
Citation: Hu, B.; McDaniel, D.

Applying Physics-Informed Neural

Networks to Solve Navier–Stokes

Equations for Laminar Flow around a

Particle. Math. Comput. Appl. 2023,

28, 102. https://doi.org/10.3390/

mca28050102

Academic Editors: Pengzhan Huang

and Yinnian He

Received: 15 September 2023

Revised: 9 October 2023

Accepted: 11 October 2023

Published: 13 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical

and Computational

Applications

Article

Applying Physics-Informed Neural Networks to Solve
Navier–Stokes Equations for Laminar Flow around a Particle
Beichao Hu and Dwayne McDaniel *

Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33199, USA;
bhu007@fiu.edu
* Correspondence: mcdaniel@fiu.edu

Abstract: In recent years, Physics-Informed Neural Networks (PINNs) have drawn great interest
among researchers as a tool to solve computational physics problems. Unlike conventional neural
networks, which are black-box models that “blindly” establish a correlation between input and output
variables using a large quantity of labeled data, PINNs directly embed physical laws (primarily partial
differential equations) within the loss function of neural networks. By minimizing the loss function,
this approach allows the output variables to automatically satisfy physical equations without the
need for labeled data. The Navier–Stokes equation is one of the most classic governing equations in
thermal fluid engineering. This study constructs a PINN to solve the Navier–Stokes equations for a
2D incompressible laminar flow problem. Flows passing around a 2D circular particle are chosen as
the benchmark case, and an elliptical particle is also examined to enrich the research. The velocity
and pressure fields are predicted by the PINNs, and the results are compared with those derived from
Computational Fluid Dynamics (CFD). Additionally, the particle drag force coefficient is calculated
to quantify the discrepancy in the results of the PINNs as compared to CFD outcomes. The drag
coefficient maintained an error within 10% across all test scenarios.

Keywords: Navier–Stokes equations; physics-informed neural networks; CFD; particle

1. Introduction

In the past few decades, numerical simulations have been commonly considered one
of the most effective methods for solving non-linear Partial Differential Equations (PDEs)
in most engineering problems. One such classical problem is the solution of Navier–Stokes
equations through Computational Fluid Dynamics (CFD). However, numerical simulations
can be computationally prohibitive due to the necessity of generating a large-scale and
intricate computational grid, a complex process that requires a high level of expertise and
specialized domain knowledge in many real-world applications. In recent years, there has
been a surge in efforts to apply new techniques to solve these conventional engineering
problems, with deep learning emerging as a prominent approach, thanks to a number of
factors such as advancement of training algorithms, new architectures and techniques, and
the leap in computing power. Deep learning excels at approximating complex relations
between input and output variables through elementary operations implemented by an
artificial neural network (ANN). A loss function, typically constructed as the mean squared
error between the predictions made by the ANN and the ground truth (labeled data), is
minimized (ideally to zero) through optimization algorithms. This allows the ANN to
predict results close to the ground truth. Deep learning has proven to be powerful in
tackling multi-scale and non-linear problems, especially when abundant observational
data is available. It is unsurprising that deep learning has achieved considerable success in
conventional engineering problems, where the mathematical relationships between inputs
and outputs are often unclear and analytical solutions are non-existent.

Despite its potency and versatility in addressing numerous engineering problems,
deep learning comes with several downsides. First, it requires a vast amount of labeled data,

Math. Comput. Appl. 2023, 28, 102. https://doi.org/10.3390/mca28050102 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca28050102
https://doi.org/10.3390/mca28050102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0009-0001-6321-5151
https://doi.org/10.3390/mca28050102
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca28050102?type=check_update&version=1

Math. Comput. Appl. 2023, 28, 102 2 of 15

which can be prohibitively expensive for most engineering problems. Secondly, the trained
neural network is a “black box” that is difficult to interpret and not directly transferrable
to human knowledge. Thirdly, most deep learning processes in engineering problems are
characterized as “data rich, knowledge poor” [1], as the models trained are predominantly
based on labeled data with no consideration of physical law constraints. Consequently,
there is a pressing need to incorporate fundamental physical laws and domain knowledge
into deep learning approaches [2].

In recent years, a novel category of deep learning known as Physics Informed Neural
Networks (PINNs) has emerged. PINNs essentially alter the loss function from being a
measure of the discrepancy between predictions and labeled data to being the residuals of
governing equations, primarily PDEs. Through the minimization of these PDE residuals,
the trained ANN inherently conforms to the governing equations, accurately reflecting
physical laws. Furthermore, by similarly constraining the boundary and initial conditions,
there is no requirement for labeled data during the training process.

Preliminary studies on PINNs began around 2018 as proof-of-concept studies.
Raissi et al. [3] introduced the foundational framework of PINNs and applied it to solve
several PDEs, including Burger’s equation, the Korteweg de Vries (KdV) equation, and
the Kuramoto–Sivashinsky equation. Automatic Differentiation (AD) was used to calcu-
late the partial derivates in PDEs, with the PDE residual calculated as the loss function to
be minimized. Boundary conditions and initial conditions were softly constrained within
the loss function to ensure a unique solution upon convergence. Since then, several PINN
frameworks have been proposed to solve various PDEs, to name a few [4–10].

In the specific context of Navier–Stokes equations, several studies have made signif-
icant contributions. Sun et al. [11] proposed a surrogate model to solve incompressible
Navier–Stokes equations. Boundary and initial conditions were enforced in a “hard”
way using an encoder-decoder structure. Jin et al. [12] proposed the NSF net to solve
three-dimensional Navier–Stokes equations in both laminar and turbulent flow regimes.
Rao et al. [13] proposed a framework to solve mixed-form incompressible Navier–Stokes
equations that utilized Cauchy stress and the stream function. Gao et al. [14] proposed
PhyGeoNet using a Convolutional Neural Network (CNN) to solve finitely differencing
discretized Navier–Stokes equations. Ranade et al. [15] proposed the discretization net,
which constructed the loss function through a finite volume method similar to the one com-
monly used in CFD. The partial derivatives were approximated through the Green–Gauss
cell-based theorem. Incompressible three-dimensional Navier–Stokes equations, including
the energy equation, were solved through the proposed framework.

This study focuses on developing a PINN framework to solve two-dimensional,
steady-state, incompressible Navier–Stokes equations. The flow passing around 2D circular
and elliptical particles has been chosen as the benchmark case for the validation of the
framework. Moreover, the work delves deeper into the application aspect by estimating the
particle drag coefficient at several Reynolds (Re) numbers. The predicted drag coefficient
is then validated against the CFD results. Given the point-based nature of the PINN
framework, this study utilized a finite difference method that is different from CFD to
discretize the predicted flow field in order to calculate the drag coefficient.

2. Methods
2.1. Navier–Stokes Equations

In this section, we discuss the methodology for solving the two-dimensional, steady-
state, incompressible, laminar Navier–Stokes equations. The equations consist of the
mass conservation equation, x-direction momentum equation, and y-direction momentum
equation, each presented in their PDE form, as shown in Equations (1)–(3).

∂u
∂x

+
∂v
∂y

= 0 (1)

Math. Comput. Appl. 2023, 28, 102 3 of 15

−∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
= ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
(2)

−∂p
∂y

+ µ

(
∂2v
∂x2 +

∂2v
∂y2

)
= ρ

(
u

∂v
∂x

+ v
∂v
∂y

)
(3)

where u and v are the velocity components in x and y directions, respectively, ρ is the
density of the fluid, p is the static pressure, and µ is the dynamic viscosity of the fluid. The
exact analytical solution to the above equations is unknown; however, the solution can be
formulated such that the transport scalar variables u, v, and p are a function of the spatial
variables x and y (and time variable t, should it be a non-steady-state problem).

One of the notable features of a neural network is its ability to approximate nearly any
unknown function by stacking elementary operations using the input variables X, weights
W, and bias b. As a result, the predicted solution to Navier–Stokes equations (transport
scalars u, v, and p) can be formulated as a function of input variables, coupled with weights
and bias terms, as shown in Equation (4).

[û, v̂, p̂] = hW,b(X) = Φ(WX + b) (4)

where Φ is the activation function of the neural network and X is the input variables
X = [x, y].

2.2. Automatic Differentiation

The derivatives of the output variables are calculated using Automatic Differentia-
tion (AD) [16]. AD computes derivatives by evaluating the trace of calculations. Since
all numerical computations are ultimately compositions of a finite set of elementary
operations (e.g., summation and multiplication), the derivatives of which are known [17],
the derivative of a complex mathematical equation can be calculated by propagating the
derivative of each elementary operation using the chain rule. In the context of PINNs,
each elementary operation is recorded in a computational graph when the output vari-
able is constructed by the neural network. A reverse mode of the AD is applied to obtain
the derivative of any constructed variables. AD is also utilized during the optimization
of the loss function.

It should be noted that in CFD, derivatives are numerically approximated, and
the accuracy is influenced by the order of the scheme and the resolution of the grid.
Conversely, the derivative computed in PINNs is the exact solution to the mathematical
formulation constructed by neural networks, making their accuracy independent of
the grid resolution. In essence, PINNs bear resemblance to meshless CFD methods,
offering a significant advantage over traditional CFD techniques as they bypass the
often complex and time-consuming process of grid generation encountered in many
real-world applications.

2.3. PINNs Framework

The structure of the 2D steady-state, laminar PINNs framework utilized in this study
is depicted in Figure 1. A fully connected neural network, which comprises an input
layer housing two neurons, eight hidden layers each containing 60 neurons, and an output
layer equipped with three neurons, is employed. The total number of trainable degrees of
freedom is 26,105. The input feature consists of the x and y coordinates, while the output
feature includes the x-velocity u, y-velocity v, and static pressure p.

The principal difference between PINNs and a traditional ANN is the alteration
of the loss function, which usually calculates the mean square error (MSE) between
predictions and labeled data and is replaced here by governing equations. In the con-
text of fluid engineering, the Navier–Stokes equations are the governing equations.
The neural network predicts variables u, v, p, and their derivatives, which are then
incorporated into the mass conservation equation and the x and y momentum equation

Math. Comput. Appl. 2023, 28, 102 4 of 15

(Equations (1)–(3)). The residual of these equations comprises the loss function, denoted
as JNS in Equation (5), which represents the aggregate of residuals across all training
points in the computational domain.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 4 of 14

The principal difference between PINNs and a traditional ANN is the alteration of
the loss function, which usually calculates the mean square error (MSE) between predic-
tions and labeled data and is replaced here by governing equations. In the context of fluid
engineering, the Navier–Stokes equations are the governing equations. The neural net-
work predicts variables u, v, p, and their derivatives, which are then incorporated into the
mass conservation equation and the x and y momentum equation (Equations (1)–(3)). The
residual of these equations comprises the loss function, denoted as JNS in Equation (5),
which represents the aggregate of residuals across all training points in the computational
domain.

Figure 1. PINNs framework proposed in this work.

𝐽 = 𝛼 1𝑁 𝑅 (𝑋 , 𝑊 , 𝑏) + 𝛼 1𝑁 𝑅 (𝑋 , 𝑊 , 𝑏)
+ 𝛼 1𝑁 𝑅 (𝑋 , 𝑊 , 𝑏)

(5)

where JNS is the loss function of Navier–Stokes equations. Rmass, Rx-mom, and Ry-mom are the
residuals of Equations (1)–(3), respectively (mass conservation, x-momentum, and y-mo-
mentum equations). Np is the total number of training points in the fluid domain. The
residual is calculated as the l2 norm of each equation, as expressed in Equation (6).

‖𝑥‖ = 𝑥 (6)

here �̅� = 𝑥 , 𝑥 ⋯ , 𝑥 .
When the Navier–Stokes loss function JNS is minimized (ideally to zero), each pre-

dicted solution at every individual point within the fluid domain complies with the gov-
erning equations. Consequently, the predicted values of u, v, and p are one possible set
within an infinite array of solutions to the PDE.

To obtain a unique solution, boundary conditions (and initial conditions in the case
of an unsteady-state problem) must be enforced. This is executed similarly to the applica-
tion of the Navier–Stokes equations, where the boundary conditions essentially form

Figure 1. PINNs framework proposed in this work.

JNS = αmass
1

Np

Np

∑
i=1

∥∥Rmass
(
Xi, Wi, bi)∥∥2

+ αx−mom
1

Np

Np

∑
i=1

∥∥Rx−mom
(
Xi, Wi, bi)∥∥2

+αy−mom
1

Np

Np

∑
i=1

∥∥Ry−mom
(
Xi, Wi, bi)∥∥2

(5)

where JNS is the loss function of Navier–Stokes equations. Rmass, Rx-mom, and Ry-mom are
the residuals of Equations (1)–(3), respectively (mass conservation, x-momentum, and
y-momentum equations). Np is the total number of training points in the fluid domain. The
residual is calculated as the l2 norm of each equation, as expressed in Equation (6).

‖x‖2 =

√
n

∑
k=1

x2
k (6)

here x = [x1, x2 · · · , xk]
T .

When the Navier–Stokes loss function JNS is minimized (ideally to zero), each predicted
solution at every individual point within the fluid domain complies with the governing
equations. Consequently, the predicted values of u, v, and p are one possible set within an
infinite array of solutions to the PDE.

To obtain a unique solution, boundary conditions (and initial conditions in the case of
an unsteady-state problem) must be enforced. This is executed similarly to the application
of the Navier–Stokes equations, where the boundary conditions essentially form another
set of equations within the loss function that needs to be minimized, as illustrated in
Equation (7):

JBC = αInlet
1

NpI

NpI

∑
i=1

∥∥Rinlet
(
Xi, Wi, bi)∥∥2

+ αOutlet
1

NpO

NpO

∑
i=1

∥∥Routlet
(
Xi, Wi, bi)∥∥2

+αWall
1

NpW

NpW

∑
i=1

∥∥Rwall
(
Xi, Wi, bi)∥∥2

(7)

Math. Comput. Appl. 2023, 28, 102 5 of 15

where NpI, NpO, and NpW are the number of boundary points on the inlet, outlet, and wall.
Rinlet, Routlet, and Rwall are the residuals of inlet, outlet, and wall boundary conditions. The
total loss function Jtotal is the summation of both Navier–Stokes loss and the boundary
conditions loss, as shown in Equation (8):

Jtotal = JNS + JBC (8)

α =
[
αmass, αx−mom, αy−mom, αInlet, αOutlet, αwall

]
is a set of penalizing factors to boost

the stability and convergence of the training process. The boundary enforcement on the
wall is crucial for mass conservation of the entire flow field, but the sample points on the
wall only account for less than 5% of the total points. Therefore, αwall is assigned a value of
2 to compensate for the imbalanced distribution of sample points. For all other terms, α is
set to 1.

The neural network is trained by the Adam algorithm [18] for 10,000 iterations and
then by the L-BFGS [19] algorithm to improve convergence. The training will stop early
when the gradient of each term is less than 1 × 10−7. The framework is coded using the
Pytorch library.

2.4. Investigated Domain

A classical scenario where flow around a 2D circular particle is used as the benchmark
to test this framework, as shown in Figure 2.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 5 of 14

another set of equations within the loss function that needs to be minimized, as illustrated
in Equation (7):

𝐽 = 𝛼 1𝑁 𝑅 (𝑋 , 𝑊 , 𝑏) + 𝛼 1𝑁 𝑅 (𝑋 , 𝑊 , 𝑏)
+ 𝛼 1𝑁 𝑅 (𝑋 , 𝑊 , 𝑏)

(7)

where NpI, NpO, and NpW are the number of boundary points on the inlet, outlet, and wall.
Rinlet, Routlet, and Rwall are the residuals of inlet, outlet, and wall boundary conditions. The
total loss function Jtotal is the summation of both Navier–Stokes loss and the boundary
conditions loss, as shown in Equation (8): 𝐽 = 𝐽 + 𝐽 (8) 𝛼 = 𝛼 , 𝛼 , 𝛼 , 𝛼 , 𝛼 , 𝛼 is a set of penalizing factors to boost the
stability and convergence of the training process. The boundary enforcement on the wall
is crucial for mass conservation of the entire flow field, but the sample points on the wall
only account for less than 5% of the total points. Therefore, 𝛼 is assigned a value of 2
to compensate for the imbalanced distribution of sample points. For all other terms, α is set to 1.

The neural network is trained by the Adam algorithm [18] for 10,000 iterations and
then by the L-BFGS [19] algorithm to improve convergence. The training will stop early
when the gradient of each term is less than 1 × 10−7. The framework is coded using the
Pytorch library.

2.4. Investigated Domain
A classical scenario where flow around a 2D circular particle is used as the bench-

mark to test this framework, as shown in Figure 2.

Figure 2. Computational domain of the benchmark case.

A parabolic velocity profile is defined as V = (u, v) at the inlet, where 𝑢 = 4𝐻 (𝐻 − 𝑦)𝑦 (9)

𝑣 = 0 (10)

The no-slip wall boundary condition is enforced at the particle�s edge as well as at
the top and bottom boundaries of the domain. At the right end of the domain, a zero-
pressure outlet condition is applied. This framework is tested at particle Re of 5, 20, and
50. To create variations in the Reynolds number, an imaginary fluid is created,

Figure 2. Computational domain of the benchmark case.

A parabolic velocity profile is defined as V = (u, v) at the inlet, where

u =
4

H2 (H − y)y (9)

v = 0 (10)

The no-slip wall boundary condition is enforced at the particle’s edge as well as at the
top and bottom boundaries of the domain. At the right end of the domain, a zero-pressure
outlet condition is applied. This framework is tested at particle Re of 5, 20, and 50. To create
variations in the Reynolds number, an imaginary fluid is created, maintaining a constant
density of 1 kg/m3 across all cases, while the dynamic viscosity is set at 0.2, 0.05, and
0.02 Pa·s, respectively. The viscous heat is neglected in this study.

There are 400 by 200 sample points evenly distributed in the entire domain, with 400
in the x direction and 200 in the y direction. The region near the particle is refined with
more sample points. In total, there are approximately 100 thousand sample points in the
domain. Figure 3 shows the sample points of the domain.

Math. Comput. Appl. 2023, 28, 102 6 of 15

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 6 of 14

maintaining a constant density of 1 kg/m3 across all cases, while the dynamic viscosity is
set at 0.2, 0.05, and 0.02 Pa·s, respectively. The viscous heat is neglected in this study.

There are 400 by 200 sample points evenly distributed in the entire domain, with 400
in the x direction and 200 in the y direction. The region near the particle is refined with
more sample points. In total, there are approximately 100 thousand sample points in the
domain. Figure 3 shows the sample points of the domain.

Figure 3. Sample points in the domain. Red points are the inlet, green points are the wall, blue points
are the interior points, and yellow points are the outlet.

2.5. Drag Force Coefficient
The particle drag force coefficient is calculated as a numerical metric to quantify the

error between the PINNs and CFD results. The particle drag coefficient Cd is defined as
Equation (11): 𝐹 = 12 𝐶 𝜌𝑣 𝐴 (11)

where Fd represents the drag force applied to the particle in the streamwise direction,
which, in this instance, corresponds to the x-direction. The drag force consists of two com-
ponents in the low-Re flow regime, namely pressure-driven drag force and viscous drag
force, as graphically depicted in Figure 4, where r is the radius of the circular particle and �⃗� is the unit normal vector of the particle. In conventional CFD using Finite Volume
Method, the fluid-solid interaction force can be easily obtained by calculating the total
force exerted on all surrounding fluid grids adjacent to the particle wall, as shown in Equa-
tion (12):

Figure 4. Illustration of the drag force calculation.

𝐹 = − 𝜕𝑝𝜕𝑥 + 𝜇 𝜕 𝑢𝜕𝑥 + 𝜕 𝑢𝜕𝑦 𝑉 (12)

where Vcell is the volume of each grid adjacent to the particle wall. However, due to the
nature of the PINNs, which utilize a point-based system, this methodology cannot be

Figure 3. Sample points in the domain. Red points are the inlet, green points are the wall, blue points
are the interior points, and yellow points are the outlet.

2.5. Drag Force Coefficient

The particle drag force coefficient is calculated as a numerical metric to quantify the
error between the PINNs and CFD results. The particle drag coefficient Cd is defined as
Equation (11):

Fd =
1
2

Cdρv2 Afrontal (11)

where Fd represents the drag force applied to the particle in the streamwise direction, which,
in this instance, corresponds to the x-direction. The drag force consists of two components
in the low-Re flow regime, namely pressure-driven drag force and viscous drag force, as
graphically depicted in Figure 4, where r is the radius of the circular particle and

→
n is the

unit normal vector of the particle. In conventional CFD using Finite Volume Method, the
fluid-solid interaction force can be easily obtained by calculating the total force exerted on
all surrounding fluid grids adjacent to the particle wall, as shown in Equation (12):

Fd = ∑
[
−∂p

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)]
Vcell (12)

where Vcell is the volume of each grid adjacent to the particle wall. However, due to
the nature of the PINNs, which utilize a point-based system, this methodology cannot
be applied as there is no fluid grid volume. As a result, the drag force is determined by
numerically integrating the pressure p and the stress tensor τ on the surface of the particle.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 6 of 14

maintaining a constant density of 1 kg/m3 across all cases, while the dynamic viscosity is
set at 0.2, 0.05, and 0.02 Pa·s, respectively. The viscous heat is neglected in this study.

There are 400 by 200 sample points evenly distributed in the entire domain, with 400
in the x direction and 200 in the y direction. The region near the particle is refined with
more sample points. In total, there are approximately 100 thousand sample points in the
domain. Figure 3 shows the sample points of the domain.

Figure 3. Sample points in the domain. Red points are the inlet, green points are the wall, blue points
are the interior points, and yellow points are the outlet.

2.5. Drag Force Coefficient
The particle drag force coefficient is calculated as a numerical metric to quantify the

error between the PINNs and CFD results. The particle drag coefficient Cd is defined as
Equation (11): 𝐹 = 12 𝐶 𝜌𝑣 𝐴 (11)

where Fd represents the drag force applied to the particle in the streamwise direction,
which, in this instance, corresponds to the x-direction. The drag force consists of two com-
ponents in the low-Re flow regime, namely pressure-driven drag force and viscous drag
force, as graphically depicted in Figure 4, where r is the radius of the circular particle and �⃗� is the unit normal vector of the particle. In conventional CFD using Finite Volume
Method, the fluid-solid interaction force can be easily obtained by calculating the total
force exerted on all surrounding fluid grids adjacent to the particle wall, as shown in Equa-
tion (12):

Figure 4. Illustration of the drag force calculation.

𝐹 = − 𝜕𝑝𝜕𝑥 + 𝜇 𝜕 𝑢𝜕𝑥 + 𝜕 𝑢𝜕𝑦 𝑉 (12)

where Vcell is the volume of each grid adjacent to the particle wall. However, due to the
nature of the PINNs, which utilize a point-based system, this methodology cannot be

Figure 4. Illustration of the drag force calculation.

Math. Comput. Appl. 2023, 28, 102 7 of 15

• Pressure drag force

Assuming the pressure and stress tensor on the wall are a function of the angle on
the circular particle, the pressure force is equal to the integration of the pressure over the
surface of the particle on the upstream side (left to the frontal area) minus the downstream
side (right to the frontal area), as shown in Equation (13).

Fdp =
∫

p(θ)rdθup −
∫

p(θ)rdθdown (13)

Based on the trapezoidal rule for integration, the above integration can be discretized
as in Equation (14). ∫

p(θ)rdθ =
n

∑
i=0

1
2
(p(θi) + p(θi+1))r∆θ (14)

where n is the number of sample points sampled on the particle wall. If the sample points
are evenly distributed on the entire surface of the particle, then ∆θ is a constant and
is equal to π divided by the number of points along the circumference of the particle.
Then Equation (14) can be simplified, and the pressure drag force is equal to πr times the
arithmetic mean of the pressure at all points, as shown in Equation (15). The pressure force
can be further written in discrete form, as shown in Equation (16):

n

∑
i=0

1
2
(p(θi) + p(θi+1))r

π

n
= πr

∑n
i=0 p(θi)

n
= πrp (15)

Fdp = πr
(

pup − pdown
)

(16)

where pup is the arithmetic mean of the pressure at all sample points in the upstream side
of the particle, and pdown is the arithmetic mean of the pressure at all sample points in the
downstream side of the particle.

• Viscous drag force

The viscous force is calculated by integrating the unit normal vector of the given

surface over the entire surface of the particle times the stress tensor τ =

[
τxx τxy
τyx τyy

]
, as

written in Equation (17):

Fs =
∫
→
n ·τ(θ)rdθ (17)

The unit normal vector at any point of the circular particle can be written as [−sinθ, cosθ].
Therefore, the viscous force can be written as shown in Equation (18).

Fs =
∫ [
−τxxsinθ + τyxcosθ −τxysinθ + τyycosθ

]
rdθ (18)

As the drag force is only in the streamwise direction (x direction), the drag force due
to the viscous stress is therefore written as

Fds =
∫ (
−τxxsinθ + τyxcosθ

)
rdθ. (19)

For a Newtonian fluid, the viscous stresses are proportional to the element strain
rates and the viscosity. τxx = 2µ ∂u

∂x , τyx = µ
(

∂u
∂y + ∂v

∂x

)
. Therefore, the drag force can be

written as

Fds =
∫ [
−2µ

∂u
∂x

sinθ + µ

(
∂u
∂y

+
∂v
∂x

)
cosθ

]
rdθ. (20)

Math. Comput. Appl. 2023, 28, 102 8 of 15

Similar to the pressure force, after applying the trapezoidal rule for integration, the
above integration can be discretized as in Equation (21) below.

Fds =
n

∑
i=1

[
−2µ

∂u
∂x

sinθi + µ

(
∂u
∂y

+
∂v
∂x

)
cosθi

]
2πr

n
(21)

2.6. CFD Validation

CFD simulations were conducted to validate the results of the proposed PINNs frame-
work using ANSYS Fluent 2020R2. A grid with a comparable resolution of hexagonal
cells was configured for the CFD simulation, as illustrated in Figure 5. The grid con-
sists of 400 cells spanning the horizontal section of the domain and 200 cells covering
the vertical segment. An additional five layers of inflation cells were integrated adja-
cent to the wall, resulting in 77,414 cells in total. The same parabolic velocity profile in
Equations (10) and (11) is applied as an inlet boundary condition. A zero-pressure bound-
ary condition is applied to the outlet. No-slip wall conditions are applied to the surface
of the particle and the top and bottom of the domain. The SIMPLE scheme is applied for
pressure-velocity coupling, and second-order upwind discretization is used for pressure
and momentum terms. Convergence is reached when the relative residual of all terms is
below 10−5. The CFD simulation is performed on an Intel i9-10940X at 3.3 Ghz.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 8 of 14

Similar to the pressure force, after applying the trapezoidal rule for integration, the
above integration can be discretized as in Equation (21) below.

𝐹 = −2𝜇 𝜕𝑢𝜕𝑥 sin𝜃 + 𝜇 𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑥 cos𝜃 2𝜋𝑟𝑛 (21)

2.6. CFD Validation
CFD simulations were conducted to validate the results of the proposed PINNs

framework using ANSYS Fluent 2020R2. A grid with a comparable resolution of hexago-
nal cells was configured for the CFD simulation, as illustrated in Figure 5. The grid con-
sists of 400 cells spanning the horizontal section of the domain and 200 cells covering the
vertical segment. An additional five layers of inflation cells were integrated adjacent to the
wall, resulting in 77,414 cells in total. The same parabolic velocity profile in Equations (10)
and (11) is applied as an inlet boundary condition. A zero-pressure boundary condition is
applied to the outlet. No-slip wall conditions are applied to the surface of the particle and
the top and bottom of the domain. The SIMPLE scheme is applied for pressure-velocity
coupling, and second-order upwind discretization is used for pressure and momentum
terms. Convergence is reached when the relative residual of all terms is below 10−5. The
CFD simulation is performed on an Intel i9-10940X at 3.3 Ghz.

Figure 5. Computational grid of the benchmark case in CFD. Figure 5. Computational grid of the benchmark case in CFD.

Math. Comput. Appl. 2023, 28, 102 9 of 15

3. Results

Figure 6 shows the comparison between the proposed framework and its CFD val-
idations. Velocity contours and vectors, along with pressure contours, are displayed at
Re = 5, 20, 50, as shown in Figures 6–8. Overall, the PINNs framework effectively solves the
Navier–Stokes equations and identifies the unique solution considering all the boundary
conditions within the specified domain.

In all three cases, the PINNs framework manages to capture the flow characteristics
found in the stagnation region, flow separation region, venturi region, and wake region.
In the stagnation zone located at the forefront of the particle, the fluid velocity reduces
to zero. In the pressure contour, the stagnation zone is marked by a small high-pressure
zone upstream of the particle due to the conservation of energy. The fluid then divides
into two streams that pass around the particle. Due to a reduction in flow area, the fluid
accelerates both above and below the particle, a phenomenon also referred to as the “venturi
effect”. Concurrently, the pressure rapidly declines within this region. Subsequently, the
two streams of fluid reunite, forming a wake downstream of the particle. Given that the
Reynolds number is low in all three instances, the wake presents less chaotic behavior.
Nonetheless, a flow separation followed by a region of recirculating fluid behind the particle
can still be observed in the vectors. In the pressure contour, the flow separation is indicated
by a near-zero pressure zone situated behind the particle. The adverse pressure gradient,
where the pressure gradually increases in the streamwise direction, can also be observed in
the flow separation zone. In the velocity contour of all three cases, clear stratification can
be observed near the wall region, representing the boundary layer of the wall.

At Re = 5, the PINNs framework accurately captures the maximum velocity both
above and below the particle due to the “venturi effect”. A slightly larger discrepancy can
be observed in the downstream wake region. The wake in the PINNs is slightly wider than
in the CFD. In the pressure contour, despite some discrepancies near the bottom left corner,
the overall pressure pattern is well captured. At Re = 20 and 50, the wake is broadened due
to the increase in Re. While the PINNs faithfully capture the elongated wake region and the
flow separation, it shows a slightly lower maximum velocity compared to the CFD results,
suggesting a slight mass imbalance in the PINNs result. Furthermore, the discrepancy in
pressure also increases as the Re increases.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 9 of 14

3. Results
Figure 6 shows the comparison between the proposed framework and its CFD vali-

dations. Velocity contours and vectors, along with pressure contours, are displayed at Re
= 5, 20, 50, as shown in Figures 6–8. Overall, the PINNs framework effectively solves the
Navier–Stokes equations and identifies the unique solution considering all the boundary
conditions within the specified domain.

In all three cases, the PINNs framework manages to capture the flow characteristics
found in the stagnation region, flow separation region, venturi region, and wake region.
In the stagnation zone located at the forefront of the particle, the fluid velocity reduces to
zero. In the pressure contour, the stagnation zone is marked by a small high-pressure zone
upstream of the particle due to the conservation of energy. The fluid then divides into two
streams that pass around the particle. Due to a reduction in flow area, the fluid accelerates
both above and below the particle, a phenomenon also referred to as the “venturi effect”.
Concurrently, the pressure rapidly declines within this region. Subsequently, the two
streams of fluid reunite, forming a wake downstream of the particle. Given that the Reyn-
olds number is low in all three instances, the wake presents less chaotic behavior. None-
theless, a flow separation followed by a region of recirculating fluid behind the particle
can still be observed in the vectors. In the pressure contour, the flow separation is indi-
cated by a near-zero pressure zone situated behind the particle. The adverse pressure gra-
dient, where the pressure gradually increases in the streamwise direction, can also be ob-
served in the flow separation zone. In the velocity contour of all three cases, clear stratifi-
cation can be observed near the wall region, representing the boundary layer of the wall.

At Re = 5, the PINNs framework accurately captures the maximum velocity both
above and below the particle due to the “venturi effect”. A slightly larger discrepancy can
be observed in the downstream wake region. The wake in the PINNs is slightly wider than
in the CFD. In the pressure contour, despite some discrepancies near the bottom left cor-
ner, the overall pressure pattern is well captured. At Re = 20 and 50, the wake is broadened
due to the increase in Re. While the PINNs faithfully capture the elongated wake region
and the flow separation, it shows a slightly lower maximum velocity compared to the CFD
results, suggesting a slight mass imbalance in the PINNs result. Furthermore, the discrep-
ancy in pressure also increases as the Re increases.

(a1)

(a2)

(b1)

(b2)

Figure 6. Cont.

Math. Comput. Appl. 2023, 28, 102 10 of 15Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 10 of 14

(c1)

(c2)

Figure 6. Result comparisons of CFD and PINNs of flow passing around a 2D circular particle at Re
= 5. (a1) Velocity contour of CFD at Re = 5; (a2) velocity contour of PINNs at Re = 5; (b1) pressure
contour of CFD at Re = 5; (b2) pressure contour of PINNs at Re = 5; (c1) velocity vectors of CFD at
Re = 5; (c2) velocity vectors of PINNs at Re = 5.

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

Figure 7. Result comparisons of CFD and PINNs of flow passing around a 2D circular particle at Re
= 20. (a1) Velocity contour of CFD at Re = 20; (a2) velocity contour of PINNs at Re = 20; (b1) pressure
contour of CFD at Re = 20; (b2) pressure contour of PINNs at Re = 20; (c1) velocity vectors of CFD at
Re = 20; (c2) velocity vectors of PINNs at Re = 20.

Figure 6. Result comparisons of CFD and PINNs of flow passing around a 2D circular particle at
Re = 5. (a1) Velocity contour of CFD at Re = 5; (a2) velocity contour of PINNs at Re = 5; (b1) pressure
contour of CFD at Re = 5; (b2) pressure contour of PINNs at Re = 5; (c1) velocity vectors of CFD at
Re = 5; (c2) velocity vectors of PINNs at Re = 5.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 10 of 14

(c1)

(c2)

Figure 6. Result comparisons of CFD and PINNs of flow passing around a 2D circular particle at Re
= 5. (a1) Velocity contour of CFD at Re = 5; (a2) velocity contour of PINNs at Re = 5; (b1) pressure
contour of CFD at Re = 5; (b2) pressure contour of PINNs at Re = 5; (c1) velocity vectors of CFD at
Re = 5; (c2) velocity vectors of PINNs at Re = 5.

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

Figure 7. Result comparisons of CFD and PINNs of flow passing around a 2D circular particle at Re
= 20. (a1) Velocity contour of CFD at Re = 20; (a2) velocity contour of PINNs at Re = 20; (b1) pressure
contour of CFD at Re = 20; (b2) pressure contour of PINNs at Re = 20; (c1) velocity vectors of CFD at
Re = 20; (c2) velocity vectors of PINNs at Re = 20.

Figure 7. Result comparisons of CFD and PINNs of flow passing around a 2D circular particle at
Re = 20. (a1) Velocity contour of CFD at Re = 20; (a2) velocity contour of PINNs at Re = 20;
(b1) pressure contour of CFD at Re = 20; (b2) pressure contour of PINNs at Re = 20; (c1) veloc-
ity vectors of CFD at Re = 20; (c2) velocity vectors of PINNs at Re = 20.

Math. Comput. Appl. 2023, 28, 102 11 of 15
Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 11 of 14

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

Figure 8. Result comparisons of CFD and PINNs of flow passing around a 2D circular particle at Re
= 50. (a1) Velocity contour of CFD at Re = 50; (a2) velocity contour of PINNs at Re = 50; (b1) pressure
contour of CFD at Re = 50; (b2) pressure contour of PINNs at Re = 50; (c1) velocity vectors of CFD at
Re = 50; (c2) velocity vectors of PINNs at Re = 50.

This discrepancy can be attributed to insufficient convergence, which is thought to
be related to the way boundary conditions are enforced in PINNs. In CFD, boundary con-
ditions are strictly specified; scalar variables such as velocity and pressure in boundary
cells are used directly to calculate the interior cells adjacent to the boundary. Conse-
quently, there are no residuals for boundary conditions in CFD. However, in the proposed
PINN framework, boundary conditions are softly enforced, being incorporated as part of
the loss function. The residual on the boundary points is aimed at being zero, but achiev-
ing this goal depends heavily on the training process (optimization of the loss function)
of the PINNs. To illustrate, consider the non-slip wall boundary condition. Even though
the velocity on the wall is specified as zero, the residual at the wall boundary points after
training might be non-zero, even though it might be minimal. When a sufficient number
of wall boundary points exhibit a small residual, the overall mass of the domain may not
be conserved. Consequently, at certain locations on the wall, the fluid might demonstrate
a small velocity that points outward from the wall. Furthermore, the neural network is
designed to generalize predictions and avoid overfitting, meaning it does not strive to
perfectly match the target residual at every single sample point within the domain. Given
that boundary points constitute approximately 5% of the total sample points, the training
is unlikely to progress further, even if a minimal residual persists at the boundary points.

The drag force coefficients of the particle are calculated through the finite differenc-
ing method described in Section 2.5 to quantify the error of the PINNs compared to the
CFD, as shown in Table 1. Given that the flow is in the laminar regime, viscous forces play

Figure 8. Result comparisons of CFD and PINNs of flow passing around a 2D circular particle at
Re = 50. (a1) Velocity contour of CFD at Re = 50; (a2) velocity contour of PINNs at Re = 50;
(b1) pressure contour of CFD at Re = 50; (b2) pressure contour of PINNs at Re = 50; (c1) veloc-
ity vectors of CFD at Re = 50; (c2) velocity vectors of PINNs at Re = 50.

This discrepancy can be attributed to insufficient convergence, which is thought to
be related to the way boundary conditions are enforced in PINNs. In CFD, boundary
conditions are strictly specified; scalar variables such as velocity and pressure in boundary
cells are used directly to calculate the interior cells adjacent to the boundary. Consequently,
there are no residuals for boundary conditions in CFD. However, in the proposed PINN
framework, boundary conditions are softly enforced, being incorporated as part of the
loss function. The residual on the boundary points is aimed at being zero, but achieving
this goal depends heavily on the training process (optimization of the loss function) of
the PINNs. To illustrate, consider the non-slip wall boundary condition. Even though
the velocity on the wall is specified as zero, the residual at the wall boundary points after
training might be non-zero, even though it might be minimal. When a sufficient number
of wall boundary points exhibit a small residual, the overall mass of the domain may not
be conserved. Consequently, at certain locations on the wall, the fluid might demonstrate
a small velocity that points outward from the wall. Furthermore, the neural network is
designed to generalize predictions and avoid overfitting, meaning it does not strive to
perfectly match the target residual at every single sample point within the domain. Given
that boundary points constitute approximately 5% of the total sample points, the training
is unlikely to progress further, even if a minimal residual persists at the boundary points.

The drag force coefficients of the particle are calculated through the finite differencing
method described in Section 2.5 to quantify the error of the PINNs compared to the CFD,
as shown in Table 1. Given that the flow is in the laminar regime, viscous forces play a

Math. Comput. Appl. 2023, 28, 102 12 of 15

significant role and are comparable to inertial forces. Therefore, both the viscous drag
coefficient and the pressure drag coefficient are calculated, and the total drag coefficient
is the sum of these two terms. When compared to the CFD results, both the pressure and
viscous drag coefficients computed from the PINNs across all cases are found to be less than
10%, with the error in the total drag coefficient less than 6%. Overall, the drag coefficient
predictions made by PINNs show reasonable agreement with the CFD results.

Table 1. Particle drag coefficient in PINNs and CFD.

Viscous Drag Coeff. Pressure Drag Coeff. Total Drag Coeff.

CFD PINNs CFD PINNs CFD PINNs

Re = 5 3.78 3.34 5.09 5.53 8.87 8.87

Re = 20 1.19 1.06 1.92 1.86 3.12 2.92

Re = 50 0.61 0.55 1.32 1.28 1.94 1.83

The flow passing around an elliptical particle is also tested with the same PINN
framework. Figure 9 shows the result of flow passing around a 2D elliptical particle at
Re = 20. Similar to the circular cylinder case, the PINNs framework captures most of the
flow features observed in the stagnation region, flow separation region, venturi region, and
wake region. Given the elongated and narrower shape of the particle, the flow separation
region is extended as well. However, the maximum velocity in both the venturi region and
the wake region is slightly underpredicted by the PINN framework. Aside from this, the
PINN framework accurately captures the flow field dynamics.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 12 of 14

a significant role and are comparable to inertial forces. Therefore, both the viscous drag
coefficient and the pressure drag coefficient are calculated, and the total drag coefficient
is the sum of these two terms. When compared to the CFD results, both the pressure and
viscous drag coefficients computed from the PINNs across all cases are found to be less
than 10%, with the error in the total drag coefficient less than 6%. Overall, the drag coeffi-
cient predictions made by PINNs show reasonable agreement with the CFD results.

Table 1. Particle drag coefficient in PINNs and CFD.

 Viscous Drag Coeff. Pressure Drag Coeff. Total Drag Coeff.
 CFD PINNs CFD PINNs CFD PINNs

Re = 5 3.78 3.34 5.09 5.53 8.87 8.87
Re = 20 1.19 1.06 1.92 1.86 3.12 2.92
Re = 50 0.61 0.55 1.32 1.28 1.94 1.83

The flow passing around an elliptical particle is also tested with the same PINN
framework. Figure 9 shows the result of flow passing around a 2D elliptical particle at Re
= 20. Similar to the circular cylinder case, the PINNs framework captures most of the flow
features observed in the stagnation region, flow separation region, venturi region, and
wake region. Given the elongated and narrower shape of the particle, the flow separation
region is extended as well. However, the maximum velocity in both the venturi region
and the wake region is slightly underpredicted by the PINN framework. Aside from this,
the PINN framework accurately captures the flow field dynamics.

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

Figure 9. Result comparisons of CFD and PINNs of flow passing around a 2D elliptical particle at
Re = 20. (a1) Velocity contour of CFD; (a2) velocity contour of PINNs; (b1) pressure contour of CFD;
(b2) pressure contour of PINNs; (c1) velocity vectors of CFD; (c2) velocity vectors of PINNs.

Figure 10 shows the training history of the proposed PINN framework for the case
of circular particles at Re = 5. The training history outlines the loss function�s residual over

Figure 9. Result comparisons of CFD and PINNs of flow passing around a 2D elliptical particle at
Re = 20. (a1) Velocity contour of CFD; (a2) velocity contour of PINNs; (b1) pressure contour of CFD;
(b2) pressure contour of PINNs; (c1) velocity vectors of CFD; (c2) velocity vectors of PINNs.

Math. Comput. Appl. 2023, 28, 102 13 of 15

Figure 10 shows the training history of the proposed PINN framework for the case of
circular particles at Re = 5. The training history outlines the loss function’s residual over the
number of epochs. The depicted residual behaves similarly to those observed in common
CFD simulations. The total residual is the sum of the residuals of the continuity equation,
x-momentum, and y-momentum. It can be observed that the initial convergence is slow,
with the residual beginning to decrease significantly after 6000 iterations. The final conver-
gence takes place over 10,000 epochs. A spike observed in the training might be attributed
to the adaptive learning rate of the Adam optimizer, which can occasionally cause sudden
jumps in the parameter space, resulting in spikes in the loss function. Subsequently, as the
training algorithm transitions to L-BFGS following 10,000 iterations, the training demon-
strates increased stability. The training stops when the gradient of each term is less than
1 × 10−7, around 140,000 iterations.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 13 of 14

the number of epochs. The depicted residual behaves similarly to those observed in com-
mon CFD simulations. The total residual is the sum of the residuals of the continuity equa-
tion, x-momentum, and y-momentum. It can be observed that the initial convergence is
slow, with the residual beginning to decrease significantly after 6000 iterations. The final
convergence takes place over 10,000 epochs. A spike observed in the training might be
attributed to the adaptive learning rate of the Adam optimizer, which can occasionally
cause sudden jumps in the parameter space, resulting in spikes in the loss function. Sub-
sequently, as the training algorithm transitions to L-BFGS following 10,000 iterations, the
training demonstrates increased stability. The training stops when the gradient of each
term is less than 1 × 10−7, around 140,000 iterations.

Figure 10. Training history of the case Re = 5. Residual vs. iterations.

The training time and hardware are listed in Table 2. The inference time for the PINN
to predict the velocity and pressure across all sample points in the domain is 0.07 s. It
should be noted that deep learning processes are typically performed on a GPU, while
CFD simulations are usually conducted on a CPU. Although this does not constitute a
direct comparison, the time efficiency of PINNs remains unrivaled by CFD, even when
trained on a GPU. However, one positive aspect to consider is that PINNs do not require
a computation grid, eliminating the often time-consuming task of generating a fine mesh
that is required in many real-world applications.

Table 2. Training time in PINNs and CFD.

Hardware CFD PINNs
Intel i9-10940X 3.3 Ghz (CPU) 2 min 16 h

Nvidia Tesla P100-16 GB (GPU) / 1.5 h

4. Conclusions
A physics-informed neural network to solve steady-state, 2D incompressible Navier–

Stokes is proposed. The framework has been tested on flows passing around a circular
and elliptical particle at Re numbers. The PINNs effectively capture most flow features,
with the error in the predicted drag coefficient being less than 10% in all cases compared
to CFD results. It should be noted that the current PINN framework is not intended to
replace traditional CFD methods, as it exhibits a longer training time and lower accuracy.
However, it serves as a proof of concept, presenting a novel approach to solving Navier–
Stokes equations. Future work will focus on enhancing the enforcement of boundary con-
ditions and reducing training time. In addition, future work will utilize the generalization
capabilities of neural networks by incorporating different boundary conditions into train-
ing as a parameter so that the PINN framework can predict the flow field with different
boundary conditions.

Figure 10. Training history of the case Re = 5. Residual vs. iterations.

The training time and hardware are listed in Table 2. The inference time for the PINN
to predict the velocity and pressure across all sample points in the domain is 0.07 s. It
should be noted that deep learning processes are typically performed on a GPU, while
CFD simulations are usually conducted on a CPU. Although this does not constitute a
direct comparison, the time efficiency of PINNs remains unrivaled by CFD, even when
trained on a GPU. However, one positive aspect to consider is that PINNs do not require
a computation grid, eliminating the often time-consuming task of generating a fine mesh
that is required in many real-world applications.

Table 2. Training time in PINNs and CFD.

Hardware CFD PINNs

Intel i9-10940X 3.3 Ghz (CPU) 2 min 16 h
Nvidia Tesla P100-16 GB (GPU) / 1.5 h

4. Conclusions

A physics-informed neural network to solve steady-state, 2D incompressible Navier–
Stokes is proposed. The framework has been tested on flows passing around a circular
and elliptical particle at Re numbers. The PINNs effectively capture most flow features,
with the error in the predicted drag coefficient being less than 10% in all cases compared
to CFD results. It should be noted that the current PINN framework is not intended
to replace traditional CFD methods, as it exhibits a longer training time and lower
accuracy. However, it serves as a proof of concept, presenting a novel approach to

Math. Comput. Appl. 2023, 28, 102 14 of 15

solving Navier–Stokes equations. Future work will focus on enhancing the enforcement
of boundary conditions and reducing training time. In addition, future work will utilize
the generalization capabilities of neural networks by incorporating different boundary
conditions into training as a parameter so that the PINN framework can predict the flow
field with different boundary conditions.

Author Contributions: Conceptualization, B.H.; methodology, B.H.; software, B.H.; validation, B.H.;
formal analysis, B.H.; investigation, B.H.; resources, D.M.; data curation, B.H.; writing—original
draft preparation, B.H.; writing—review and editing, B.H. and D.M.; visualization, B.H.; supervision,
D.M.; project administration, D.M.; funding acquisition, D.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Department of Energy, grant number DE-FE0031904.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We would like to express our deepest gratitude to Cheng-Xian Lin, who super-
vised this research but, regrettably, passed away before its completion. His guidance and expertise
were invaluable in shaping this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Iskhakov, A.S.; Dinh, N.T. Physics-integrated machine learning: Embedding a neural network in the Navier-Stokes equations.

Part I. arXiv 2020, arXiv:2008.10509.
2. Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys.

2021, 3, 422–440. [CrossRef]
3. Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput.

Phys. 2018, 357, 125–141. [CrossRef]
4. Qian, E.; Kramer, B.; Peherstorfer, B.; Willcox, K. Lift & learn: Physics-informed machine learning for large-scale nonlinear

dynamical systems. Phys. D 2020, 406, 132401.
5. Wu, J.-L.; Xiao, H.; Paterson, E. Physics-informed machine learning approach for augmenting turbulence models: A comprehen-

sive framework. Phys. Rev. Fluids 2018, 3, 74602. [CrossRef]
6. Kashinath, K.; Mustafa, M.; Albert, A.; Wu, J.L.; Jiang, C.; Esmaeilzadeh, S.; Azizzadenesheli, K.; Wang, R.; Chattopadhyay, A.;

Singh, A.; et al. Physics-informed machine learning: Case studies for weather and climate modelling. Philos. Trans. R. Soc. A 2021,
379, 20200093. [CrossRef] [PubMed]

7. Wang, J.-X.; Wu, J.; Ling, J.; Iaccarino, G.; Xiao, H. A comprehensive physics-informed machine learning framework for predictive
turbulence modeling. arXiv 2017, arXiv:1701.07102.

8. Wang, J.-X.; Wu, J.-L.; Xiao, H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling
discrepancies based on DNS data. Phys. Rev. Fluids 2017, 2, 34603. [CrossRef]

9. Karimpouli, S.; Tahmasebi, P. Physics informed machine learning: Seismic wave equation. Geosci. Front. 2020, 11, 1993–2001.
[CrossRef]

10. Fuks, O.; Tchelepi, H.A. Limitations of physics informed machine learning for nonlinear two-phase transport in porous media.
J. Mach. Learn. Model. Comput. 2020, 1, 19–37. [CrossRef]

11. Sun, L.; Gao, H.; Pan, S.; Wang, J.-X. Surrogate modeling for fluid flows based on physics-constrained deep learning without
simulation data. Comput. Methods Appl. Mech. Eng. 2020, 361, 112732. [CrossRef]

12. Jin, X.; Cai, S.; Li, H.; Karniadakis, G.E. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompress-
ible Navier-Stokes equations. J. Comput. Phys. 2021, 426, 109951. [CrossRef]

13. Rao, C.; Sun, H.; Liu, Y. Physics-informed deep learning for incompressible laminar flows. Theor. Appl. Mech. Lett. 2020,
10, 207–212. [CrossRef]

14. Gao, H.; Sun, L.; Wang, J.-X. PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving
parameterized steady-state PDEs on irregular domain. J. Comput. Phys. 2021, 428, 110079. [CrossRef]

15. Ranade, R.; Hill, C.; Pathak, J. DiscretizationNet: A machine-learning based solver for Navier–Stokes equations using finite
volume discretization. Comput. Methods Appl. Mech. Eng. 2021, 378, 113722. [CrossRef]

16. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Marchine
Learn. Res. 2018, 18, 1–43.

17. Verma, A. An introduction to automatic differentiation. Curr. Sci. 2000, 78, 804–807.

https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1098/rsta.2020.0093
https://www.ncbi.nlm.nih.gov/pubmed/33583262
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1016/j.gsf.2020.07.007
https://doi.org/10.1615/JMachLearnModelComput.2020033905
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.taml.2020.01.039
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1016/j.cma.2021.113722

Math. Comput. Appl. 2023, 28, 102 15 of 15

18. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
19. Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained

optimization. ACM Trans. Math. Softw. (TOMS) 1997, 23, 550–560. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/279232.279236

	Introduction
	Methods
	Navier–Stokes Equations
	Automatic Differentiation
	PINNs Framework
	Investigated Domain
	Drag Force Coefficient
	CFD Validation

	Results
	Conclusions
	References

