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Abstract: This paper studies and analyzes the approximation of one-dimensional smooth closed-form
functions with compact support using a mixed Fourier series (i.e., a combination of partial Fourier
series and other forms of partial series). To explore the potential of this approach, we discuss and
revise its application in signal processing, especially because it allows us to control the decreasing rate
of Fourier coefficients and avoids the Gibbs phenomenon. Therefore, this method improves the signal
processing performance in a wide range of scenarios, such as function approximation, interpolation,
increased convergence with quasi-spectral accuracy using the time domain or the frequency domain,
numerical integration, and solutions of inverse problems such as ordinary differential equations.
Moreover, the paper provides comprehensive examples of one-dimensional problems to showcase
the advantages of this approach.

Keywords: function reconstruction; Fourier series; Gibbs phenomenon; convergence acceleration;
exponential accuracy
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1. Introduction

The Fourier series of a function with compact support, denoted by g:[0,T]→R, has
been the cornerstone of several modern applications through harmonic analysis and Fourier
synthesis. On the one hand, harmonic analysis allows the study of the original function or
phenomenon through the superposition of simpler trigonometric functions. This analysis
represents a wide branch of study in mathematics [1–3] and is used in many applications
in physics [4–6], engineering [7–9], medicine [10–12], and music [13]. Fourier synthesis, on
the other hand, uses a linear combination of basis functions to approximate the original
function [14], which has many applications in boundary value problems [15–17], data
interpolation [18–21], and compression [22].

The Fourier series has several advantages for representing a function with compact
support (i.e., non-periodic function). First, it has been extensively studied, and many
well-known analytical and numerical properties can be applied [1,2]. Second, unlike other
series based on local information, such as the Taylor series or the Spline series, the Fourier
series does not require the use of high-order derivatives, and their coefficients are calculated
by well-conditioned algorithms. Finally, unlike other series based on non-trigonometric
basis functions using an inner product, such as orthogonal polynomials, the Fourier series
offers the advantage of reducing the computational cost of obtaining the coefficients by
employing the FFT (fast Fourier transform). However, despite those advantages, it is well-
known that its performance degrades when the equivalent periodic function (denoted by
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ḡ:R→ R) loses its smooth property. The first shortcoming is the presence of unacceptable
oscillations (i.e., ringing artifacts) in the approximation, which are generally known as
the Gibbs (or Gibbs–Wilbraham) phenomenon [23]. The second shortcoming is slow
convergence because the magnitude of Fourier coefficients is O(|k|−1) [24] or O(|k|−2) [25],
which makes it difficult to obtain a suitable representation using few coefficients for many
purposes, such as data compression or fast solvers of inverse problems. To address these
drawbacks, several techniques have been proposed over the last several years. They can be
classified into averaging and filtering techniques [26–56], polynomial techniques [57–69],
and discontinuity subtraction techniques [70–86].

The Windowing technique [26] is possibly the most important filtering technique for
harmonic analysis, in which the function is artificially smoothed with a relevant distortion
cost for small bandwidths. Averaging and filtering techniques are more diverse for syn-
thesis applications. For instance, the Fejér’s arithmetic mean method removes the Gibbs
oscillations [27–29]. Similarly, the Lanczos sigma approximation [30–32], Mollifiers [33–38],
and other averaging methods [39,40] and filters [41–44] can reduce ringing artifacts, too.
Moreover, they can be combined with special wavelets [45–50] with the same purpose.
Furthermore, these techniques can be merged with Fourier extension methods, in which
artificial and convenient information in an extended interval t ∈ [−a, T + a] allows for a
reduction in undesirable phenomena in t ∈ [0, T] [51–56]. Despite their success, averaging
and filtering techniques have several drawbacks due to the artificial modification and slow
convergence of the Fourier coefficients.

The main polynomial methodology for synthesis application may be the spectral
reprojection approach [57], in which Fourier coefficients are reprojected onto other basis
functions conformed by polynomials. For instance, the Gegenbauer polynomials [58–60]
and general polynomials using inverse methods [61,62] are successful in removing the
Gibbs phenomenon. In the same direction, Chebyshev polynomials produce a strongly
nonuniform distribution of points with good performance for interpolation [63,64]. How-
ever, the solution loses simplification by using non-equidistant data. Similarly, other related
techniques can address these concerns, such as Padé approximations [65–67], convergence
acceleration, and inverse methods [68,69]. Although polynomial techniques reduce or
remove ringing artifacts from arbitrary Fourier coefficients, they have some drawbacks due
to their complexities or ill-conditioned solutions.

Discontinuity subtraction techniques are employed to separate the discontinuities
in the original function, yielding a more convenient Fourier representation. To the best
of our knowledge, the concept of removing discontinuities using polynomials was first
introduced by Russian works in the 1900s. For instance, A. N. Krylov proposed the method
of Acad using a piecewise linear polynomial [70], ([71], p. 79) and A. S. Maliev proposed
a strengthened convergence method using high-order piecewise polynomials using a
Fourier extension method ([71], p. 86). Those approaches were generalized by C. Lanczos
in ([72], p. 98), using quasi-Bernoulli polynomials, denoted by Bm(t), in the same domain
of the function. The Maliev–Lanczos approach has enormous potential because it avoids
the Gibbs phenomenon and allows for generating Fourier coefficients with convergence
O(|k|−M). Despite the fact that these works demonstrated that the Fourier series can
achieve accelerated convergence for smooth functions, there was little scientific discussion
for almost three decades about these methods [77,78]. The Lanczos approach emerged
again in the 1990s in the works of K. S. Eckhoff [79–81], who proposed the reconstruction of
piecewise smooth functions with M jumps by solving a linear system of M equations using
quasi-Bernoulli polynomials and the spectral domain. Over the last two decades, several
Armenian researchers have made significant contributions to the Lanczos approach. For
instance, the works of A. Nersessian and A. Poghosyan addressed the main issue of some
alternatives to the quasi-Bernoulli series in [67,87–92], such as the quasi-polynomial series,
the Fourier–Pade series, the trigonometric interpolations series, and the quasi-polynomial
Pade series. Similarly, A. Nersessian studied a framework based on a biorthogonal system
and adaptive algorithms with a strong potential for accelerating the convergence of Fourier
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series due to an over-convergence phenomenon [93–96]. Furthermore, some simplifica-
tions and applications of Eckhoff algorithm have been studied by A. Poghosyan et al.
in [83–86,97], such as its application to two-dimensional functions, the simplification of the
minimization problem, and the study of trigonometric interpolations series. Finally, several
researchers around the world, who are not fully discussed in this introduction due to space
limitations, have also contributed to this technique [82,98–101]. For example, B. Adcock
provided a comprehensive discussion and evaluation of several related techniques in [99],
and D. Batenkov proposed a novel decimated Eckhoff’s algorithm in [101].

On the other hand, Fourier series have been widely used to solve differential problems,
such as ODEs, PDEs, and eigenvalues [14,102,103]. In particular, we found that, unrelated
to the previous state of the art, P. Roache proposed the method of “reduction to periodicity”
in [104] for solving differential equations in fluid dynamics [105,106]. That method applies
the discontinuity subtraction technique using simple polynomials in a normalized domain
(i.e., φ(t) = ∑M

k=0 ak · tk, ∀t ∈ [0, 1]), where the coefficients are chosen to produce a smooth
periodic residual error, and therefore, the solution increases the convergence and removes
ringing artifacts using the Fourier approach.

The Maliev–Lanczos approach to approximating closed-form smooth functions has
four disadvantages in applied problems. First, the method requires explicit knowledge
of the function’s derivative at the edges of the interval. However, for continuous-time
applications where the closed-form function is known, this requirement does not cause
setbacks because derivative operators may be easily computed using the chain rule. These
continuous-time applications include the solutions to direct and inverse problems using
linear operators (i.e., L {·} : g → h such that L {α · g1(t) + β · g2(t)} = α ·L {g1(t)}+
β ·L {g2(t)}). Second, Fourier coefficients of the original function must be determined
because the method is supported by the Fourier framework. For common functions,
these coefficients are not always known in closed form. Third, the evaluation of quasi-
Bernoulli polynomials requires an iterative algorithm that increases addition and product
operations and, therefore, increases computation time and sensitivity to rounding errors in
the operations L {Bm(t)}. Finally, it would seem that the approach using quasi-Bernoulli
polynomials is the best framework for accelerated convergence because they are directly
found from integration by parts using the integral definition of Fourier coefficients.

Despite the advances of the last decades, the Maliev–Lanczos approach is not widely
used or recognized as one would expect in continuous-time problems involving closed-
form smooth functions in applied mathematics, physics, and engineering. For example, this
technique receives minimal attention as an alternative to the Taylor series for non-analytic
smooth functions on a closed interval. Unfortunately, the Maliev–Lanczos approach is
rarely mentioned in engineering textbooks, despite the fact that the Fourier series and Taylor
series are fundamental tools for a wide range of problems and applications (e.g., Riemann
integration, integral equations, and boundary or initial value problems). Perhaps this is due
to the aforementioned shortcomings, as well as a lack of useful information and discussions,
canonical examples, or practical applications.

The contributions of this publication are categorized as follows. The first category
involves making scientific contributions to the Maliev–Lanczos approach. This includes
advancements, improvements, and novel insights related to the approach, which are
listed below:

1. We prove that the Roache approach (i.e., using simple polynomials derived from the
residual error framework) is spectrally equivalent to the Lanczos approach (i.e., using
quasi-Bernoulli polynomials derived from an integration-by-parts framework) for any
harmonic different from zero (i.e., ∀k ∈ Z−{0}), where simple polynomial coefficients
are determined by a low-cost backward algorithm. Although both approaches have
the same complexity when using linear operators based on integrals or derivatives,
simple polynomials are easier to manipulate using these operators, and they reduce
rounding errors by lowering addition and multiplication operations.
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2. We propose a reprojection method that allows the transformation from Fourier series
coefficients to mixed Fourier series coefficients. We introduce the term “mixed Fourier
series” to designate the summation of series derived from a smooth periodic residual
error, wherein one of the series is the Fourier series. This method allows for recovering
convergence O(|k|−M) using standard Fourier coefficients obtained from any smooth
function. The proposed method has the advantage of avoiding the temporal informa-
tion of g:[0, T]→ R. Therefore, it has the potential to be particularly useful for native
spectral applications (e.g., solving differential equations with spectral methods).

3. By employing the Maliev–Lanczos approach and leveraging the residual error frame-
work, we introduce and evaluate a novel sub-harmonic mixed Fourier series. This
new series demonstrates enhanced performance and versatility in approximating
wide-band or pass-band functions compared to the quasi-Bernoulli series. It is worth
noting that the Maliev–Lanczos approach presents a set of continuity-based cons-
traints that can be applied to any series complementing the Fourier series. Moreover,
the conditions for achieving accelerated convergence can be readily obtained using
the residual error framework.

The second category focuses on utilizing case studies as canonical examples to inspire
and encourage non-specialists to apply the Maliev–Lanczos approach to real-life problems.
The contributions pertaining to this category are listed below:

1. We discuss several examples of common smooth functions whose approximations
using polynomials and trigonometric series exhibit several well-known adverse phe-
nomena, such as the Gibbs phenomenon, Runge’s phenomenon, spectral leakage, and
non-convergence by a non-analytic point or a limited region of convergence (using the
Taylor series), which are successfully represented by the mixed Fourier series. The re-
sults demonstrate the potential of the Maliev–Lanczos approach in the approximation
of the usual smooth functions in applied problems, even outperforming, in several
scenarios, the Taylor series, orthogonal polynomials, and Chebyshev polynomials
using nonuniform sampling.

2. We illustrate the application of the mixed Fourier series with linear operators. In
particular, we solve a common direct problem in applied mathematics (Numerical
Riemann Integration) and a common inverse problem in fluid dynamics (Poisson’s
equation). In both examples, we show the benefit of employing simple polynomials,
and we illustrate fast convergence without the Gibbs phenomenon.

3. We evaluate the use of a mixed evaluation (i.e., a combination of closed-form deriva-
tives and the DFT approach) to find the mixed Fourier series of functions without
closed-form Fourier coefficients. In that case, we show that the DFT reflects the
property O(|k|−M) for smooth functions, which allows accelerated discrete Fourier
processing. Therefore, this approach has a huge potential for a wide range of practi-
cal situations.

4. Finally, we show in detail the methodology used to define a new mixed Fourier series
using the residual error framework. Additionally, the versatility of this new series is
demonstrated through several examples.

The rest of this article is divided as follows. Section 2 develops the continuous-
time theory, and Section 3 discusses several continuous-time examples and applications.
Finally, the last sections present open challenges and future work (Section 4), followed by
conclusions (Section 5).
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2. Continuous-Time Theory
2.1. Fourier Series Fundamentals

Let g:[0, T]→ R be a function with compact support. Traditionally, the partial Fourier
series of g(t) is given by [3], p. 62

SN{g; t} :=
N

∑
k=−N

Gk · e2πi·t·k f0 , (1)

where f0 = 1
T , and the Fourier coefficients are

Gk :=
1
T
·

T∫
0

g(t)·e−2πi·t·k f0 dt, ∀k ∈ Z. (2)

This paper makes the assumption that g(t) is a well-behaved (i.e., not pathologi-
cal [107]) function such that limN→∞ SN{g; t} → g(t), ∀t ∈ [0, T] using a well-defined con-
cept of convergence, such as point-wise, uniform, or based on the 2-norm (i.e., ‖·‖2) [1,2].
Moreover, the periodic equivalent function (denoted by ḡ : R → R) is defined from the
partial Fourier series by

ḡ(t) := lim
N→∞

SN{g; t}, ∀t ∈ R. (3)

Definition 1. Let C0[0, T] be the set of continuous functions on [0, T]. Let CK[0, T] be the set of
continuous functions with K-times continuously differential properties on [0, T], where we use only
the right-hand derivative definition at t = 0 and the left-hand derivative definition at t = T.

Even though g(t) has a smooth property, defined by g ∈ CK[0, T], the Fourier series
could be inefficient for analysis or synthesis applications because the periodic equivalent
function could have discontinuities caused by the edges of the interval (e.g., g(0+) 6=
g(T−) ⇒ ḡ(mT+) 6= ḡ(mT−), ∀m ∈ Z). As a result, the periodic equivalent function
is usually inconvenient for a Fourier representation because it lacks a smooth property
(i.e., ḡ /∈ CK(R)).

2.2. Mixed Fourier Series

The disadvantages of the Fourier series representation could be solved using the linear
combination given by

g(t) := PM{g; t}+ r(t), ∀t ∈ [0, T], (4)

where the function r(t) means the residual error between g(t) and an arbitrary partial series
PM{g; t}. If a convenient form of PM{g; t} is chosen, then an equivalent periodic residual
error (i.e., r̄ : R → R) with suitable properties for a Fourier series representation can be
obtained. Therefore, as part of the method, we design PM{g; t} such that r̄ ∈ CM(R) for
some 0 ≤ M ≤ K. As a result, the partial mixed Fourier series, defined by

gN,M(t) :=PM{g; t}+ RN,M{r; t}, ∀t ∈ [0, T] (5)

=PM{g; t}+
N

∑
k=−N

Rg
k,M · e

2πi·t·k f0,∀t∈ [0, T], (6)

has greater potential for processing applications because the partial Fourier series RN,M{r; t}
avoids the Gibbs phenomenon with a better decreasing rate of their Fourier coefficients, where
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Rg
k,M =

1
T
·

T∫
0

{g(t)− PM{g; t}} · e−2πi·t·k f0 dt. (7)

The new Fourier coefficient (i.e., Rg
k,M) is the kth harmonic of the residual error formed

between the original function g(t) and the hypothesis PM{g; t}.
Lastly, in this paper, in order to simplify the results, we study a simple polynomial

series,

PM{g; t} :=
M+1

∑
m=1

Pg
m,M ·

(
t
T

)m
, ∀t ∈ [0, T] (8)

with coefficients Pg
m,M, M ∈ N ∪ {0} and 0 ≤ M ≤ K. This polynomial series is mostly

equivalent to the one proposed by Roache in [104], where we utilize an arbitrary compact
interval [0,T] and we avoid the use of the coefficient Pg

0,M.
The mixed Fourier series defined in (5) is a combination of functions without a Fourier

series representation (i.e., polynomial series are not mandatory in PM{g; t}) and standard
trigonometric functions (i.e., using k f0-harmonics in RN,M{r; t}) with constants Pg

m,M and
Rg

k,M, respectively. As we prove with the theory, and we show with several study cases, the
mixed Fourier series representation can substantially enhance the processing of g(t) with
low-cost of implementation and storage.

2.3. Polynomial Coefficients in Closed Form

To find the general coefficients of PM{g; t}, we first study the methodology for the
cases M ∈ {0, 1, 2}.

2.3.1. Case M = 0

Using (4) and (8) with M = 0, we obtain the edges

g(0) = r(0), (9)

g(T) = Pg
1,0 + r(T). (10)

If r̄ ∈ C0(R), then r(T) = r(0). As a result, solving (9) and (10), we obtain

Pg
1,0 = g(T)− g(0). (11)

In particular, the trivial case g(T) = g(0) has the trivial representation Pg
1,0=0. Finally,

we approximate g(t) by means of gN,0(t) using (5)–(8).

2.3.2. Case M = 1

Using (4) and (8) with M = 1, we obtain the edges

g(0) = r(0), (12)

g(T) = Pg
1,1 + Pg

2,1 + r(T). (13)

Let g(m)(t) be the mth derivative of g(t), or dm

dtm g(t), where g(0)(t) := g(t). If
g, r ∈ C1[0, T], then we obtain

g(1)(t) =
1
T

Pg
1,1 +

2
T2 Pg

2,1 · t + r(1)(t), ∀t ∈ [0, T] (14)
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with the edges

g(1)(0) =
1
T

Pg
1,1 + r(1)(0), (15)

g(1)(T) =
1
T

Pg
1,1 +

2
T

Pg
2,1 + r(1)(T). (16)

If r̄ ∈ C1(R), then r(1)(T) = r(1)(0) and r(T) = r(0). Solving (15)–(16) and (12)–(13),
we obtain

Pg
2,1 =

T
2
{g(1)(T)− g(1)(0)}, (17)

Pg
1,1 = {g(T)− g(0)} − Pg

2,1. (18)

We want to note that the coefficients of M = 0 are the same coefficients of M = 1 with
Pg

2,1 = 0. Finally, we approximate g(t) through gN,1(t) using (5)–(8).

2.3.3. Case M = 2

Using (4) and (8) with M = 2, and g, r ∈ C2[0, T], we obtain the edges

g(0) = r(0), (19)

g(T) = Pg
1,2 + Pg

2,2 + Pg
3,2 + r(T), (20)

g(1)(0) =
1
T

Pg
1,2 + r(1)(0), (21)

g(1)(T) =
1
T

Pg
1,2 + 2

1
T

Pg
2,2 + 3

1
T

Pg
3,2 + r(1)(T), (22)

g(2)(0) = 2
1

T2 Pg
2,2 + r(2)(0), (23)

g(2)(T) = 2
1

T2 Pg
2,2 + 6

1
T2 Pg

3,2 + r(2)(T). (24)

Solving (23)–(24), (21)–(22), and (19)–(20) with r̄ ∈ C2(R), we obtain

Pg
3,2 =

T2

6
{g(2)(T)− g(2)(0)}, (25)

Pg
2,2 =

T
2
{g(1)(T)− g(1)(0)} − 3

2
P3,2, (26)

Pg
1,2 = {g(T)− g(0)} − P2,2 − P3,2. (27)

Again, we want to note that the coefficients of M = 1 are the same coefficients of
M = 2 with Pg

3,2 = 0. Finally, we approximate g(t) through gN,2(t) using (5)–(8).

2.3.4. General Case: Arbitrary M ∈ N+ {0} Such That M ≤ K

If g ∈ CK[0, T], then the polynomial coefficients Pg
m,M in closed form can be determined

from (8) by the property

g(k)(t) = r(k)(t) +
1

Tk ·
M+1

∑
m=k

αk+1,m ·P
g
m,M ·

(
t
T

)m−k
, ∀k∈{M, M−1,· · ·, 1}, ∀t ∈ [0, T], (28)

where
αk,m =

m!
(m− k + 1)!

, ∀1 ≤ k ≤ m. (29)

If we design PM{g; t} such that r̄ ∈ CM(R), then the boundaries

r(k)(T) = r(k)(0) (30)
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are mandatory for any 0 ≤ k ≤ M ≤ K. From those boundaries and (28), the unknown
constants can be easily obtained using the backward algorithm derived from

Pg
M+1,M =

1
(M + 1)!

Fg
M, (31)

Pg
k,M =

1
k!

Fg
k−1−

1
k!
·

M+1

∑
m=k+1

αk,m ·P
g
m,M, ∀k∈{M, M−1,· · ·, 1}, (32)

where
Fg

k := Tk · {g(k)(T)− g(k)(0)}. (33)

Corollary 1. If g(M)(T) = g(M)(0), then Pg
M+1,M = 0 and Pg

k,M = Pg
k,M−1, ∀k = {M, · · · , 1}.

Proof. Trivial from (31)–(33).

2.4. Fourier Coefficients in Closed Form

We have two ways to determine Rg
k,M in closed form. With that objective, we first

present the following lemmas.

Lemma 1. If h0(t) := 1 and hm(t) := 1
Tm tm, ∀m ∈ N, then

Hk,m :=
1
T

∫ T

0
hm(t) · e−2πi·t·k f0 dt = − 1

2πi·k +
m · Hk,m−1

2πi·k (34)

for ∀m ∈ N and ∀k ∈ Z− {0}, where Hk,0 = 0, ∀k ∈ Z− {0}.

Proof. First, we note that

Hk,0 =
1
T

∫ T

0
h0(t) · e−2πi·t·k f0 dt = 0, ∀k ∈ Z− {0}

and d
dt hm(t) = m

Tm tm−1 = m
T

1
Tm−1 tm−1 = m

T · hm−1(t), ∀m ∈ N. If we use integration by
parts in hm(t), then

Hk,m =
1
T

∫ T

0
hm(t) · e−2πi·t·k f0 dt

=
1
T

e−2πi·t·k f0

(−2πi·k f0)
hm(t)

∣∣∣∣∣
t=T

t=0

− 1
T

∫ T

0

d
dt

hm(t)
e−2πi·t·k f0

−2πi·k f0
dt

= − 1
2πi · k +

m
2πi · k f0

· 1
T2 ·

∫ T

0
hm−1(t)e−2πi·t·k f0 dt

= − 1
2πi · k +

m · Hk,m−1

2πi · k , ∀k ∈ Z− {0}.

Lemma 2. If hm(t) = 1
Tm tm, ∀m ∈ N, then

Hk,m = −
m

∑
n=1

m!
(m− n + 1)!

1
(2πi·k)n , ∀k ∈ Z− {0}. (35)

Proof. If we use (34) with m = 1, then

Hk,1 = − 1
2πi · k +

1
2πi · k Hk,0 = − 1

2πi · k , ∀k ∈ Z− {0}.
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For the general case m ≥ 2, we have

Hk,m = − 1
2πi · k +

m
2πi · k Hk,m−1

= − 1
2πi · k +

m
2πi · k{−

1
2πi · k +

m− 1
2πi · k Hk,m−2}

...

=− 1
2πi · k−

m
(2πi · k)2−

m(m−1)
(2πi · k)3−· · ·−

m!
(2πi · k)m

for ∀k ∈ Z− {0}.

Therefore, using (7) and Lemma 2, we obtain Rg
k,M by means of

Rg
k,M = Gk −

M+1

∑
m=1

Pg
m,M · Hk,m, ∀k ∈ Z− {0}. (36)

This equation has the simplification of Corollary 2, which is very useful for low-order
values of M.

Corollary 2 (First Method). If we use (4) and (8) such that r̄ ∈ CM(R) for M ∈ N∪ {0}, then
their Fourier coefficients are

Rg
k,M = Gk +

M+1

∑
m=1

Fg
m−1

(2πi · k)m ,∀k∈Z−{0}, M ≥ 0 (37)

= Rg
k,M−1+ f−M

0 · {g
(M)(T)−gM)(0)}
(2πi · k)M+1 ,∀k∈Z−{0}, M ≥ 1. (38)

Proof. We obtain (37) by replacing (31)–(32) in (36). The simplification is straightforward
from its definition.

For instance, for M ∈ {0, 1, 2}, we obtain the following Fourier coefficients:

Rg
k,0 = Gk +

{g(T)− g(0)}
2πi · k , ∀k ∈ Z− {0}, (39)

Rg
k,1 = Rg

k,0 + f−1
0 · {g

(1)(T)− g(1)(0)}
(2πi · k)2 , ∀k ∈ Z− {0}, (40)

Rg
k,2 = Rg

k,1 + f−2
0 · {g

(2)(T)− g(2)(0)}
(2πi · k)3 , ∀k ∈ Z− {0}. (41)

On the other hand, if g(M)(t) and their Fourier coefficients are easy to calculate, then
we can use the simplification of Lemma 3 and Corollary 3.

Lemma 3. If r̄ ∈ CM(R) for M ∈ N∪ {0}, then their Fourier coefficients for ∀k ∈ Z− {0} are

Rg
k,M =

1
(2πi · k f0)M ·

1
T

∫ T

0
r(M)(t) · e−2πi·t·k f0 dt. (42)

Proof. For more detail, see [108–111].
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Corollary 3 (Second Method). If we use (4) and (8) such that r̄ ∈ CM(R) for M ∈ N ∪ {0},
then their Fourier coefficients are

Rg
k,M =

f−M
0

(2πi · k)M

(
Dg

k,M+
{g(M)(T)−g(M)(0)}

2πi · k

)
,∀k ∈ Z− {0}, (43)

where

Dg
k,M =

1
T
·
∫ T

0
g(M)(t) · e−2πi·t·k f0 dt, ∀k ∈ Z− {0}. (44)

Proof. For r̄ ∈ C0(R), we obtain the same result as in (39) by

Rg
k,0 = Dg

k,0 +
{g(T)− g(0)}

2πi · k , ∀k ∈ Z− {0}

= Gk +
{g(T)− g(0)}

2πi · k , ∀k ∈ Z− {0}.

For r̄ ∈ CM(R) such that M ∈ N, we obtain the expression using (4), (42), and (44) in

Rg
k,M =

1
(2πi · k f0)M

(
Dg

k,M−
1
T

∫ T

0

dM

dtM PM{g, t}·e−2πi·t·k f0 dt
)

=
f−M
0

(2πi · k)M

(
Dg

k,M−
1

TM Fg
M· Hk,1

)
, ∀k ∈ Z−{0}

=
f−M
0

(2πi · k)M

(
Dg

k,M+
{g(M)(T)−g(M)(0)}

2πi · k

)
, ∀k ∈ Z−{0}.

Finally, we obtain the case k = 0 by definition:

Rg
0,M :=

1
T
·
∫ T

0
r(t)dt =

1
T
·
∫ T

0
g(t)dt− 1

T
·
∫ T

0
PM{g; t}dt

= G0 −
M+1

∑
m=1

1
m + 1

· Pg
m,M. (45)

2.5. Enhanced Continuous-Time Processing

The potential of the mixed Fourier series approach is supported by the following
well-known theorem [108–111].

Theorem 1. If r̄ ∈ CM(R) for M ∈ N ∪ {0}, then their Fourier coefficients are bounded for
∀k ∈ Z− {0} by ∣∣∣Rg

k,M

∣∣∣ ≤ Dmax · |k|−M, (46)

where
Dmax =

1
(2π f0)M · sup

∀t∈[0,T]

∣∣∣r(M)(t)
∣∣∣. (47)

Proof. If r̄ ∈ CM(R) for M ∈ N ∪ {0}, then we obtain the inequality using (42) for
∀k ∈ Z− {0} by
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∣∣∣Rg
k,M

∣∣∣ = 1

|k|M
· 1
(2π f0)M ·

1
T

∣∣∣∣∫ T

0
r(M)(t) · e−2πi·t·k f0 dt

∣∣∣∣
≤ 1

|k|M
· 1
(2π f0)M ·

1
T

∫ T

0

∣∣∣r(M)(t)
∣∣∣dt

≤ 1

|k|M
· 1
(2π f0)M · sup

∀t∈[0,T]

∣∣∣r(M)(t)
∣∣∣ = Dmax · |k|−M.

Therefore, if we design (4) such that r̄ ∈ CM(R), then the two major drawbacks of
the partial Fourier series of g ∈ CK[0, T] are solved. First, RN,M{r; t} does not have the
Gibbs phenomenon because r̄ ∈ C0(R). Second, the decreasing rates of their coefficients
are controlled toward O(|k|−M) because Dmax is bounded by the Boundedness Theorem.

Moreover, the mixed Fourier series allows the use of the linear property because both
summations are linear, as summarized in the following corollary.

Corollary 4 (Superposition Property). Let v ∈ CK[0, T] be a function with mixed Fourier series
given by Pv

k,M and Rv
k,M. Let w ∈ CK[0, T] be a function with mixed Fourier series given by Pw

k,M
and Rw

k,M. Consequently, g∈ CK[0, T] obtained by g(t) = α · v(t) + β · w(t) has mixed Fourier
series given by Pg

k,M = α · Pv
k,M + β · Pw

k,M and Rg
k,M = α · Rv

k,M + β · Rw
k,M.

2.6. Relation with the Maliev–Lanczos Approach

In [71], p. 86, A.S. Maliev proposed using a Fourier extension method through
ge : [−π, π] → R to enhance the processing of g : [0, π] → R, where ge(t), ∀t ∈ [−π, 0] is
represented by polynomials based on its continuity properties utilizing the edge informa-
tion g(m)(0) and g(m)(π). Although we acknowledge this fundamental concept, we do not
delve into that idea in this paper because it involves artificially increasing the domain (i.e.,
it can be a major issue for some applications), and it implies increasing the complexity of
Fourier estimation (i.e., the Fourier approach goes from fundamental period T to funda-
mental period 2T, which implies an increase in the frequency resolution from f0 to 1

2 f0).
However, it should be noted that Maliev’s approach can improve the performance of (5)
at the expense of doubling the number of unknown variables (or doubling the number of
samples) for a fixed bandwidth.

On the other hand, in [72], p. 98, C. Lanczos simplified Maliev’s works by using
quasi-Bernoulli polynomials without changing the domain. This approach for a partial
series, using the Lanczos nomenclature, is defined by g, hp : [−1, 1]→ R such that

hp(t) ≈ g(t)− 1
2

p

∑
m=0
{g(m)(1)− g(m)(−1)} · Bm+1(t)−

1
2

∫ 1

−1
g(t)dt, (48)

where

Bm+1(t) =
tm

m!
− b2

tm−2

(m− 2)!
+ b4

tm−4

(m− 4)!
− · · · (49)

and
2t

et − e−t = 1− b2t2 + b4t4 − b6t6 + · · · . (50)

The function Bm+1(t) is closely related to Bernoulli polynomials ([72], p. 106 and
p. 109), and it takes, for example, the following values: B1(t) = t, B2(t) = 1

2 t2 − 1
6 ,
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B3(t) = 1
6 t3 − 1

6 t, B4(t) = 1
24 t4 − 1

12 t2 + 7
360 . From Lanczos’s works, it is easy to deduce

that the Fourier coefficients of (48) are

Hk,p =

0 , k = 0

Gk +
1
2 ·∑

p
m=0{g(m)(1)− g(m)(−1)} · (−1)k

(iπk)m+1 , ∀k ∈ Z− {0}
. (51)

Conclusively, we find that Rg
k,M has the same Fourier coefficients Hk,p for ∀k ∈ Z−{0}

when we replace the function Bm+1(t) in (48) by Tm

2m · Bm+1(
2
T · t − 1), defined in a new

domain t ∈ [0, T], with new boundaries g(m)(T), g(m)(0), and p = M. Therefore, the simple
polynomial series simplifies (48) using a different perspective based on the residual error
framework. Because consecutive derivatives or integrals are easy to evaluate using simple
polynomials, our result facilitates the application of gN,M(t) through many linear operators.
Because we intend to use M� N, the numerical values of Pg

m,M calculated by the backward
algorithm derived from (31)–(33) have a low computational cost.

2.7. A Simple Reprojection Method: Using Standard Closed-Form Fourier Coefficients to Define a
Mixed Fourier Series

Because the Fourier series is widely used in signal theory, determining a mixed Fourier
series (i.e., Pg

m,M and Rg
k,M) from standard closed-form Fourier coefficients (i.e., Gk) may be

necessary in some cases, either to avoid the Gibbs phenomenon or to improve convergence
for a fixed number of harmonics. In this subsection, we briefly discuss that methodology
for M = 0.

If g ∈ C0[0, T], then

gN,0(t) = Fg
0 ·
(

t
T

)
+

N

∑
k=−N,k 6=0

{Gk +
Fg

0
2πi · k} · e

2πi·t·k f0 + Rg
0,0 (52)

may exist for ∀t∈ [0, T]. As a result of the continuity property, the approximation gN,0(t)
must have the property gN,0(∆) ≈ gN,0(0) for a small and convenient value ∆. Therefore,
we find

Fg
0 ≈

∑N
k=−N,k 6=0 Gk · {1− e2πi·∆·k f0}

(∆
T )−∑N

k=−N,k 6=0
1

2πi·k{1− e2πi·∆·k f0}
(53)

from (52). Because the approximation gN,0(t) has the bandwidth N f0, we can select any
0 < ∆ ≤ 1

4
1

N f0
in order to model the discontinuity without ringing artifacts.

Example 1. Let g:[0, 2]→ R be a test function with closed-form Fourier coefficients given by

Gk =
−16 iπk3 − 16k2 + 36 iπk− 36

π2(16k4 − 72k2 + 81)
, ∀k ∈ Z. (54)

Figure 1 shows gN,0(t) using (53) with ∆ = 1
4

1
N f0

and ∆ = 1
16

1
N f0

, where, by reference, the

test function is g(t) = t · cos( 3
2 · π · t), ∀t ∈ [0, 2]. As the figure makes clear, the approximation of

Fg
0 allows the recovery of convergence O(|k|−2) for Rg

k,0 from Gk without ambiguities. As a result,
the Gibbs phenomenon is removed.

In the other cases (i.e., M ≥ 1), we can repeat a similar procedure using the partial
Maclaurin Series of g(m)

N,M(t)⊥m ∈ {0, · · · , M − 1} at t = ∆, and g(M)
N,M(∆) ≈ g(M)

N,M(0).

For instance, if M = 1, then we obtain gN,1(∆) ≈ gN,1(0) + 1
1! g(1)N,1(0) · ∆ and g(1)N,1(∆) ≈

g(1)N,1(0), which results in a system of two equations that can be solved using standard
matrix techniques. In conclusion, this method is a low-complexity alternative to spectral
reprojection methods [58–60] for removing the Gibbs phenomenon of g ∈ CK[0, T] because
the mixed Fourier series has the potential to improve convergence (i.e., not just remove
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the Gibbs phenomenon) from the original Fourier coefficients using a straightforward and
simple procedure.

Figure 1. Example of removing Gibbs phenomenon from closed-form Fourier coefficients (Gk) with a
bandwidth N f0.

3. Continuous-Time Examples and Applications
3.1. A Different Perspective for Convergent Series of Functions

By Weierstrass’s approximation theorem ([112], §14.08), a function h ∈ C0[0, T] can be
uniformly approximated by polynomials as closely as desired. Because polynomial series
are important in signal theory, we link our approach with that perspective as follows.

Definition 2. If g, r, hm : [0, T]→ R, PM{g; t} := ∑M+1
m=1 Pg

m,M · hm(t) and g(t) = PM{g; t}+
r(t), then a predisposed series of g ∈ C0[0, T] is PM{g; t} such that limM→∞ PM{g} → g.

Consequently, a predisposed series is a linear combination of functions (e.g., polyno-
mials) designed to have direct convergence toward g(t) (i.e., a series predisposed to con-
verge directly). A complementary interpretation of this definition is obtained by analyzing
the periodic functions using harmonic analysis. If r̄(t) is the equivalent periodic residual
error resulting from the periodic extension of g(t)− PM{g; t}, then a predisposed series
is obtained when PM{g; t} allows that limM→∞ r̄(t) → 0 using point-wise or uniform
convergence. Naturally, the concept of convergence can be generalized in a weak sense
(i.e., using the “almost anywhere” concept) by other norms, such as ‖·‖2. Predisposed
series, such as sequences of polynomials based on orthogonalization or useful solutions to
ordinary differential equations, are difficult to find or build because limM→∞ r̄(t) → 0 is
a hard constraint (i.e., difficult to achieve with a potentially slow convergence rate), with
relevant challenges in updating their coefficients at a low computational cost.

The Maliev–Lanczos approach implies a different class of convergence. We design
PM{g; t}, with a reasonably low order, for some particular application and function g :
[0, T] → R, such that r̄ ∈ CM(R). Afterward, we find a harmonic approximation for a
“nonzero residual error” through Rg

k,M. Therefore, the convergence proposal is indirect
in the sense that r̄(t) 6= 0, with several advantages. First, ringing artifacts are removed
because we can control the type of convergence; for example:

Corollary 5 (Convergence Everywhere). If g ∈ C1[0, T] and P1{g; t} are given by (8)
with coefficients (31)–(33), then the Fourier series of r(t) = g(t) − P1{g; t}, ∀t ∈ [0, T] has
uniform convergence.
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Proof. In the methodology proposed, we design P1{g; t} such that r̄∈ C1(R). Therefore,
r̄(t) has Fourier series with uniform convergence [109,110]. Consequently, r(t) has uniform
convergence, too.

Second, the bandwidth of r̄(t) becomes more compacted for base-band functions
because |Rg

k,M| is O(|k|−M). Conclusively, low-order harmonics of RN,M{r; t} will provide
good approximations, where its discrete-time signal will have less aliasing. Furthermore,
we could use (4) through linear operators without ambiguities because PM{g; t} is well-
defined for many linear operators, and r̄ ∈ CM(R) does not have the Gibbs phenomenon,
with a small enough bandwidth for many practical applications.

3.2. Canonical Examples of Approximation Using Closed-Form Smooth Functions

This subsection discusses typical and well-known closed-form smooth functions
approximated by gN,M(t) using a reasonably small value of M to clearly explain the
methodology and encourage the use of the mixed Fourier series in more complex problems.

3.2.1. Generic Sawtooth Function

We define this function by

g(t) = α + β · t, ∀t ∈ [0, T],

where α, β ∈ R. The coefficients of SN{g; t} are

Gk =

{
α+ 1

2 ·T·β , k = 0
− T·β

2πi·k , ∀k ∈ Z−{0}
. (55)

Using M = 0, we obtain g(0) = α, g(T) = α + β · T. Consequently, Pg
1,0 = β · T and

P0{g; t} = β · t, ∀t ∈ [0, T], (56)

Rg
k,0 = α · sinc(k) =

{
α , k = 0
0 , elsewhere

. (57)

As expected, we obtain the best possible scenario because only two coefficients (i.e.,
Pg

1,0 = β · T and Rg
0,0 = α) are necessary to model this function without errors. From

Corollary 1, we obtain PM≥0{g; t} = β · t, ∀t ∈ [0, T].

3.2.2. Power Function

We define this function by

g(t) = tm, ∀t ∈ [0, T],

where m ∈ N− {1}. The coefficients of SN{g; t} are

Gk =

{
1

m+1 · Tm , k = 0
Tm · Hk,m , elsewhere

. (58)

We are interested in this case because many functions can have partial Taylor approx-
imations. As a result, the ability to approximate polynomials with the mixed series can
arise as a relevant question. This function produces ringing artifacts in SN{g; t} for higher
values of m · Tm−1 caused by the change in amplitude and slope at edges. In Figure 2, we
show the Fourier series for m = 5 and T = 2 using N = 3 and N = 30.
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Figure 2. Evaluation of g(t) = t5, ∀t ∈ [0, 2].

In this case, the polynomial constants (31)–(33) use

g(k)(t) =

{
m!

(m−k)! · t
m−k , k ≤ m, ∀t ∈ [0, T]

0 , k > m, ∀t ∈ [0, T]
. (59)

For instance, for m = 5 and T = 2, we obtain the following polynomials:

P0{g; t} = 16t, ∀t ∈ [0, 2], (60)

P1{g; t} = 20t2 − 24t, ∀t ∈ [0, 2], (61)

and using (37) and (45), we obtain the Fourier coefficients

Rk,0 =

{
− 32

3 , k = 0
25 · Hk,5 + 25 1

2πik , elsewhere
, (62)

Rk,1 =

{
8
3 , k = 0
Rk,0 − 25 5

(2πk)2 , elsewhere
. (63)

As we show in Figure 2, the approximations gN,0(t) and gN,1(t) do not have the Gibbs
phenomenon, and we obtain control of the decreasing rate of the Fourier coefficients. For
instance, we find that the 30th harmonic has |G30| · ‖Gk

∥∥−1
∞ ∼3.1× 10−2 and |Rg

30,M| ·
‖Rg

k,M

∥∥−1
∞ ∼3.5× 10−5 for M = 1 in this example. As a result, the increase in resolution

using the mixed Fourier series is nearly cubic (29.47 dB) for that harmonic. If M ≥ m− 1,
then we obtain again the best possible scenario because PM≥m−1{g; t} = tm, ∀t ∈ [0, T].
Applying superposition, it follows that arbitrary polynomials with degree D have an exact
representation when M ≥ D− 1. We emphasize, however, that by using a low-order value
of M in the mixed Fourier series, we can avoid using high-order derivatives.

3.2.3. Exponential Function

We define this function by

g(t) = eα·t, ∀t ∈ [0, T], (64)
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where α ∈ R− {0}. The coefficients of SN{g; t} are

Gk =
eTα − 1

Tα− 2iπk
, ∀k ∈ Z. (65)

This function is of our interest because it could increase or decrease its values very fast.
In Figure 3, we show the Fourier series for α = −4 and T = 2 using N = 3 and N = 30.

Figure 3. Evaluation of g(t) = e−4t, ∀t ∈ [0, 2].

In this case, the polynomial constants (31)–(33) use

g(k)(t) = αk · eα·t, ∀t ∈ [0, T]. (66)

For instance, for α = −4 and T = 2, we obtain the following polynomials:

P1{g; t} = −
(

e−8 − 1
)(

t2− 5
2

t
)

, ∀t ∈ [0, 2], (67)

P4{g; t} =
(

e−8 − 1
) 5

∑
m=1

φm · tm, ∀t∈ [0, 2], (68)

where φ1 = 209
90 , φ2 = − 31

3 , φ3 = 124
9 , φ4 = − 20

3 , and φ5 = 16
15 . On the other hand, the

Fourier coefficients Rk,M can be calculated efficiently using Corollary 3. In particular, for
this example, we find

Rk,1 =

{
− 31

24
(
e−8 − 1

)
, k = 0

Tα
(2πi·k)

(
eTα−1

Tα−2iπk +
eTα−1
2πi·k

)
, elsewhere

, (69)

Rk,4 =

{
− 209

360
(
e−8 − 1

)
, k = 0

T4α4

(2πi·k)4

(
eTα−1

Tα−2iπk +
eTα−1
2πi·k

)
, elsewhere

. (70)

As Figure 3 makes clear, we are able to recover an approximation of this function
with ‖g(t)− g3,4(t)‖∞∼10−8 using 30 harmonics (i.e., N = 30). From a practical point
of view, for M = 4, we obtain a worst absolute error of ∼10−3 and ∼10−6 using only
3 and 10 harmonics, respectively. For instance, we find that the 30th harmonic has |G30| ·
‖Gk

∥∥−1
∞ ∼4.2× 10−2 and |Rg

30,M| · ‖R
g
k,M

∥∥−1
∞ ∼1.2× 10−9 for M = 4 in this example. As

a result, the increase in resolution using the mixed Fourier series is almost 75.44 dB for
that harmonic.
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3.2.4. Base-Band Cosine Function

We define this function by

g(t) = cos(2π
β

T
· t), ∀t ∈ [0, T],

where 0 < β < 1. The coefficients of SN{g; t} are

Gk =
1
2

e−iπ(k−β)sinc(k− β) +
1
2

e−iπ(k+β)sinc(k + β). (71)

This function is of our interest because it allows us to study the spectrum leakage in
trigonometric base-band functions. As Figure 4 makes clear, even though the Fourier series
obtains a small Gibbs phenomenon for β = 0.9 and T = 2, the spectrum leakage could be
relevant for many practical applications.

Figure 4. Evaluation of g(t) = cos(0.9π · t), ∀t ∈ [0, 2].

In this case, the polynomial constants (31)–(33) use

g(k)(t)=(2π
β

T
)k

{
(−1)

k
2+

1
2 ·sin(2π

β
T ·t) , ∀k ∈ {1, 3, 5, · · · }, ∀t ∈ [0, T]

(−1)
k
2 ·cos(2π

β
T ·t) , ∀k ∈ {0, 2, 4, · · · }, ∀t ∈ [0, T]

, (72)

where the Fourier coefficients Rg
k,M can be calculated efficiently using Corollary 3. As an

example, for β = 0.9 and T = 2, we find the following Fourier coefficients:

Rg
k,2 =

{
0.268535523631802 , k = 0

−
( 0.9

ik
)2
(

Gk +
{cos(1.8π)−1}

2πik

)
, elsewhere

, (73)

Rg
k,4 =

{
0.416158284137357 , k = 0( 0.9

ik
)4
(

Gk +
{cos(1.8π)−1}

2πik

)
, elsewhere

. (74)

As expected, Figure 4 shows a reduction in spectral leakage by increasing M. In contrast
to the spectral distortion caused by improving amplitude-based frequency discrimination us-
ing the Windowing technique, the mixed Fourier series improves amplitude-based frequency
discrimination only by increasing M (i.e., without adding artificial distortion). For instance,
using a criteria of 10−2 in amplitude-based frequency discrimination, |Gk| · ‖Gk‖−1

∞ ≥ 10−2

requires eight harmonics in Figure 4. In contrast, |Rg
k,M| · ‖R

g
k,M‖

−1
∞ ≥ 10−2 requires only
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three and two harmonics using M = 2 and M = 4, respectively. Using more selective
criteria of 10−3 in this example, the standard Fourier approach requires 65 harmonics, and
the mixed Fourier series requires 4 and 3 harmonics using M = 2 and M = 4, respec-
tively. Nonetheless, a redefinition of PM{g; t} is required to apply this technique directly
to carrier detection (i.e., β � 1) because PM{g; t} composed only of polynomials is a
base-band function.

3.3. Comparison with Selected State-of-the-Art Techniques

In this subsection, we compare the performance of the mixed Fourier series with other
types of series in a variety of scenarios using convenient test functions. Although the term
“convenient function” is debatable, we define it as a function that is demanding enough for
trigonometric and polynomial basis functions on [0, T] and, at the same time, has a simple
mathematical structure that allows us to avoid debating its influence on the numerical
implementation. For this reason, we start our comparison with the exponential function
previously studied in Section 3.2.3.

Figure 5 shows the performance of the most common averaging and filtering tech-
niques for N = 10 [27,32], where FN{g; t} is the partial Fejér’s series (i.e., Fejér’s arithmetic
mean method), given by

FN{g; t} :=
1

N + 1

N

∑
m=0

Sm{g; t}, (75)

and σN,M{g; t} is a partial Fourier series using a particular σl-filter with the Mth order,
given by

σN,M{g; t} :=
N

∑
k=−N

Gk · e2πi·t·k f0 · σM+1
l

(
k · N−1

)
. (76)

For example, the standard Lanczos filter (also known as σ-approximation) is given
by σ1(x) = sinc(x) := sin(πx)

πx , the Raised cosine filter is given by σ2(x) := 1
2{1 + cos(πx)},

and the Sharpened Raised cosine filter is given by σ3(x) := σ4
2 (x) · {35− 84 · σ2(x) + 70 ·

σ2
2 (x) − 20 · σ3

2 (x)}. As can be concluded from a cursory examination of Figure 5, we
obtain better performance using gN,0(t). Because the average and convolution operators
are smooth operators, methods based on them converge more slowly than gN,M≥1(t).

Figure 5. Example of removing Gibbs phenomenon using averaging and filtering techniques and
mixed Fourier series for g(t) = e−4t, ∀t ∈ [0, 2].
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On the other hand, a comparison between mixed Fourier series and orthogonal poly-
nomials is also pertinent. Figure 6 shows the absolute residual error using the Legendre or-
thogonal polynomials, denoted by WLeg

M {g; t}, and the Chebyshev orthogonal polynomials,
denoted by WChe

M {g; t}, both defined on [0, T]. As the figure makes clear, both approxi-
mations have good performance for M = 10, where ‖g(t)−WLeg

M {g; t}‖∞ ' 9.2× 10−6

and ‖g(t) −WChe
M {g; t}‖∞ ' 3.1 × 10−6. We are interested in determining some fair

comparatives because the mixed Fourier series has two degrees of freedom (i.e., N and
M). For instance, we obtain ‖g(t)− gN,10(t)‖∞ ≤ 2.7× 10−7 for N ≥ 3, which implies
that we can improve both orthogonal polynomials by combining simple polynomials
with the same degree and a few harmonics from the residual. As another example, we
find ‖g(t)− g10,M(t)‖∞ ≤ 1.6× 10−6 for M ≥ 4, which implies that the same number
of unknown harmonics can also improve both orthogonal polynomials using low-order
derivatives from the edges. Finally, we obtain ‖g(t)− g6,5(t)‖∞ ' 2.7× 10−6 such that
min{M + N}, which implies that the mixed Fourier series has a better performance using
at least 19 unknown variables (i.e., M + 2N + 2 unknown variables) versus the 11 unknown
variables (i.e., M + 1 unknown variables) from the orthogonal polynomials. In summary,
the mixed Fourier series outperforms orthogonal polynomials in several ways. First, we
have an additional degree of freedom that has a significant impact on convergence. Second,
we have less computational complexity because the interior product is more simple and
computationally efficient using the Fourier approach (i.e., Gk can be defined in terms of
an inner product using the same framework of orthogonal polynomials). Third, our ap-
proach implies uniform sampling, which simplifies the numerical implementation using the
DFT{·}. Finally, we also find a quasi-spectral accuracy because |Rg

N,M| ≤ Dmax · |N|−M,
where M ≤ K and Dmax is (47).

Figure 6. Absolute residual error between g(t) = e−4t, ∀t ∈ [0, 2], and the approximations using
orthogonal polynomials and mixed Fourier series.

Another critical situation to discuss is when the Taylor series of g(t) at t0, defined by
TM{g; t; t0} := ∑M

k=0
1
k! g(k)(t0)(t− t0)

k, cannot converge in the whole domain or at some
point of the domain (e.g., g(t) is a smooth function but a non-analytic function at some
t0 ∈ [0, T]). For instance, the case g(t) = ln(t + 1), ∀t ∈ [0, 2], allows us to discuss a typical
example where the Taylor series cannot converge in the whole domain using t0 = 0 because
its residual has a region of convergence |t| < 1, as we show in Figure 7. As happens in
this example, the mixed Fourier series can be found by using a mixed evaluation (i.e., a
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combination of closed-form and numerical evaluations). On the one hand, we can usually
find Pg

m,M from closed-form derivatives, as shown in this example by

g(k)(t) =

ln(t + 1) k = 0, ∀t ∈ [0, T]

− (−1)k ·(k−1)!
(t+1)k k ∈ N, ∀t ∈ [0, T]

(77)

On the other hand, because closed-form Fourier coefficients are relatively uncommon
for many well-known functions, we can approximate Gk ≈ TN{Ĝk} and Rg

k,M ≈ TN{R̂
g
k,M}

using the Discrete Fourier Transform (DFT) of 2N + 1 points through

TN{Ĝk} :=
1

2N + 1
·


Ĝ0 , k = 0
Ĝk , ∀k∈ [1, N]

Ĝ2N+k+1, ∀k∈ [−N,−1]

, (78)

where

Ĝk =DFT{g(tn)}2N
n=0 :=

2N

∑
n=0

g(tn)·e−
2π

2N+1 i·kn, ∀k∈ [0, 2N] (79)

and

R̂g
k,M := DFT{g(tn)−PM{g; tn}}2N

n=0 (80)

using the uniform samples tn = h · n, ∀n ∈ {0, 1, · · · , 2N}, and h = T
2N+1 . According to the

Sampling Theory [113,114], this approach converges by increasing N because the aliasing
from the discrete-time model is removed when N → ∞ for g ∈ CK[0, T]. In particular,
because ln(·) does not have closed-form Fourier coefficients, we can use (80) to obtain
gN,M(t). As shown in Figure 7, the mixed evaluation allows us to obtain a convergent
approximation for increasing values of M and N. Similarly, another relevant case study
is given by g(t) = e−1/t2

, ∀t ∈ (0, 2] and g(0) = 0 because it is a typical smooth function
with non-analytic behavior at t0 = 0 (i.e., caused by g(k)(0) = 0, ∀k ∈ N ∪ {0}). As we
show in Figure 7, we also obtain a convergent mixed Fourier series for increasing values of
M and N.

Figure 7. Smooth functions with anomalous Taylor series behavior, and mixed Fourier series us-
ing mixed evaluation (i.e., derivatives calculated using the closed form, and Fourier coefficients
approximated by the DFT).
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Lastly, it is pertinent to evaluate this mixed evaluation with special cases, for ex-
ample, when the test function exhibits both Gibbs and Runge’s phenomena. In particu-
lar, we propose the study case g(t) = tanh(α · t − 1

2 α · T), ∀t ∈ [0, T], using α = 4 and
T = 2. As shown in Figure 8, we obtain Runge’s phenomenon by using a partial inter-
polating polynomial series L2N+1{g; t} = ∑2N+1

m=0 αm · ( t
T )

m and uniform matching nodes
tn = h · n, ∀n ∈ {0, 1, · · · , 2N + 1}. On the other hand, we obtain the Gibbs phenomenon by
using a partial Fourier interpolating series SN{g; t} = ∑N

k=−N Gk · e2πi·t·k f0 , where Gk is ap-
proximated by TN{Ĝk} with uniform matching nodes tn = h · n, ∀n ∈ {0, 1, · · · , 2N}. One
well-known solution for this situation is obtained by using nonuniform sampling, for exam-
ple, with the Chebyshev interpolating function T2N+1{g; t} = ∑2N+1

m=0 βm · Tm(
2
T t− 1) and

the Chebyshev–Gauss–Lobatto (CGL) matching nodes given by tl := T
2 {1 + cos( l·π

2N+1 )},
∀l ∈ {0, · · · , 2N + 1} [115]. In this paper, we propose a different solution obtained by
gN,1(t) using uniform matching nodes tn = h · n, ∀n ∈ {0, 1, · · · , 2N}, TN{R̂

g
k,1}, and

P1{g; t} = 2 · tanh(
1
2

α · T) ·
(

t
T

)
, ∀t ∈ [0, T]. (81)

Despite the reduced performance due to the mixed evaluation, Figure 8 shows that
gN,1(t) has the best performance without Gibbs and Runge’s phenomena, outperforming
the Chebyshev interpolating function. For instance, we obtain an absolute residual error
around ‖g(t)− g7,1(t)‖∞∼1.5× 10−4 using seven harmonics (i.e., N = 7). If we increase α,
then more harmonics (and samples) will be necessary for a good approximation because
the test function increases its bandwidth.

Figure 8. Interpolation of a closed-form function affected by Gibbs phenomenon and Runge’s
phenomenon simultaneously.

Although the Legendre, Chebyshev, or other modern interpolating series may perform
better for other smooth functions, we have shown in several situations that the mixed
Fourier series allows us to interpolate a closed-form function without anomalous phe-
nomena caused by convergence. Unlike interpolating methods such as Legendre and
Chebyshev, the method for finding gN,M(t) is well conditioned because the DFT is well
conditioned and the polynomial constants are found using a low-cost backward algorithm.
In summary, we can derive a mixed Fourier series from a closed-form evaluation of g(t) or
from a mixed evaluation of g(t), where the new series may outperform common signal pre-
sentations with low complexity and well-conditioned methodologies. The Maliev–Lanczos
approach has two degrees of freedom, which allows quasi-spectral accuracy. Moreover, it
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has a simple method based on uniform sampling with convergence everywhere for M ≥ 1,
which allows us to avoid Gibbs and Runge phenomena for g ∈ CK≥1[0, T].

3.4. A Canonical Direct Problem: Numerical Riemann Integration of Closed-Form
Smooth Functions

Numerical integration using uniform samples has several advantages because of its
computational simplicity. Because the magnitude of Fourier coefficients of r̄ ∈ CM(R)
has the property O(|k|−M), it is a reasonable hypothesis that r(t) allows better numerical
integration using the Newton–Cotes quadrature rules [116]. Therefore, we propose the
numerical integration of g(t) using r(t) by means of

I=
∫ T

0
g(t)dt =

∫ T

0
(PM{g; t}+ r(t))dt

≈ T·
M+1

∑
m=1

1
m + 1

·Pg
m,M+

2N+1

∑
n=0

wn ·r(tn), (82)

where h = T/(2N + 1), tn = n · h, r(tn) = g(tn)− PM{g; tn}, and wn denotes the weights
for a particular quadrature rule [116].

As a case of study, we evaluate I =
∫ 3

0 e−t2
dt in Figure 9 by means of the absolute

relative error of the integral defined by η :=
∣∣∣1− Iapprox

Iexact

∣∣∣. We compare (82) with

∫ T

0
g(t)dt ≈

2N+1

∑
n=0

wn · g(tn) (83)

using the left rectangular rule (i.e., left Riemann sums), the trapezoidal rule, and Simpson’s
rule. As we show in this example, the simple left rectangular rule (i.e., wn = h, ∀n ∈ [0, 2N]
and w2N+1 = 0) obtains a higher performance. For instance, Figure 9 shows that using that
simplest integration scheme, the evaluation of (82) only requires N > 10 with M = 3 for a
typical relative integration error of 1× 10−10. This result makes sense using the Fourier
framework because r(tn) has less aliasing than its counterpart g(tn).

Figure 9. Numerical evaluation of
∫ 3

0 e−t2
dt using Newton–Cotes quadrature rules.

3.5. A Canonical Inverse Problem: Solution of a Boundary Value Problem (BVP) Using Standard
Closed-Form Fourier Coefficients

The mixed Fourier series emerged when we were analyzing the solution of Pois-
son’s equation in one dimension with a Dirichlet boundary condition using the Fourier
series [117]. Our approach to solving that problem is as follows.
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Let x ∈ C2[0, T] be an unknown function such that

d2

dt2 x(t) = λ · y(t), ∀t ∈ [0, T], (84)

s.t. x(0), x(T) ∈ R (85)

where we use the right-hand derivative definition at t = 0, the left-hand derivative defini-
tion at t = T, and λ ∈ R.

If we assume that y ∈ C0[0, T] has a partial Fourier series given by

SN{y; t} =
N

∑
k=−N

Yk · e2πi·t·k f0 , ∀t ∈ [0, T], (86)

such that |Yk| is O(|k|−1), then the partial series solution of this problem is

xN,1(t) =
N

∑
k=−N

Rx
k,1 ·e

2πi·t·k f0 +
2

∑
m=1

Px
m,1 ·

(
t
T

)m
, ∀t ∈ [0, T]. (87)

Replacing xN,1(t) and SN{y; t} in (84), and using the boundaries and the orthogonality
of the harmonics, we obtain

Rx
k,1 =

λ

(2πi · k f0)2 ·Yk, ∀k ∈ {±1, · · · ,±N}, (88)

Rx
0,1 = x(0)− 2 ·

N

∑
k=1

Re{Rx
k,1}, (89)

Px
2,1 =

λ

2
· T2 ·Y0, (90)

Px
1,1 = {x(T)− x(0)} − Px

2,1. (91)

This result is always convergent because y(t) is bounded by the Boundedness The-
orem, |Yk| has a decreasing rate O(|k|−1) [24], and |Rx

k,1| has a decreasing rate O(|k|−3).
Therefore, ∑∞

k=1 Re{Rx
k,1} is bounded, too.

In particular, if x(t) = sin(t), ∀t ∈ [0, π
2 ], and λ = −1, then y(t) = sin(t), ∀t ∈ [0, π

2 ],
and

Yk =
2
π
· 4ik− 1

16k2 − 1
. (92)

In this case, we can see that there are two types of series for the same function
x(t) = y(t) = sin(t), ∀t ∈ [0, π

2 ]. The first is the standard partial Fourier series using the
coefficients (92), which have a decreasing rate O(|k|−1), and they produce ringing artifacts,
as shown in Figure 10. The second is a mixed Fourier series using particular coefficients
with x(0) = 0 and x(T) = 1 obtained from the BVP by (88)–(91). The mixed series includes
Fourier coefficients with a decreasing rate O(|k|−3), and they do not produce ringing
artifacts, as shown in Figure 10. These characteristics motivated us to develop an in-depth
analysis of this series and its applications in the framework of signal processing, which is
described in this paper.

On the other hand, the solution using the mixed series has better accuracy compared
with the standard Finite Difference Method (FDM) [118] given by

−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2




x2N(t1)
x2N(t2)

...
x2N(t2N−1)

x2N(t2N)

= λ · h2


y(t1)
y(t2)

...
y(t2N−1)

y(t2N)

−


x(0)
0
...
0

x(T)

, (93)
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where h = T/(2N + 1) and tn = n · h, ∀n ∈ [1, 2N]. Furthermore, the complexity to find the
unknown constants in both cases is O(N) because the solution of (93) using the tridiagonal
matrix algorithm is O(N), the evaluation of (88) or (89) is O(N), and the evaluation of (90)
or (91) is O(1). Figure 10 shows the FDM solution using linear interpolation, too.

Figure 10. Evaluation of Poisson’s equation with Dirichlet boundary condition using mixed Fourier series.

Finally, we can still improve the accuracy of Poisson’s Equation solution for any
y ∈ C0[0, T] using yN,0(t) and xN,2(t), where

Ry
k,0 =

{
Y0 − 1

2{y(T)− y(0)} k = 0

Yk +
{y(T)−y(0)}

2πi·k elsewhere
, (94)

Rx
k,2 =

λ

(2πi · k f0)2 · R
y
k,0, ∀k ∈ {±1, · · · ,±N}, (95)

Rx
0,2 = x(0)− 2 ·

N

∑
k=1

Re{Rx
k,2}, (96)

Px
3,2 =

λ

6
· T2 · (y(T)− y(0)), (97)

Px
2,2 =

λ

2
· T2 · Ry

0,0, (98)

Px
1,2 = x(T)− x(0)− Px

2,2 − Px
3,2. (99)

Figure 10 also shows the solution using x(T) = y(T) = 1 and x(0) = y(0) = 0, where
‖x(t)− x3,2(t)‖∞ ∼ 6× 10−5 is obtained using only three harmonics (i.e., N = 3).

3.6. A Canonical Inverse Problem: Solution of a Boundary Value Problem (BVP) Using the DFT

In the absence of direct knowledge of the Fourier coefficients of y(t), we can use the
approximation based on the DFT, given by TN{R̂

y
k,M}, without ambiguities at the edges

of the interval because we always obtain r̄y ∈ CM(R) using the Maliev–Lanczos approach.
Furthermore, Py

m,M is obtained from y(t), and the coefficients Px
m,M+L and Rx

k,M+L are
obtained from Py

m,M and Ry
k,M using the boundaries.

In particular, the case M = 0 is always relevant because we simplify the formulation
without derivatives. For example, in Figure 10, we compare Poisson’s solution using
TN{R̂

y
k,M} with (95)–(99). As we show, even though the solution loses accuracy in compari-

son to the theoretical value Ry
k,0, the residual error is still acceptable in comparison to the

other solutions.
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3.7. Toward an Ideal Sampling Theorem for Truncated Continuous-Time Functions

Let gT : R→ R be a truncated function defined by

gT(t) =

{
g(t) , ∀t ∈ [0, T]
0 , elsewhere

. (100)

From the Fourier analysis, it is well known that truncated functions are not band-
limited. As a result, sampling that function may result in relevant aliasing when the sam-
pling frequency is reasonably close to twice the usual bandwidth (BW) definitions, such as
half-power bandwidth or first null bandwidth. Using the ideal sampling theorem [113,114],
the number of instantaneous samples required to rebuild gT : R→ R using a Fourier ap-
proach is asymptotic, and it is given by T

Ts
= fs

f0
� 2BW

f0
. This result implies many samples

to rebuild the truncated function for high-resolution applications. The mixed Fourier series
provides a method for quantifying the finite number of instantaneous samples required to
rebuild gT(t) through g(t) such that g ∈ CM[0, T], ∀M ∈ N. The procedure can be argued
as follows:

1. If limM→∞

∣∣∣Pg
M+1,M

∣∣∣ → 0, then ∃M0 ≥ 0 such that limM→∞ PM{g; t} = PM0{g; t}+
ε1(t), where sup∀t∈[0,T]|ε1(t)| can be as small as desired.

2. If limk,M→∞

∣∣∣Rg
k,M

∣∣∣ → 0, then ∃N0 ≥ 0 such that limN,M→∞ RNM{r; t} = RN0{r; t}+
ε2(t), where sup∀t∈[0,T]|ε2(t)| can be as small as desired. The bandwidth of r̄(t) with
this approach is BW = N0 f0.

3. Conclusively, if both previous limits converge to zero, then limN,M→∞ gNM (t) =
PM0{g; t}+ RN0{r; t}+ ε(t), where sup∀t∈[0,T]|ε(t)| can be as small as desired.

Therefore, 2M0 + 2 instantaneous samples from the edges (i.e., g(0), g(T), · · · ,
g(M0)

0 (0), g(M0)(T)) are required to obtain PM0{g, t}, and 2N0 + 1 instantaneous samples
related to the periodic residual error (i.e., r(ti) = g(ti) − PM0{g; ti}, where t0 = 0, · · · ,
t2N0 = T) are required to obtain RN0{r; t} by means of DFT. Conclusively, we require at
least 2M0 + 2N0 + 1 different instantaneous samples from g(t) and its derivatives to rebuild
its form in a finite interval [0, T] with an error as small as desired.

Example 2 (Numerical case). We studied the exponential function with α = −4 and T = 2 in
Section 3.2.3 using the Fourier series and the mixed Fourier series with M = 1 and M = 4. First,
the Fourier series in this example does not converge to zero using sup∀t∈[0,T]|g(t)− SN{g; t}|
because it has the Gibbs phenomenon. In contrast, the mixed Fourier series converges with
sup∀t∈[0,T]|g(t)− gN,4{g; t}| ≤ 10−11 using N ≥ 74. As a result, our approach for M = 4
requires at least 149 samples (i.e, 2N + 1) to estimate the Fourier coefficients numerically using the
DFT and 10 samples (i.e., 2M + 2) of the kth derivatives at the edges to determine the constants
Pg

1,4, · · · , Pg
5,4. If we make the same calculation using the Taylor series, then this example requires

M ≥ 38 for t0 = 0, M ≥ 23 for t0 = T
2 = 1, and M ≥ 34 for t0 = T = 2. As a result,

in the best of those cases, the Taylor series with the same error requires 24 samples (i.e., M + 1)
of the kth derivatives at t0 = T

2 = 1. Nevertheless, the cases M = 1 and M = 4 using the
mixed Fourier series were only included in Section 3.2.3 to compare low-order convergences. If
M := [Mm] = [ 1 2 3 4 5 6 7 8 9 10 11 12 ], then the mixed Fourier series converges
with the same criterion for N := [Nm] = [ 26, 000 2800 380 74 54 32 20 16 11 9 8 7 ].
As can be seen, the number of harmonics does not change significantly when Mm > 8. In fact,
we want to emphasize the limiting factor Nm + Mm ≈ 19 for Mm > 8. The major advantage of
this approach is given by avoiding the information of higher-order derivatives at one point in the
exchange of instantaneous samples in the whole domain. The absolute residual errors for some cases
are shown in Figure 11.
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Figure 11. Convergence example for g(t) = e−4t, ∀t ∈ [0, 2], using Taylor and mixed Fourier series.

Example 3 (Theoretical case). The exponential function (64) has the following properties:
g(M)(t) = αMg(t), g ∈ CM[0, T] for ∀M ∈ N ∪ {0}, and Gk = eTα−1

Tα−2iπk , ∀k ∈ Z. This
function has Pg

M+1,M = 1
(M+1)! (Tα)M{eTα − 1} using (31). Therefore, we can choose a finite

M0 > T|α| such that Pg
M0+1,M0

is as small as desired because the factorial grows faster than poly-

nomials and exponentials. On the other hand, we find that Rg
k,M =

(
Tα

2πi·k

)M({eTα−1}
Tα−2iπk +

{eTα−1}
2πi·k

)
for ∀k 6= 0 using (43). Therefore, if N0 > T · |α|, then limM→∞

∣∣∣Rg
N0,M

∣∣∣ → 0. Conclusively,
using the mixed Fourier series, the number of different instantaneous samples required to rebuild
g(t) = eαt, ∀t ∈ [0, T], with an error as small as desired is 2M0 + 2N0 + 1, where M0, N0 are
convenient and bounded constants such that M0, N0 > T|α|.

3.8. Canonical Example of a Non-Polynomial Mixed Fourier Series: The Sub-Harmonic Case

The methodology utilized in Section 2.2 to obtain the polynomial mixed Fourier series
based on the smooth periodic residual error is a framework for defining any mixed Fourier
series. In this subsection, we illustrate this methodology to find a novel mixed Fourier
series with a non-polynomial form.

Let

PM{g; t} =
M+1

2

∑
m=1

Ag
m,M · cos(2π f̂mt) +

M+1
2

∑
m=1

Bg
m,M · sin(2π f̂mt), ∀t∈ [0, T] (101)

be a sub-harmonic partial series, where M ∈ N is an odd number, f̂m ∈ R− {k · f0}, ∀k ∈ Z,
such that 0 < f̂1 < · · · < f̂(M+1)/2, and Ag

m,M, Bg
m,M ∈ R. Let

HN,M{g; t} := PM{g; t}+
N

∑
k=−N

Rg
k,M · e

2πi·t·k f0 , ∀t∈ [0, T] (102)

be the sub-harmonic mixed Fourier series, where

Rg
k,M =Gk +

M+1
2

∑
m=1

Ag
m,M ·

ik·Cm−ρm ·Sm

2π(ρ2
m−k2)

+

M+1
2

∑
m=1

Bg
m,M ·

ik·Sm+ρm ·Cm

2π(ρ2
m−k2)

,∀k∈Z, (103)

and ρm := T· f̂m, Cm := cos(2πρm)− 1, and Sm := sin(2πρm).
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Because we assume the property g, r ∈ CM[0, T], the derivative

g(k)(t) = r(k)(t) +

M+1
2

∑
m=1

Ag
m,M ·

dk

dtk cos(2π f̂mt) +

M+1
2

∑
m=1

Bg
m,M ·

dk

dtk sin(2π f̂mt) (104)

exists for ∀t ∈ [0, T] and ∀k ∈ {0, 1, · · · , M}. Because we design PM{g; t} such that the
equivalent periodic residual error has a smooth property derived from r(k)(0) = r(k)(T),
the unknown sub-harmonic coefficients (i.e., Ag

m,M and Bg
m,M) can be obtained by

g(k)(T)− g(k)(0) =

M+1
2

∑
m=1

Ag
m,M ·

(
dk

dtk cos(2π f̂mt)|t=T −
dk

dtk cos(2π f̂mt)|t=0

)

+

M+1
2

∑
m=1

Bg
m,M ·

(
dk

dtk sin(2π f̂mt)|t=T −
dk

dtk sin(2π f̂mt)|t=0

)
(105)

for ∀k ∈ {0, 1, · · · , M}. For example, if M = 1, then we obtain[
C1 S1
−ρ1 ·S1 ρ1 ·C1

][
Ag

1,1
Bg

1,1

]
=

[
Fg

0
(2π)−1 · Fg

1

]
, (106)

and if M = 3, then we obtain
C1 C2 S1 S2
−ρ1 ·S1 −ρ2 ·S2 ρ1 ·C1 ρ2 ·C2
ρ2

1 ·C1 ρ2
2 ·C2 ρ2

1 ·S1 ρ2
2 ·S2

−ρ3
1 ·S1 −ρ3

2 ·S2 ρ3
1 ·C1 ρ3

2 ·C2




Ag
1,3

Ag
2,3

Bg
1,3

Bg
2,3

=


Fg
0

(2π)−1 · Fg
1

−(2π)−2 · Fg
2

−(2π)−3 · Fg
3

, (107)

where Fg
k is (33). The matrix formulation for an arbitrary odd case is easily generalized

from (105)–(107).
The sub-harmonic mixed Fourier series could have a better performance and versatility

than the polynomial mixed Fourier series in several scenarios because it is phenomenologi-
cally related to the Fourier basis functions (i.e., it is interpreted literally as a better spectral
resolution for some harmonics). Additionally, we can select the sub-harmonics following
some special profile for any band-base or pass-band functions. For instance, we can use a
uniform distribution (e.g., sub-frequencies f̂m ∈ { 1

3 f0, 2
3 f0} or sub-harmonics ρm ∈ { 1

3 , 2
3}),

a non-self-interfering but equally spaced distribution (e.g., sub-frequencies f̂m ∈ { 1
6 f0, 1

3 f0}
or sub-harmonics ρm ∈ { 1

6 , 1
3}), or a particular logarithm distribution (e.g., sub-frequencies

f̂m ∈ { 1
9 f0, 1

3 f0} or sub-harmonics ρm ∈ { 1
9 , 1

3}) for any band-base function using M = 3.
Many others are possible depending on the characteristic of g(t) or the conditioning of the
matrix resulting from (105).

Although a comprehensive examination of all the characteristics and applications of
this new mixed Fourier series is beyond the scope of this paper, we will cover some of
them briefly below. First, we obtain the same performance as the polynomial mixed Fourier
series when T · f̂(M+1)/2 � 1 because

cos(2π f̂mt) ≈
(M+1)/2

∑
k=0

(−1)k

(2k)!
(2π f̂mt)2k, ∀t ∈ [0, T], (108)

sin(2π f̂mt) ≈
(M−1)/2

∑
k=0

(−1)k

(2k + 1)!
(2π f̂mt)2k+1, ∀t ∈ [0, T], (109)

form a non-normalized polynomial mixed Fourier series for ∀m ∈ {1, · · · , (M + 1)/2}.
The absolute residual errors for M = 1 and M = 3 using several sub-harmonic profiles, the
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polynomial mixed Fourier series, and the Fourier series for the exponential test function
are compared in Figure 12.

Figure 12. Sub-harmonic mixed Fourier series evaluation using the test function g(t) = e−4t,
∀t ∈ [0, 2].

This new series can be used with base-band functions with a wide-band characteristic,
where the main information is influenced by many different harmonics. For example, the
test function formed by a base-band frequency sweep given by

g(t) = sin(2π · eK f f0·t − 2π · K f f0t), ∀t ∈ [0, T] (110)

has considerable spectral information in the instantaneous frequencies

fins(t) :=
1

2π

d
dt
(2π · eK f f0·t − 2π · K f · f0t) = K f f0 · (eK f f0·t − 1), ∀t ∈ [0, T]. (111)

For narrow-band applications (e.g., 0 < K f ≤ 1), it is well known that the Chebyshev
interpolating function using nonuniform samples achieves greater accuracy for these kind
of functions. However, the ill conditioning of that solution for wide-band applications
(e.g., K f > 1) produces relevant errors for many applications (e.g., inverse problems).
For instance, Figure 13 shows the absolute relative error using the Chebyshev interpolat-
ing function with CGL matching nodes for N ∈ {7, 10, 13} and K f = 1.6. The same
figure shows that the polynomial mixed Fourier series, where gN≥140,1(t), gN≥28,3(t),
and gN≥17,5(t), improve the Chebyshev results using uniform samples and a mixed
evaluation (i.e., with TN{R̂

g
k,M}). Because the instantaneous frequencies are in the in-

terval [0 Hz, 3.16 Hz] and the spectral resolution using the Fourier series is f0 = 1
2 Hz,

sub-frequencies f̂m ∈ {0.75 Hz, 1.25 Hz, 1.75 Hz, 2.25 Hz, 2.75 Hz, 3.25 Hz}would contribute
relevant information to reduce the bandwidth of the test function. As Figure 13 makes clear,
the sub-harmonic approach using a mixed evaluation improves polynomial approaches for
HN≥23,1{g; t} using f̂1 = 3.25 Hz and for HN≥17,3{g; t} using f̂m ∈ {2.75 Hz, 3.25 Hz}. This
finding, however, can be improved by performing a local search for the best sub-harmonics
in this specific study situation.
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Figure 13. Sub-harmonic mixed Fourier series evaluation using the test function g(t) = sin(2π ·
eK f · t

2 − πK f · t), ∀t ∈ [0, 2] and K f = 1.6.

Finally, the approximation increases its spectral discrimination when f̂m → L · f0,
where L ∈ Z. As a result, pass-band functions can obtain a better spectral discrimination
around their main frequencies. For instance, if we assume the test function

g(t)= cos(2π · 8.1t + 2.2) + 30 cos(2π · 10.3t + 3.7) + cos(2π · 13.2t), ∀t∈ [0, 2], (112)

then the spectral leakage does not allow the Fourier series (or the DFT) to obtain a
good discrimination of their estimated carriers using the fundamental frequency f0 = 1

2
(i.e., 8 Hz, 10.5 Hz, and 13 Hz, which are harmonics 16, 21, and 26). As illustrated in
Figure 14, harmonic 16 is not detectable from the magnitude spectrum using Gk, and
it is quite difficult to recognize the three fundamental carries. On the other hand, the
polynomial mixed Fourier series improves its accuracy, and it eliminates the Gibbs phe-
nomenon. However, it has low performance, and the magnitude spectrum using Rg

k,M also

has poor spectral discrimination for pass-band functions because the convergence O(|k|−M)
lowers high-frequency information, as seen in Figure 14. In contrast, if we use M = 1
with f̂1 = (20+21)

2 f0 = 20.5× f0 = 10.25 Hz, where harmonics 20 and 21 were obtained
from the two major and adjunct harmonics of |Gk|, then |Rg

k,1| has a better discrimination
of carriers using the sub-harmonic mixed Fourier series and increases its approximation
accuracy for N > 45, at the same time. Although PM{g; t} and SN{r; t} are not orthogonal,
the sub-harmonic coefficients can be shown simultaneously in the magnitude spectrum

for f̂1 > f0 through |Cg
m,M| :=

√
(Ag

m,M)2 + (Bg
m,M)2 because they can be interpreted in

the same way as a standard Fourier coefficients, which are the peak amplitudes of the
trigonometric basis function at the sub-frequencies f̂m (or sub-harmonic ρm). Continuing
this process repeatedly with M = 2, we propose f̂2 = (26+27)

2 · f0 = 26.5× f0 = 13.25 Hz,
where the harmonics were chosen using |Rg

k,1| based on its highest next relevance and
lowest spectral selectivity. Conclusively, the magnitude spectrum based on Rg

k,3 allows for
a good discrimination of the three carriers with a sub-harmonic resolution and a significant
improvement in accuracy for N > 35, at the same time. Better results can be obtained by
using other strategies, such as the least-square-error approach or a low-cost local search for
f̂m. This mixed Fourier series removes the distortion (or loss of spectral information) caused
by other approaches, such as the Windowing technique, while simultaneously combining
all information into a single spectral diagram.
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Figure 14. Pass-band application using sub-harmonic mixed Fourier series.

4. Open Challenges and Future Work

Although the mixed Fourier series was discussed and analyzed with several study
cases, it is necessary to explore its application to other signal processing problems. In fact, if
we replace the original function by its residual error (i.e., r = g− PM{g}) in any processing
technique, then the technique will process a function with a more compacted spectrum.
Therefore, it is reasonable to assume a priori that linear processing techniques will perform
better for a fixed bandwidth.

The discrete-time case of this framework requires much more discussion because we
found several ways to find the unknown constants. In addition, it is necessary to study the
fundamental ambiguity caused by the loss of the sample g(T) using the usual Digital Signal
Processing framework (i.e., by taking only N samples, denoted by t0, · · · , tN−1). For the
same reason, more analysis is needed to efficiently integrate the FFT{·} into this approach.
Furthermore, it is necessary to evaluate and modify our results for noisy discrete-time
signals because the constants Pg

m,M are derivative-dependent, and thus, the performance
may be sensitive to their discrete estimations. However, this technique has a promising
future in that circumstance due to the use of the least-square-method or modern noise-
robust differentiators.

From Section 3.7, it is seems that a wide class of smoothness functions with compact
support g : [0, T]→ R can be approximated everywhere by a polynomial function with a
finite degree (i.e., with a finite value of M) plus a periodic band-limited function (i.e., with
a finite value of N) as closely as desired. Nevertheless, more discussion and research on
that or related topics are required because it has several consequences for sampling limits
for continuous and piecewise functions. For instance, following the Fourier approach,
the number of samples to rebuild a pulse function with a duration 0 < T1 < T is an
asymptotically large number. Using a piecewise mixed Fourier series, it requires only four
samples to rebuild that function with M = 0.

In future work, we will research the methods and applications of mixed Fourier series
for piecewise continuous functions, and we will apply the Ideal Sampling Theorem to
extend our findings to the discrete-time case. In addition, a comprehensive comparison will
be made with other modern methods, such as the spectral reprojection method. Although
our work is currently limited to one-dimensional problems, we aspire to encourage the
exploration of this approach in high-dimensional scenarios.
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5. Conclusions

This paper discusses and extends the Maliev–Lanczos approach for processing conti-
nuous-time functions with compact support. In contrast to the Taylor series or the Fourier
series, the mixed Fourier series uses local and global information. A convenient partial
series contains local information about the derivatives at the edges of the interval, whereas
the Fourier series contains global information about the remainders throughout the whole
domain. The mixed Fourier series avoids the Gibbs phenomenon, and it allows uniform
convergence for functions with a bounded continuous first derivative in a closed interval.
With the inclusion of M + 1 real constants related to simple polynomials computed by
a backward algorithm, a major improvement in the error of the approximation is found
using N harmonics because the magnitudes of new Fourier coefficients have convergence
O(|k|−M). In fact, the results evidence that the improvement is better than O(|k|−2−M)
using common smoothness functions. Similarly, its application in numerical integration
shows high performance (e.g., absolute relative error better than 10−10) with a low number
of samples using the simple left rectangular rule. On the other hand, in the case of inter-
polation, we found that the hyperbolic tangent test function (which exhibits Runge’s and
Gibbs phenomena) can be well represented with M = 1, outperforming the Chebyshev in-
terpolation technique using nonuniform sampling. Furthermore, we found that by solving
M + 1 linear equations, the Fourier series of smooth functions may be easily reprojected to
the polynomial mixed Fourier series without using time-domain information (i.e., without
derivatives). Several additional canonical examples, applications, and discussions were
presented throughout the paper, demonstrating a relevant improvement in the processing
of smooth functions.
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