

0
z2

xdx + a2

∫ 1

0
uxzxdx

+ξ1

∫ 1

0
z|zt|m(x)−2ztdx + ξ2

∫ 1

0
z|v(x, 1, t)|m(x)−2v(x, 1, t)dx. (50)
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Repeating the same above estimations, the estimates (52) and (52) are established.

Lemma 8. Assume that (A1)–(A3) hold. The functional

χ5(t) = τ
∫ 1

0

∫ 1

0
e−ρτξ(x)|v(x, ρ, t)|m(x)dxdρ, (51)

satisfies,

χ′5(t) ≤
∫ 1

0
ξ(x)|zt(t)|m(x)dx− τe−τ

∫ 1

0

∫ 1

0
ξ(x)|v(x, ρ, t)|m(x)dxdρ. (52)

Proof. The proof of the above lemma can be found in many papers in the literature; see,
for instance, Lemma 4.2 in [35].

Lemma 9. Assume that (A1)–(A3) hold. Then∫ 1

0
z2

t dx ≤ −cE′(t), if m1 = m2 = 2, (53)

and ∫ 1

0
z2

t dx ≤ −cE′(t) + c
(
−E′(t)

) 2
m2 , if m1, m2 > 2. (54)

Proof. By recalling (10), it is easy to establish (53). To prove (54), we set the following partitions

Ω1 = {x ∈ [0, 1] : |zt| ≥ 1} and Ω2 = {x ∈ [0, 1] : |zt| < 1}. (55)

With use of Hölder’s and Young’s inequalities and (9), we obtain∫
Ω1

z2
t dx ≤

∫ 1
0 |zt|m(x)dx = −cE′(t), (56)

∫
Ω2

z2
t dx ≤ c

(∫
Ω2

|zt|m2dx
) 2

m2

≤ c
(∫

Ω2

|zt|m(x)dx
) 2

m2 ≤ c
(∫ 1

0
|zt|m(x)dx

) 2
m2

= c
(
−E′(t)

) 2
m2 . (57)

Combining (56) and (57), estimate (54) is established.

5. Proofs of Theorems 2 and 3

In what follows, we prove Theorem 2.

Proof. Let

L(t) = µE(t) + µ1χ1(t) + µ2χ2(t) + µ3χ3(t) + µ4χ4(t) + χ5(t) (58)

where µ, µ1, µ2, µ3, µ4 are positive constants to be properly chosen. By taking the derivative
of the functional L and using all the above estimates (31)–(52), we obtain
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L′(t) ≤ −
(

a2
2

2
µ2 − cεε1µ1 − ε4µ4

) ∫ 1

0
u2

xdx

−
(

α0

2
µ3 −

cεµ1

ε1
− cµ2 −

cµ4

ε4

) ∫ 1

0
z2

x dx

−
(

µ4 −
cµ2

ε2
− cµ3

ε3

)
ρz

∫ 1

0
z2

t dx

− (εµ1 − ε2µ2 − ε3µ3)
∫ 1

0
u2

t dx

− [C0µ− cµ2 − cµ3 − cµ4 − c]
∫ 1

0
|zt|m(·)dx

− [C0µ− cµ2 − cµ3 − cµ4]
∫ 1

0
|v(x, 1, t)|m(·)dx

− τe−τ
∫ 1

0

∫ 1

0
ξ(x)|v(x, ρ, t)|m(x)dxdρ

+ c
(∫ 1

0
|zt|m(x)dx

)m1−1

+ c
(∫ 1

0
|v(x, 1, t)|m(x)dx

)m1−1

dx. (59)

Choosing εi = µi, i = 1, 2, 3, 4, then the above estimate becomes

L′(t) ≤ −
(

a2
2

2
µ2 − cεµ2

1 − µ2
4

) ∫ 1

0
u2

xdx

−
(α0

2
µ3 − cεµ2

1 − cµ2 − c
) ∫ 1

0
z2

x dx

− (µ4 − 2c)ρz

∫ 1

0
z2

t dx

−
(

ερuµ1 − µ2
2 − µ2

3

) ∫ 1

0
u2

t dx

− [C0µ− cµ2 − cµ3 − cµ4 − c]
∫ 1

0
|zt|m(·)dx

− [C0µ− cµ2 − cµ3 − cµ4]
∫ 1

0
|v(x, 1, t)|m(·)dx

− τe−τ
∫ 1

0

∫ 1

0
ξ(x)|v(x, ρ, t)|m(x)dxdρ

+ c
(∫ 1

0
|zt|m(x)dx

)m1−1

+ c
(∫ 1

0
|v(x, 1, t)|m(x)dx

)m1−1

dx. (60)

First, we select µ4 such that

µ4 − 2c > 1.

Then, we choose a µ2 large enough such that

Λ1 :=
a2

2
2

µ2 − µ2
4 > 0.

Then, we choose a µ3 large enough such that

Λ2 :=
α0

2
µ3 − cµ2 − c > 0.

Then, we choose a µ1 large enough such that

ερuµ1 − µ2
2 − µ2

3 > 1.
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Now, we set

ε ≤ min{ Λ1

cµ2
1

,
Λ2

cµ2
1
},

so that

Λ1 − cµ2
1 > 0

and

Λ2 − cµ2
1 > 0.

After fixing µi, where i = 1, 2, 3, 4, we select a µ large enough (if needed) such that

C0µ− cµ2 − cµ3 − cµ4 − c > 0,

and L ∼ E. That is, we can find two positive constants α1 and α2 such that

α1E(t) ≤ L(t) ≤ α2E(t). (61)

On the other hand, Young’s inequality and (9) allow us to conclude that

E(t) ≤ c̄
∫ 1

0

(
u2

t + u2
x + z2

t + z2
x

)
dx + c

∫ 1

0

∫ 1

0
ξ(x)|v(x, ρ, t)|m(x)dxdρ. (62)

Hence, estimate (60) becomes for any t ≥ 0 and for some positive constant α3,

L′(t) ≤ −α3

∫ 1

0

(
u2

t + u2
x + z2

t + z2
x +

∫ 1

0
ξ(x)|v(x, ρ, t)|m(x)dxdρ

)
dx

+ c
(∫ 1

0
|zt|m(x)dx

)m1−1

+ c
(∫ 1

0
|v(x, 1, t)|m(x)dx

)m1−1

dx. (63)

Then, from (63) and (62), we arrive at

L′(t) ≤ −α4E(t) + c
(∫ 1

0 |zt|m(x)dx
)m1−1

+ c
(∫ 1

0 |v(x, 1, t)|m(x)dx
)m1−1

dx, ∀t ≥ 0, (64)

and thanks to (61), we obtain, for any t ≥ 0,

L′(t) ≤ −α5L(t) + c
(∫ 1

0 |zt|m(x)dx
)m1−1

+ c
(∫ 1

0 |v(x, 1, t)|m(x)dx
)m1−1

dx.

Using (10), multiplying the above equation by Eα(t), α = 2−m1
m1−1 , using the fact E ∼ L, and

using Young’s inequality, we obtain:

Eα(t)L′(t) ≤ −α5Eα+1(t) + cEα(t)
(
− E′(t)

)m1−1

≤ −α5(1− ε)Eα+1(t) + c
ε

(
− E′(t)

)
.

(65)

Taking a ε small enough and using the non-increasing property of E, (65) becomes:

L1(t) ≤ −α6Eα+1(t), ∀t ≥ 0, (66)

where L1(t) = Eα(t)L(t) + cE(t).
Integration over (0, t), using E ∼ L1, gives

E(t) ≤ cm1

(
1

t + 1

) 1
α

, ∀ t > 0, (67)
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where α = 2−m1
m1−1 > 0. Then, the proof of (14) is completed.

Now, to prove (3), we reformulate the integral
∫ 1

0 z2
t dx in (60) and recall that the

integrals
(∫ 1

0 |zt|m(x)dx
)m1−1

and
(∫ 1

0 |v(x, 1, t)|m(x)dx
)m1−1

are not involved in this case,
so we have

Proof.

L′(t) ≤ −
(

a2
2

2
µ2 − cεµ2

1 − µ2
4

) ∫ 1

0
u2

xdx

−
(α0

2
µ3 − cεµ2

1 − cµ2 − c
) ∫ 1

0
z2

x dx

− µ4ρz

∫ 1

0
z2

t dx + 2cρz

∫ 1

0
z2

t dx

−
(

ερuµ1 − µ2
2 − µ2

3

) ∫ 1

0
u2

t dx

− [C0µ− cµ2 − cµ3 − cµ4 − c]
∫ 1

0
|zt|m(·)dx

− [C0µ− cµ2 − cµ3 − cµ4]
∫ 1

0
|v(x, 1, t)|m(·)dx

− τe−τ
∫ 1

0

∫ 1

0
ξ(x)|v(x, ρ, t)|m(x)dxdρ (68)

First, we choose µ4 > 0 any real number; then, we do the same selections (as in the
above proof). By recalling Poincaré’s inequality and (10), estimate (68) becomes, for a
positive constant β3,

L′(t) ≤ −β3
∫ 1

0

(
u2

t + u2
x + z2

t + z2
x +

∫ 1
0 ξ(x)|v(x, ρ, t)|m(x)dxdρ

)
dx +

∫ 1
0 z2

t dx, ∀t ≥ 0. (69)

In the other hand, Young’s inequality and (9) allow us to conclude that

E(t) ≤ c̄
∫ 1

0

(
u2

t + u2
x + z2

t + z2
x +

∫ 1

0
ξ(x)|v(x, ρ, t)|m(x)dxdρ

)
dx. (70)

Then, from (69) and (70), we arrive at

L′(t) ≤ −β4E(t) +
∫ 1

0 z2
t dx, ∀t ≥ 0, (71)

and thanks to (61), we obtain, for any t ≥ 0,

L′(t) ≤ −β5L(t) +
∫ 1

0 z2
t dx.

Now, we will discuss two cases:
Case 1: if m2 = 2, then by using Lemma 9, we have

L′(t) ≤ −β5L(t) + (−E′(t)).

This gives
L′1(t) ≤ −β5L(t).

where L1 = (L+ E) ∼ E. Integrating the last estimate over the interval (0, t) and using
the equivalence properties L1,L ∼ E, the proof of (15) is completed.
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Case 2: if m2 > 2, then by using Lemma 9, we have

L′(t) ≤ −β5L(t) + (−E′(t))
2

m2 .

Multiplying the last equation by Eq, where q = m2−2
2 , then we obtain

EqL′(t) ≤ −β5EqL(t) + Eq(−E′(t))
2

m2 .

With use of Young’s inequality with γ = q+1
q and γ∗ = m2

m2−2 , we obtain for ε > 0

EqL′(t) ≤ −(β5 − ε)Eq+1L(t) + Cε(−E′(t)).

Taking a ε small enough and using the non-increasing property of E, the above esti-
mate becomes:

L2(t) ≤ −β6Eq+1(t), ∀t ≥ 0, (72)

where L2 = EqL+ cE ∼ E.
Integration over (0, t), using E ∼ L2, gives

E(t) < cm2

(
1

t + 1

)1/q
, ∀ t > 0, (73)

where q = m2−2
2 > 0. Then, the proof of (17) is completed.

6. Conclusions

We considered a nonlinear swelling soil system with a time delay and nonlinear
damping with a variable exponent type. We used the multiplier method to investigate the
long-term behavior of this system, and we obtained exponential and polynomial decay
results under some conditions on the variable exponent. Our results are established under
the more general assumption of the damping; we considered a nonlinear damping of
variable exponent type, so these results generalize and extend to several results in the
literature. We believe that our results will contribute to better understanding and mastering
the issue of stabilization by nonlinear damping with a variable exponent and will probably
add to the implementation of these types of dissipations in damping technology. Our
results will certainly allow a wider class of frictional damping functions to be used for
stabilization and be a basis for further work.
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