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Abstract: We devised a data-driven framework for uncovering hidden control strategies used by
an evolutionary system described by an evolutionary probability distribution. This innovative
framework enables deciphering of the concealed mechanisms that contribute to the progression or
mitigation of such situations as the spread of COVID-19. Novel algorithms are used to estimate
the optimal control in tandem with the parameters for evolution in general dynamical systems,
thereby extending the concept of model predictive control. This marks a significant departure from
conventional control methods, which require knowledge of the system to manipulate its evolution
and of the controller’s strategy or parameters. We use a generalized additive model, supplemented
by extensive statistical testing, to identify a set of predictor covariates closely linked to the control.
Using real-world COVID-19 data, we delineate the descriptive behaviors of the COVID-19 epidemics
in five prefectures in Japan and nine countries. We compare these nine countries and group them on
the basis of shared profiles, providing valuable insights into their pandemic responses. Our findings
underscore the potential of our framework as a powerful tool for understanding and managing
complex evolutionary processes.

Keywords: data-driven optimization algorithm; model predictive control; evolutionary probability
distribution; generalized additive model; classification; COVID-19 evolution

1. Introduction

The evolution of natural dynamical systems is a complex process where the dynamics
are influenced by a multitude of factors, including epidemic evolution, environmental
changes, and various exogenous random events. The traditional methods of studying
evolutionary processes often involve creating simplified models that may not fully capture
this complexity. When it comes to influencing or controlling this evolution, optimal control
theory (OCT) is a powerful and flexible tool. This provides valuable insights into the likely
paths of evolution and the factors that may affect it. The aim of this work is to investigate an
evolutionary process, such as epidemic evolution, from the perspective of OCT in order to
uncover the hidden mechanisms that lead to deterioration or improvement of the situation.
We assume that the evolutionary process is described by a controlled system via a hidden
mechanism to which we do not have access and that we cannot change directly; we can
only observe its effects through measurements related to its evolution. We also assume that
this hidden control mechanism is affected by an infinite number of random parameters
related to the behavior and characteristics of societies and populations. We start from a
simple linear control model based on Kalman-type filtering. We aim to jointly determine
the parameters of the spatial-temporal process and the active optimal control that leads to
the observed evolution. The determination of the appropriate parameters is based on the
best proximity between the observed data and that generated by the simple model.
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Given that the objects in evolution are probability distributions, various customized
distance measures are employed to evaluate their proximity. The Hellinger distance is,
thus, preferred due to its superior numerical performance, inherited from its link to the
`2-norm. The coronavirus disease 2019 (COVID-19) is being examined using the principles
of OCT. For instance, Péni et al. suggest an optimal control strategy based on model
predictive control (MPC) theory for a compartmental epidemic model that depicts the
dynamics of COVID-19 virus transmission. Péni and Szederkényi explore the application
of the MPC approach to a nonlinear compartmental model. The COVID-19 outbreak
in Germany is being studied using the epidemiological SIDARTH model to determine
the best feedback control approach using MPC. Carli et al. present a unique feedback
control mechanism using an epidemiological SIR (susceptible, infectious, and recovered or
removed)-based model and the MPC approach to help policymakers effectively mitigate
the effects of the COVID-19 pandemic in numerous regions, including Italy, where the
pandemic reaches its peak. The SIR model is being explored by Morato et al. in relation
to MPC strategies to control COVID-19 infections in Brazil. All of these studies use MPC
to simulate epidemiological models such as the SIR model. However, using simulation
to investigate the COVID-19 pandemic is challenging due to the simplistic assumptions
and limitations of the models, such as their inability to represent treatments, their fixed
parameters, and their uncertainty resulting from data quality concerns. We, thus, aim to
identify the variables affecting the spread of COVID-19 by using a data-driven model and
a simple controlled Kalman-type dynamical system.

Our goal in this work is to make a simple assumption about the dynamics of COVID-
19 virus transmission and then utilize the data to determine the parameters governing
it. An extensive initial analysis of Japanese data is being performed to understand the
dynamics of the epidemic in diverse prefectures (Tokyo, Osaka, Hokkaido, Fukuoka,
and Okinawa). Their differing characteristics are compared and linked via a generalized
additive model (GAM) to different socio-demographic structures and the related policies
that are adopted in each prefecture.

After validating our data-driven model on the Japanese data, we examine whether
it can be applied to other countries or geographical regions with different population
structures and dynamics. We do this by applying an MPC-like procedure, as we do
for the Japan data, to simultaneously obtain the dynamics and control parameters that
contribute to the observed evolution of the epidemic in each country. We then perform a
comparative analysis between the countries based on their management strategies, such as
for vaccinations and lockdowns.

• Descriptive behavior of epidemic by country: Using the epidemic’s fitted controlling
parameters for each country or region, we attempt to clarify the relationship between
the parameters and various socio-demographic indicators, as well as the various
policies that governments implemented to reduce the epidemic’s spread.

• Comparative analysis and clustering: Using the contrasting characteristics and indica-
tors of the various countries, we group them on the basis of the similarities in their
profiles. We then look at the key variables that led to countries being grouped together.
We also conduct additional investigations for each group to determine which factors
contributed most to the grouping.

Our contributions are summarized below:

• We propose using a hidden controller framework in which the optimal control and
the parameters for evolution in general dynamical systems, including the COVID-19
epidemic dynamical system, are simultaneously estimated. This transforms the linear
evolution scheme into a nonlinear problem.

• We present an efficient optimization algorithm from the practical point of view that is
based on a classical optimization algorithm, e.g., fmincon in MATLAB.
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• We present the results of a comparative analysis between prefectures and regions of
Japan with differing population structures and epidemic management policies that
were obtained using our hidden controller framework.

• We show that generalizing the model using our hidden controller framework to other
countries (Australia, Germany, Italy, Brazil, South Africa, and so on) can reveal the
effect of different policies and population structures on the evolution of the epidemic.

We discuss in detail the methodology we used, as well as the related work in Section 2.
In Section 3, we describe our experiments, along with the application of our proposed
model to real-world datasets. In Section 4, we discuss our results and the importance of
our study. We conclude in Section 5 with a summary of the key points.

2. Methods

The most commonly used data-driven control technique is based on MPC (Figure 1). It
enables the controller or user to interact with a dynamical system and affect its evolution by
applying a specific control variable at selected times or epochs depending on the predicted
horizon. Our approach was inspired by this technique but differs in two key aspects: we
do not have direct access to the system, so we cannot manipulate its evolution, and we
do not have any insight into the controller’s strategy or parameters. (Here we focus on a
Kalman-type dynamical system, but our approach can be applied to any parametric/non-
parametric dynamical system). Our knowledge is limited to the fact that the controller or
the system uses a model from a specific system family (here, for example, one in the form
of Equation (2)). That is, we have access to only the observed final output data. This idea is
sketched in Figure 2.

Optimizer
(known Q and R )

Model
(known A and B)

Classical MPC

System

Control
u

Observation
x

Figure 1. In the MPC framework, users can access and manipulate (i.e., change or control) the
system parameters.

Our hidden controller framework

Shape of optimizer
(unknown Q and R)

Shape of model
(unknown A and B)

Observation
xShape of

system

Control
u

Figure 2. In our framework, users do not have access to the items in the shaded area; they know only
the shapes of the optimizer, model, and system and are unable to act on that information.

This section is organized as follows; We begin by reviewing the related work and
classical optimal control techniques in Sections 2.1 and 2.2. In Sections 2.3 and 2.6, we
describe our proposed hidden control framework.
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2.1. Targeted Control Problem and Its Formalism

We assume a discrete-time context in which decision-makers (e.g., government agen-
cies) observe the distribution of the disease variable (e.g., the numbers of weekly in-
fected, recovered, and deceased individuals), possibly with observational inaccuracy,
for a given time period (day, week, month, etc.). For each sub-population Pi, the ob-
served distribution is generally estimated empirically from the data, which we denote
Π̂i(k) = (π̂1

i (k), π̂2
i (k), . . . , π̂n+1

i (k)). The estimated evolutionary distributions for the
whole population can be represented as

Mk =


π̂1

1(k) . . . π̂1
p(k)

π̂2
1(k) . . . π̂2

p(k)
... . . .

...
π̂n+1

1 (k) . . . π̂n+1
p (k)

. (1)

Since πn+1
i (k) can be expressed as πn+1

i (k) = 1−
n

∑
`=1

π`
i (k), we are interested in the dynamical

evolution of the discrete n-dimensional probability vector xi(k) = (π1
i (k), π2

i (k), . . . , πn
i (k)).

Because we estimate the optimal control by sub-population, we omit the suffix i hereafter
to simplify the description (e.g., xi(k) is represented as xk and a column of Mk as Mk).
This simplified description represents the state vector of the disease distribution at time k.
To model the evolution, we propose using a discrete Kalman-like controlled system:

xk+1 = A xk + B uk, ∀ k = 1, . . . , K− 1, (2)

where

• The term uk ∈ Rm is an m-dimensional vector describing the unknown optimal control.
This unknown control is the hidden mechanism that led to the observed shape of
the evolution.

• The deterministic state matrix A = (aij)i,j=1,...,n, defined in Rn×n and describing the
logical evolution of xk when no control is applied, is also unknown.

• The unknown control matrix B = (bij)i=1,...,n,j=1,...,m, defined in Rn×m, describes how
the control is applied to the system to bring it to its targeted state.

The idea is to use only observed dataMk, in Equation (1), to simultaneously estimate
all the unknown objects of this control problem, namely, matrices A, B, and the control term
uk, which leads to the observed shape of the data. When A and B are known, the optimal
control û∗k can be obtained using classical techniques that have been widely discussed in the
literature (e.g., [1–3]). In our case, these parameters are unknown and should be estimated
from the observed data. Our strategy is to use the optimal control results obtained using an
iterative algorithm that minimizes a cost function.

2.2. Control Algorithm and Related Work

For given deterministic matrices A and B, the solution of the discrete-time optimal
control problem, Equation (2), of a linear system is described in [1,3]. It consists of using a
linear optimization scheme, Equation (2), and finding the optimal control u = (u1, . . . , uK)
that minimizes the objective or cost function:

J(u) = x
′
K S xK +

K−1

∑
k=1

x
′
k Q xk + u

′
k R uk, (3)

where exponent (.)
′

represents the transpose, and Q, R, and S are cost matrices defined
as follows.

• Q ∈ Rn×n is a positive definite weighting matrix associated with the state vector. It
is linked to the relative importance assigned to state vector xk in cost function J(·).
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In other words, a higher value in the diagonal of this matrix indicates a bigger penalty
or greater emphasis placed on minimizing the related state vector xk.

• R ∈ Rm×m is a positive definite weighting matrix affecting the relative relevance or
weight assigned to control uk in cost function J(·). It specifies how much emphasis
the control algorithm should place on minimizing the control effort. A higher value
in its diagonal, similar to that in the Q matrix, indicates a higher penalty or greater
importance placed on reducing the control input.

• S is a positive definite weighing matrix linked to the final state vector. It is a cross-
weighting matrix used by cost function J(·) to penalize discrepancies between the
inputs from state xk and control uk. It is aimed at identifying any cross-dependencies
between the states and control inputs. We are not interested in the final state here, so
we suppose that S = 0.

The optimal control problem has been widely studied (e.g., [1,2]). In our case, a linear
quadratic regulator variant is used to minimize, Equation (3). The solution of the state
space, Equation (2), of a discrete time-invariant linear system is given in a more general
framework [4] for 2 ≤ k ≤ K:

xk = Akx1 +
K

∑
i=1

Ak−iBui. (4)

This equation expresses state vector xk in terms of the initial state vector x1 and a sequence
of control vectors, ui, i = 1, . . . , k, that are implicitly dependent: A, B, and weighting
matrices Q, R. In this setting, the controlled system, Equation (2), with dimension K is
controllable if the controllability matrix,

C =
[

B, AB, . . . , AiB, . . . , AK−1B
]
, (5)

has column rank K (i.e., K linearly independent columns). Under these conditions on
parameters A, B, the optimal control solution [4] is given by

u∗k = −K xk. (6)

In this setting, the closed-form expression of the gain matrix K is obtained using a linear
quadratic regulator (LQR). This is performed iteratively in two steps using a backward
approach, as detailed in Algorithm 1:

• Gain matrix K is calculated from evolutionary parameter matrices A, B, Q, and R via
Sk+1 at step k:

K(A, B) = (R + B
′
Sk+1B)−1B

′
Sk+1 A. (7)

• Sk is obtained from the solution of the Riccati equation [5]:

Sk = Q + A
′
Sk+1 A− A

′
Sk+1BK(A, B). (8)

By combining Equation (2) and (6), we can write the evolutionary structure of the controlled
system in Equation (2) recursively:

x∗k = (A− BK(A, B))xk−1. (9)

In the general framework of optimal control, the parameters are known and fixed. In our
study, we are dealing with unknown parameters. Therefore, our objective becomes the
estimation of these unidentified matrices in the Kalman filter parameters, namely, A, B,
as well as weighting matrices Q, R.
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Algorithm 1: Computing optimal control and its corresponding trajectory
(see Figure 3)

Require: Estimated distributionsMk in Equation (1) from observed data.
Require: A vector Y of dimension n(n + m + 2) of the system parameters.

1: Retrieve A, B, Q, R from Y.
Ensure: Matrices A, B verify controllability condition (5).
Ensure: Q, R are symmetric positive definite.

2: Initialize SK+1.
3: for k = K− 1 to 0 do
4: Compute gain K(A, B)← (R + B′Sk+1B)−1B′Sk+1 A as in Equation (7).
5: Update Sk ← Q + A′Sk+1 A− A′Sk+1BK(A, B).
6: end for
7: for k = 0 to K− 1 do
8: Get input u∗k = −K(A, B)xk.
9: Update using (2) to get new estimate x∗k+1.

10: end for

11: Output: Gain matrix K(A, B).
12: Output: x∗ = (x∗1 , . . . , x∗K), the controlled trajectory.

(𝐴0,𝐵0)
(𝑄0,𝑅0) For 𝑄,𝑅, minimize

eq. (3) as LQR solution
Calculate 𝒦 𝐴,𝐵

(eq. (5))
Calculate 𝑥𝑘

∗

(eq. (7))

Estimation:
𝒙
∗ = (𝑥1

∗, 𝑥2
∗,⋯ , 𝑥𝐾

∗ )

Observation:
𝒙 = (𝑥1, 𝑥2,⋯ , 𝑥𝐾)

Find 𝐴,𝐵 to minimize 𝑑(𝒙∗,𝒙)
under constraints for probabilities

of 𝒙∗ and 𝒙 and so on (eq. (9))

Algorithm 1

Algorithm 2

Figure 3. Structure of main algorithm for estimating hidden control process.

2.3. Our Hidden Controller Framework

Instead of the traditional objects found in control problems, our methodology relies
on using discrete probability distributions as the dynamic system object, as shown in
Equation (2), to characterize the system’s behavior. A further distinguishing characteristic
of our methodology is its ability to estimate both the parameters of the model and their cor-
responding optimal control, relying exclusively on observed data. To determine unknown
parameters A and B, our approach utilizes two interrelated optimization steps:

1. The first step is to find optimal control featuresK(A, B) and x∗k , as shown in Equation (9)
under controllability conditions on A and B.

2. The second step is to minimize a suitable distance that was adapted to probability
distributions between x∗k and observation xk under two constraints: xk is a discrete
probability distribution calculated from observed data Mk, and the system is control-
lable. This leads to the following minimization problem:

(Â, B̂) = argmin
A, B, s.t. ∀t,

0<∑t (A−BK)xt−1<1

K

∑
k=1

d(x∗k , xk). (10)

The constrained minimum is taken over all A and B such that the system is controllable,
as detailed in Algorithm 2.
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Algorithm 2: Estimating hidden control parameters and trajectory
Require: Estimated distributionsMk in (1) from observed data.

1: Define a convergence threshold ε.

2: Initialize A, B, Q, R.
3: Transform Y = (a11, . . . , ann, b11, . . . , bnm, α1, . . . , αn, β1, . . . , βn).
4: Define objective function F(.) in (12) for given distance.

Ensure: Constraint (C1) and (C2) on Y.
5: while (F(Y) > ε) do
6: Call Algorithm 1 with Y, and get K(A, B) and x∗ = (x∗1 , . . . , x∗K).
7: Solve quadratic programming subproblem under constraints C1 and C2.
8: Update Y and calculate its corresponding F(Y).
9: end while

10: Output: Optimal parameters (Â, B̂, Q̂, R̂).
11: Output: Corresponding optimal control û∗.

In accordance with the concept of the probability distribution, distance d(., .) in
Equation (10) determines the degree of similarity between two probability distributions.
A variety of metrics and distances that have been used in different circumstances and
scenarios have been reported. We next discuss five of them.

2.4. Metrics and Distances

• The total variation distance measures the maximum difference between the probabil-
ities that two distributions assign to an event. Therefore, it gives a worst-case measure
of the difference between the two distributions, which makes it a conservative discrep-
ancy measure. It is given by

dTV(D1, D2) , max
S⊆D

(D1(S)− D2(S))

=
1
2 ∑

x∈D
|D1(x)− D2(x)| = 1

2
‖D1 − D2‖1. (11)

For the discrete case, the right-hand side of Equation (11) can be expressed as the
`1 distance. Despite its frequent usage, the TV distance metric has certain disadvan-
tages. It is sensitive to absolute differences between probabilities, which can lead
to misleading results when applied to large event sets. Though it satisfies several
metric properties such as non-negativity, symmetry, and triangle inequality, it is not
a “proper” metric as it can assign a distance of zero to non-identical distributions.
The TV distance also lacks the ability to capture dependencies among variables in
multivariate distributions and does not provide information about the ‘location’ and
‘spread’ of differences. Furthermore, it is not a differentiable function, posing chal-
lenges for optimization algorithms. Finally, its computational complexity increases
substantially for continuous distributions, especially in high-dimensional scenarios.

• Kullback–Leibler (KL) divergence quantifies the information loss when distribution
D1 is used to approximate D2:

dKL(D1, D2) = ∑
∈D

D1(x) log
(

D1(x)
D2(x)

)
.

The KL divergence has several advantages and disadvantages when used as a measure
of the difference between two probability distributions. Among its advantages are its
high sensitivity to discrepancies in probability distributions, including those occurring
in distribution tails, and its widespread application across multiple fields, such as in-
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formation theory and machine learning. It also has a deep connection with maximum
likelihood estimation, which enhances its value for theoretical analysis. The disadvan-
tages include its lack of symmetry; that is, the divergence from distribution D1 to D2 is
not the same as that from D2 to D1, which can make it counterintuitive as a “distance”
measure. Furthermore, it is not a metric as it does not satisfy properties such as
symmetry and the triangle inequality. Another critical disadvantage is its undefined
nature for non-overlapping distributions. Finally, when probability distributions are
estimated from the data, KL divergence can be excessively sensitive to the sample size,
leading to potentially unreliable estimates for smaller sample sizes.

• The Wasserstein distance, also known as the earth mover’s distance, measures the mini-
mum amount of work needed to transform one pile into another pile. For continuous
or discrete probability distributions D1 and D2, the p-Wasserstein distance (p ≥ 1) is
defined as

dWp(D1, D2) , inf
{
(E[|X−Y|p])

1
p ;PX = D1 and PY = D2

}
= inf

{
(∑ |xi − yi|pP(X = xi, Y = yi))

1
p

}
.

The inf bound is taken over all random variable couples (X, Y) such that the dis-
tribution of X is D1 and the distribution of Y is D2. It offers an intuitive geometric
interpretation, acting as a measure of the minimum cost required to transform one
distribution into another. In addition, it captures shifts in location, a property not
captured by other metrics, making it advantageous in cases in which location is im-
portant. Moreover, unlike measures such as KL divergence, the Wasserstein distance
remains defined even for non-overlapping distributions and exhibits robustness to
noise. However, its computation can be resource-intensive due to the underlying
optimization problem. It, thus, poses challenges, particularly in higher dimensions.
The distance also depends on the choice of a cost function, which may not always
have an evident best choice and can affect the distance calculation. Although sensitiv-
ity to location shifts can be beneficial, in instances where location is irrelevant, this
sensitivity could capture unnecessary differences. Finally, as many other measures,
the Wasserstein metric faces scalability issues with high-dimensional data, demanding
dimension reduction techniques to be effective.

• The Hellinger distance measures the total difference between the square roots of the
probabilities in the two distributions:

dH(D1, D2) =
1
2 ∑

x∈D

(√
D1(x)−

√
D2(x)

)2
.

The Hellinger distance has several advantages. It possesses metric properties includ-
ing symmetry and the satisfaction of the triangle inequality, making it a true metric.
It is less sensitive to outliers due to the comparison of square roots of probabilities
instead of the probabilities themselves. Its fixed range, typically between 0 and 1,
aids in comparing distances across various distribution pairs. Moreover, its simplicity
when comparing Gaussian distributions offers computational efficiency. However,
the Hellinger distance is not without drawbacks. Its structure, rooted in square roots of
probabilities, makes it less sensitive to differences in distribution tail behavior. It mea-
sures global dissimilarity, often failing to capture local differences effectively. Finally,
unlike KL divergence, it does not quantify information loss when one distribution
approximates another, a property that may be desirable in certain contexts.

• The χ2 distance is the sum of the squared differences between the two distributions,
divided by the first distribution. It is not symmetric.
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dχ2(D1, D2) = ∑
x∈D

(D1(x)− D2(x))2

D1(x)

Each of these metrics comes with its own strengths and limitations. For instance, KL
divergence (dKL ) and the chi-squared distance (dχ2 ) are non-symmetric, making them less
intuitive for certain applications. On the other hand, metrics such as the TV distance (dTV)
tend to be more conservative. In this study, our primary objective was to ensure robust
convergence and computational efficiency in the optimization process. To identify the most
suitable metric, we conducted comprehensive experiments testing these distances on our
dataset. We encountered challenges regarding convergence and stability during the optimal
control and estimation processes, as shown in Equation (10). Our experiments revealed
that the Hellinger distance (dH) exhibits superior performance in terms of convergence,
stability, and efficiency. This can be attributed to its connection with the Euclidean `2 norm,
which provides certain computational advantages. Therefore, it is the primary distance
measure we used in this study.

2.5. Our Parameter Estimation

To prepare for the calculation of matrix parameters A, B of the hidden closed-loop
Equation (9) on the basis of observed data, we vectorize them: (a11, . . . , ann, b11, . . . , bnm)

′ ∈
Rn2+nm. Furthermore, we assume that the hidden controller uses weighting matrices
Q and R to calculate the gain matrix K in Equation (7). There is no systematic way to
make this choice as it depends only on the user’s preferences in terms of control over
parameters A and B. Most often, the weighting matrices Q and R are chosen to be diagonal.
Without a loss of generality, and due to the small number of observations, we use Q =
diag(α1, . . . , αn) and R = diag(β1, . . . , βn). We then rearrange all the free parameters in
a vector: Y = (a11, . . . , ann, b11, . . . , bnm, α1, . . . , αn, β1, . . . , βn)

′ ∈ Rn(n+m+2). Let us now
consider the objective cost function:

F : Y 7−→ F(Y) = F(A, B, Q, R) =
K

∑
k=1

d(x∗k , Mk), (12)

where d(., .) is one of the distances dTV , dH , dχ2 , dWp , or dKL, and

• Mk =
(
π̂1

i (k), π̂2
i (k), . . . , π̂n

i (k)
)′
∈ Rn is the statistically estimated distribution for

population segment i at observation time k. (Index i is omitted for Mk and xk to
simplify the description, as mentioned in Section 2.1).

• x∗k is the closed-loop state of the controlled system. The computation of vector x∗k for
k = 1, . . . , K is shown in Equation (9). It is implicitly dependent on the parameters in
vector Y. This step is nested inside the general optimization problem, Equation (10).
Vector Y should satisfy two constraints, C1 and C2, on the one hand, to comply with
both the controllability constraints on A and B and the positive definiteness of Q and
R and, on the other hand, to satisfy the probability structure of state vector xk.

C1: Vector Y should verify the constraint that A and B lead to a controllable system
by verifying Equation (5). Moreover, the unknown weighting matrices Q and
R must be positive definite. For instance, in simulations and experiments, we
selected Q and R as diagonal matrices, which necessitates that their diagonal
elements be positive. This implies that all elements α1, . . . , αn and β1, . . . , βn are
positive.

C2: For all k, vector x∗k calculated using Equation (9) should satisfy a probability
structure, meaning that all its elements should be positive and their sum is less
than 1.
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The final optimal parameter vector, Ŷ, is then obtained by solving the nonlinear
optimization problem under constraints:

(Â, B̂, Q̂, R̂) = Ŷ = argmin
Y∈C1∩C2

[F(Y)]. (13)

From the practical point of view and to reduce the relative error in estimating the
unknown coefficients of the parameters, we assume that the hidden controller resets vector
xk to the observed value each time when calculating it for interval K. To implement this
assumption, we divide the range of time-ordered observations xk by a pre-selected value
T (e.g., for the COVID-19 dataset, T = 3 (three days) or T = 7 (one week)) and denote
the number of observation groups formed by L = [K

T ], where [x] is the integer part. We
then consider the partition group {G1, . . . , GL} on all the observations {M1, . . . , MK} or-
dered in accordance with time: the observations in group G1 being G1 = {M1, . . . , MT},
those in group G2 being G2 = {MT+1, . . . , M2∗T}, and those in the last group being
Gnstep =

{
M(L−1)∗T+1, . . . , ML∗T

}
, for example. For any 1 ≤ ` ≤ L, we take vector

xk as follows:

• xk = Mk for k = (`− 1) ∗ T + 1. Thus, we reset vector xk to the first observed value in
each group.

• xk = (A + BK) ∗ xk−1 for all k = (`− 1) ∗ T + 2, . . . , T ∗ `.

For the solution of the nonlinear optimization problem (10), we use sequential quadratic
programming, which is an efficient and widely used technique [6–9], Moreover, it is readily
available in the MATLAB software used for the optimization part of this work.

The results produced by Algorithm 2 are dependent on the outcomes from Algorithm 1.
To secure reliability in the results, Algorithm 1 is configured to perform repeated calcu-
lations, utilizing different initial values, until it successfully converges to an optimal
solution. In cases where convergence is not readily achieved, a systematic approach is em-
ployed to modify initial values, thus, facilitating the necessary conditions for convergence,
and thereby ensuring the robustness of the results obtained.

These algorithms were applied to each segment of the population. The trajectories
estimated using these algorithms and the observed data for different countries are plotted
in Figure 5.

2.6. Interpretation of Control Parameters

In accordance with the preceding discussions, we computed the controlled part,
denoted here as B̂, û∗, of the resulting dynamical system. This computation enabled us to
estimate the hidden parameters and, in turn, uncover the controller’s strategy. Another
key accomplishment of this study was correlating these controlling elements with the
characteristics of the corresponding population. The next step is to, a posteriori, explore
how these elements affected the evolution of the dynamical system. To this end, we fit the
derived controlled part to the observed population characteristics as illustrated in Figure 3.
For each population segment Pi, this was performed using a multivariate GAM. Such
models are well-known for their adaptability in dealing with various forms of data and
their capacity to model nonlinear relationships. We conducted extensive statistical testing
on the GAM output to identify the set of variables closely linked with the control part.

Multivariate GAM

Let us consider a multivariate GAM in which the response is vector X = B̂ û∗ ∈ Rn

and denote C(1), . . . , C(J) as the dependent covariables describing the characteristics of the
population. As shown in Table 1, we consider six characteristic COVID-19 variables specific
to Japanese prefectures. The responses and covariates (predictors) are observed at times
k = 1 . . . K.

X = µ0 + S1(C(1)) + S2(C(2)) + . . . + SJ(C(J)) + ε (14)
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The functions S1(.), . . . , SJ(.) are flexible smooth functions and can fit complex patterns in
the data that would not be captured by a linear model. At the same time, they maintain
interpretability: the fitted functions can be plotted and easily interpreted. The specifics
of fitting a GAM depend on the type of response variable (whether it is binary, count
data, continuous, etc.), the chosen link function, and the chosen form for the nonlinear
functions S1(.), . . . , SJ(.). This model has been well studied, and many software packages
are available for fitting GAMs, such as Mixed GAM Computation Vehicle with Automatic
Smoothness Estimation (mgcv) in R [10,11]. As depicted in Figure 4, the application of the
GAM yields an array of newly minted comprehensible features designated as z(1), . . . , z(J).
These features serve to quantify the intensity of the association between the control and
corresponding population characteristics, thereby offering a method to gauge the extent of a
particular population characteristic’s effect on the control of the hidden dynamical system.

Table 1. Candidate weekly predictor covariates for five Japanese prefectures.

Predictor Covariate Description

week Time point (weekly ID)

driving Vehicle increase rate (provided by Apple Inc.; compared with 13 January
2020)

transit Public transport increase rate (provided by Apple Inc.; compared with 13
January 2020)

walking Pedestrian increase rate (provided by Apple Inc.; compared with 13
January 2020)

num_beds Number of available beds in hospitals in Tokyo (provided by Ministry of
Health, Labour and Welfare)

vaccine Number of people vaccinated in Tokyo (provided by Ministry of Health,
Labour and Welfare)

These new features provide valuable information for investigating the dynamical
system’s behavior across various population segments. This facilitates the identification
of similarities among segments for which the system exhibits identical behavior. Various
classification techniques have been explored to achieve this functionality. More details,
illustrative figures, and discussion can be found below on the experiments performed on
the actual COVID-19 data.

For each population segment
𝑃1 ∶ 𝐵,𝑢∗

𝑃2 ∶ 𝐵,𝑢∗

⋮

𝑃𝑝 ∶ 𝐵,𝑢∗

Generalized
additive model

Predictor covariates 𝐶(1),𝐶(2) ,⋯ ,𝐶(𝐽 )

z-score (or coefficient of variation)
𝑃1 ∶ 𝑧

(1), 𝑧(2),⋯ , 𝑧(𝐽 )

𝑃2 ∶ 𝑧
(1), 𝑧(2),⋯ , 𝑧(𝐽 )

⋮

𝑃𝑝 ∶ 𝑧
(1), 𝑧(2),⋯ , 𝑧(𝐽 )

Heatmaps
Dendrograms
Classification

Figure 4. For each population segment, the link between control terms B̂, û∗, and C(1), . . . , C(J), which
describe the characteristic variables (covariates, predictors) of the population segment, was fitted to a
GAM. The z-score output of the GAM was used for classification to identify how these predictors
contributed to the control of the system.

3. Experiments and Application to Real Data
3.1. Data Description

We used two sets of observed COVID-19 data: (i) data from five prefectures in Japan
provided by JX PRESS Corporation and (ii) data from nine countries sourced from a “world-
wide epidemiological database for COVID-19” [12] and the “COVID-19 data hub” [13].
Using our hidden controller framework, we estimate the unknown parameters A, B, and the
gain matrix K of the closed-loop system (9) to capture the dynamic behavior of COVID-19.

The prefectural data used in this study comprised the proportion of weekly infected
individuals in prefecture i (π1

i (k)), the proportion of weekly recovered individuals (π2
i (k)),

the proportion of weekly deceased individuals (π3
i (k)), and the proportion of all other
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people who never had contact with the virus (π4
i (k))(= 1−∑3

n=1 πn
i (k)). The proportions

were estimated from weekly counts of numbers reported daily for 32 weeks from 1 April
2021 to 10 November 2021, coinciding with the vaccination campaign in Japan. The five
prefectures (i = 1, . . . , 5) comprise Tokyo, Osaka, Hokkaido, Fukuoka, and Okinawa,
respectively. These prefectures are representative of Japanese populations for which there
were a sufficient number of cases for statistical analysis. For each prefecture, the data are
represented as a 32× 3 matrix, with the weekly observations in the columns. The candidate
weekly predictor covariates listed in Table 1 are for the period two weeks prior. Factors
such as increases in driving and public transport (“transit”) in Tokyo, which are considered
to affect the rate of new infections, are included. We used a two-week delay between
measurement and onset in accordance with previous findings [14].

We selectively used data from nine countries, having complete data in our experiments:
Australia (AUS), Brazil (BRA), Chile (CHL), Colombia (COL), Czech Republic (CZE),
Germany (DEU), Lithuania (LTU), South Africa (ZAF), and Japan (JPN). The proportion
of weekly infected individuals in country i (π1

i (k)), the proportion of weekly recovered
individuals (π2

i (k)), and the proportion of weekly deceased individuals (π3
i (k)) were

calculated from the data on “confirmed” (cumulative number of confirmed cases), “deaths”
(cumulative number of deaths), and “recovered” (cumulative number of patients released
from hospitals or reported recovered) [12,13]. For the sake of comparison, the period was
the same as for dataset (i): the 32 weeks from 1 April 2021 to 10 November 2021. The
candidate predictor covariates for these nine countries are shown in Table 2. Four of them
represent governmental policy measures: government_response_index, stringency_index,
containment_health_index, and economic_support_index. Since these policy measures are
correlated and the ranges of the index scores vary between countries, we first categorized
the policy measures into three levels—low (L: 0–50 percentile), middle (M: 50–90 percentile),
and high (H: 90–100 percentile), using the Japanese data as a reference. We then applied
multiple correspondence analysis and hierarchical clustering on principal components to
the categorized data and obtained three groups of policy measures, as shown in Table 3.
We again used a two-week delay between measurement and onset in accordance with the
previous findings [14].

Table 2. Candidate predictor covariates for nine countries [12,13].

Predictor Covariate Description

week Time point (weekly ID)

driving Vehicle increase rate (provided by Apple Inc.; compared with 13
January 2020)

transit Public transport increase rate (provided by Apple Inc.; compared
with 13 January 2020)

walking Pedestrian increase rate (provided by Apple Inc.; compared with
13 January 2020)

hosp Number of hospitalized patients

people_fully_vaccinated Number of people who received all doses prescribed by
vaccination protocol

government_response_index
Index of how government response varied over all indicators in
Oxford COVID-19 Government Response Tracker database [15],
becoming stronger or weaker over the course of the outbreak

stringency_index Index of strictness of ‘lockdown’-related policies that restricted
people’s behavior

containment_health_index
Index combining ‘lockdown’ restrictions and closures with
measures such as testing policy, contact tracing, short term
investment in healthcare, and investment in vaccines

economic_support_index Index representing such factors as income support and debt relief
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Table 3. Main categorical levels consisting of three groups of policy measures.

Index Government
_Response Stringency Containment

_Health
Economic
_Support

policy 1 H - H L
policy 2 M H - M
policy 3 L - L -

3.2. Experimental Conditions

To calculate parameters A, B from Equation (13) on the basis of the observed COVID-19
data for the five Japanese prefectures (i) and nine countries (ii), we first defined
Y = (a11, a12, . . . , a33, b11, b12, . . . , b33)

T ∈ R18=3∗3+3∗3, representing the unknown coef-
ficients of parameters A, B. We then set the Hellinger distance (described in Section 2.3) to
d(x∗k , xk), where the term x∗k represents the estimated COVID-19 dynamics, and the other

term xk =
(

π1
j (k), π2

j (k), π3
j (k)

)′
∈ R3 represents the observed COVID-19 dynamics on

the kth day.
The proportions Π(k) were calculated using the total population of Japan and the

population ratios of each prefecture as of January 2021. We used the fmincon programming
solver in MATLAB and selected the interior-point algorithm, for which the parameters
of the termination tolerances on first-order optimality, function value, and input matrices
were set to 10−4. The function optimized in fmincon was estimated for each window
with a length of 3 using the `2-norm. We used mgcv in R [10,11] to interpret the control
parameters (Section 2.6).

The code and data pertaining to the nine countries are accessible via our GitHub
repository: https://github.com/ismstat/hidden-controller-framework.git, accessed on
22 August 2023.

4. Results and Discussion
4.1. Evaluating Predictive Power of Hidden Controller Framework

Figure 5 shows comparisons between our hidden controller framework’s prediction
(x∗k ) and the observed xk for Australia, Colombia, Germany, and Japan based on the data
for nine countries (data set (ii)). The predictions are reasonably accurate, suggesting that
model parameters A, B were well-estimated. Similar results were observed for the other
five countries, as detailed in Appendix A. These results underscore the predictive capacity
of our hidden controller framework. Furthermore, control feedback uk can be effectively
used in subsequent data analyses.
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Figure 5. Comparison between predictions made by our hidden controller framework (green dashed
lines) and observed data (red solid lines) for (a) Australia, (b) Colombia, (c) Germany, and (d) Japan.

https://github.com/ismstat/hidden-controller-framework.git
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4.2. Predictor Covariates Aimed at Halving the Number of Infected and Deceased Individuals

To analyze which predictor covariates effectively reduce the number of infected and
deceased individuals, we applied our hidden controller framework (Section 2.3) and a
multivariate GAM (Section 2.6) to a dataset in which the number of infected and deceased
individuals was halved (dataset (i)). Figure 6 shows heatmaps depicting the z-scores
of the predictor covariates associated with the numbers of (a) infected and (b) deceased
individuals. Since z-scores approximately follow a Student’s t-distribution and transition
to a normal distribution when the degree of freedom becomes large, we calculated the
z-scores at a significance level of 0.05, assuming a normal distribution. We color-coded the
heatmaps blue for smaller z-scores, representing positive effects in decreasing the number
of infected and deceased individuals, and red for larger z-scores, representing negative
effects that increase these numbers.

We roughly categorized the predictor covariates into two groups, F1 and F2. F1
includes “week”, “transit”, “walking”, and “num_beds”, which generally had negative
effects. In contrast, the predictor covariates in F2 (“driving” and “vaccination”) had positive
effects. These results suggest that, in Japan, traveling by automobile and getting vaccinated
effectively reduced the number of infected and deceased individuals.

We can classify the prefectures into two groups: the major metropolises of Tokyo,
Osaka, and Fukuoka and the tourist cities in Okinawa and Hokkaido. The data suggest
that vaccination in metropolitan areas is highly effective.
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Figure 6. Heatmaps depicting z-scores of predictor covariates associated with numbers of (a) infected
and (b) deceased individuals, with a goal of reducing the counts in both categories by half.

To further investigate the positive and negative effects on reducing the number of
infected and deceased individuals, we analyzed the difference in z-scores for predictor
covariates associated with both categories, with the goal of halving each compared with
the observed numbers. Figure 7 presents heatmaps illustrating these differences in z-scores.
For the infected category, vaccination was highly effective in the metropolises of Tokyo,
Osaka, and Fukuoka. For the deceased category, vaccination was particularly effective
in Tokyo.

4.3. Differences in Predictor Covariates Across Countries

Figure 8 presents a heatmap of z-scores for predictor covariates associated with the
number of infected, deceased, and recovered individuals across the nine countries. As an
illustration of the classification of characteristics based on control (Section 2.6), the countries
can be broadly categorized into four clusters: F1 includes South Africa, Chile, Brazil,
and Colombia; F2 is comprised solely of Japan; F3 encompasses Australia and Lithuania;
and F4 contains the Czech Republic and Germany. For group F4, three policy measures in
Table 3 (P1 as indicated in the figure) and vaccination (P2) seem to effectively control the
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number of infected, deceased, and recovered individuals. However, for countries in group
F1, the opposite effects were observed.

os
ak
a

fu
ku
ok
a

to
ky
o

ok
in
aw
a

ho
kk
ai
do

vaccin

driving

num_beds

walking

transit

week

infected

−6 −2 2 4 6
Value

dif. in z−value: lag_2

F1

F2

P1 P2

(a) Infected

P1 P2

to
ky
o

fu
ku
ok
a

os
ak
a

ok
in
aw
a

ho
kk
ai
do

walking

driving

vaccin

num_beds

transit

week

death

−6 −2 2 4 6
Value

dif. in z−value: lag_2

(b) Deceased
Figure 7. Heatmaps illustrating difference in z-scores for predictor covariates associated with num-
bers of (a) infected and (b) deceased individuals, aimed at reducing each category by half compared
with the observed numbers.
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Figure 8. Heatmap of z-scores for predictor covariates (cov) associated with the number of infected
({cov}.1), deceased ({cov}.2), and recovered individuals ({cov}.3) for nine countries.

4.4. Clustering of Countries on the Basis of Policy Measures

Figure 9 illustrates the clustering of countries into four groups on the basis of the
three categories of policy measures outlined in Table 3. These groups align with the ones
determined by the z-scores in the previous section. This underscores the critical role of
policy measures in controlling the number of infected, deceased, and recovered individuals.
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Figure 9. Dendrogram illustrating clustering of countries on the basis of policy measures.

5. Conclusions

We have presented a methodology that enables the correlation of various population
characteristics with the evolution of a dynamically controlled system. We assume that the
observed dynamical system is the result of the optimal control of a Kalman-type model,
with no direct access to the various stages of this control. The choice of a Kalman-type
model was made for simplicity, but this concept can be readily generalized to other models.
We assume knowledge of only the model’s structure, not its parameters. Our approach,
therefore, is to estimate what the controller has carried out to arrive at the observed data;
the estimates of the control parameters are made a posteriori. Our innovation resides in
providing a data-driven solution, obviating the need for complex modeling. Furthermore,
a distinctive facet of our work lies in treating the evolutionary objects of the dynamical
system as probability distributions. We delve into exploring how these distributions have
evolved under various hidden controller settings. We have provided an algorithm for
estimating the various parameters that control the evolution of these distributions, which
are based solely on a posteriori observations.

Once the control parameters were obtained, we used a multivariate generalized addi-
tive model (GAM) to explore the potential relationships between the part that controls the
system’s evolution and the various characteristics of the studied population. We applied
this methodology to a COVID-19 database for five prefectures in Japan, considering various
explanatory variables. We newly discovered that for the infected category, vaccination was
highly effective in the metropolises of Tokyo, Osaka, and Fukuoka; while for the deceased
category, vaccination exhibited particular effectiveness in Tokyo. This approach was gener-
alized to nine countries in order to explore the effects of the various policies they follow.
Our findings illustrate that countries can be broadly grouped into four clusters, with each
group demonstrating varied effectiveness of policy measures and vaccination efforts.

From the GAM, we extracted indicators to quantify the degrees of association between
the different explanatory variables. These new indicators enable the analysis and visualiza-
tion of groups with similar and different evolutionary profiles. The aim is to explain the
reasons for these differences. This work provides a novel perspective on understanding
and managing complex evolutionary processes.
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Appendix A. Additional Results for Predictive Power of Hidden Controller Framework

Figure A1 presents a comparison between the predictions made by our hidden con-
troller framework and the observed data for five countries. Consistent with the results in
Section 4.1, our hidden controller framework performed well.
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Figure A1. Comparison between the predictions made by our hidden controller framework (green
dashed lines) and the observed data (red solid lines) for the remaining five countries.
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