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Abstract: One of the main limitations of traditional neural-network-based classifiers is the assumption
that all query data are well represented within their training set. Unfortunately, in real-life scenarios,
this is often not the case, and unknown class data may appear during testing, which drastically
weakens the robustness of the algorithms. For this type of problem, open-set recognition (OSR)
proposes a new approach where it is assumed that the world knowledge of algorithms is incomplete,
so they must be prepared to detect and reject objects of unknown classes. However, the goal of
this approach does not include the detection of new classes hidden within the rejected instances,
which would be beneficial to increase the model’s knowledge and classification capability, even after
training. This paper proposes an OSR strategy with an extension for new class discovery aimed at
vehicle make and model recognition. We use a neuroevolution technique and the contrastive loss
function to design a domain-specific CNN that generates a consistent distribution of feature vectors
belonging to the same class within the embedded space in terms of cosine similarity, maintaining
this behavior in unknown classes, which serves as the main guide for a probabilistic model and a
clustering algorithm to simultaneously detect objects of new classes and discover their classes. The
results show that the presented strategy works effectively to address the VMMR problem as an OSR
problem and furthermore is able to simultaneously recognize the new classes hidden within the
rejected objects. OSR is focused on demonstrating its effectiveness with benchmark databases that
are not domain-specific. VMMR is focused on improving its classification accuracy; however, since it
is a real-world recognition problem, it should have strategies to deal with unknown data, which has
not been extensively addressed and, to the best of our knowledge, has never been considered from
an OSR perspective, so this work also contributes as a benchmark for future domain-specific OSR.

Keywords: open-set recognition; new class discovery; VMMR; CNN; contrastive loss; clustering;
neuroevolution

1. Introduction

Automatic vehicle make and model recognition (VMMR) aims to offer innovative
services to improve the efficiency and safety of transportation networks. These services
include intelligent traffic analysis and management, electronic toll collection, emergency
vehicle notifications, the automatic enforcement of traffic rules, etc. In recent years, several
authors have proposed and implemented different approaches and techniques to present
solutions to the various challenges of VMMR such as the similar appearance of different
vehicle models [1,2], variations in the images due to weather conditions or resolution [3–5],
recognition through different key points or regions [6,7], etc. However, most of these
solutions are designed within a closed-set approach, where it is assumed that all query data
are well represented by the training set, and therefore these solutions lack mechanisms
to detect during testing when an input sample does not belong to any of the predefined
classes. These unforeseen situations are very likely to happen in real-life scenarios and
drastically weaken the robustness of the models.
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Every day, we have more and more access to labeled data, which makes data-hungry
algorithms such as classification algorithms that employ supervised learning improve their
classification accuracy by having more training information. However, it is unrealistic
to think that we will be able to train these algorithms to recognize any object that may
be presented to them. In the specific case of this application domain, it is estimated that
there are currently more than 3300 vehicle makes in the world, for which models have
been added and removed from the market, modifying the design in each generation and
producing different versions of the same vehicle, which has made it very difficult to have a
database containing enough examples of all the existing vehicles in circulation to correctly
train a model. This limitation is very common in real-world recognition/classification tasks
such as VMMR and, in most cases, results in misclassified vehicles because the algorithms
were not prepared to deal with objects of unknown (novel) classes.

To solve this problem, some strategies have been proposed, such as periodically
retraining the algorithms, incorporating an incremental update mechanism [8,9], using
zero-shot [10,11] or one-shot (few-shot) [12,13] learning, etc. Although these strategies
provide models with greater flexibility or the possibility of eventually increasing their
classification potential, they do not address the fundamental problem of recognizing a
novel class during testing (open-set problem). Scheirer et al. were the first to describe a more
realistic scenario in which new classes not seen in training appear in testing and require
classifiers not only to accurately classify objects of known classes but also to effectively
deal with classes not considered in the training set [14]. They formalized this problem as
open-set recognition (OSR) and proposed a solution called 1-vs-Set machine, where the risk
of labeling a sample as known if it is far from the known data (open space) is measured, and
its objective is to minimize this risk (open-space risk) by rejecting queries that lie beyond the
reasonable support of the known data.

OSR led to extensive research that mostly focused on more effectively limiting the
open-space risk [15–18], and little research was developed around efficiently performing
open-set recognition and simultaneously discovering new classes hidden in the rejected
instances. Some of the proposed solutions employed incremental learning [19], transfer
learning [20,21], or clustering [22,23]. Although they achieved good results, most of them
present limitations such as the determination of the number of new classes in a later
or separate event from the recognition of novel instances, or the use of examples of un-
known classes during validation, pretraining, or retraining stages as a strategy to fine-tune
their representations/parameters; however, in OSR, there is almost never information of
unknown classes.

In the specific case of VMMR, few works have been proposed that, although not
described within an OSR framework, have mechanisms to deal with new classes. One of
these studies was conducted by Nazemi et al. [3] from an anomaly detection approach.
Their base system is capable of classifying 50 specific vehicle models, to which they added
an anomaly detection based on a confidence threshold to identify vehicles that do not
belong to any of these 50 classes. The “anomalies” are further classified based on their
dimensions within two new classes: “unknown heavy” and “unknown light”. Another
approach was proposed by Kezebou et al. [12], with a few-shot learning approach requiring
between 1 and 20 images for the generation of new classes.

In this paper, we propose to approach VMMR as an OSR problem extended for new
class discovery. Since the known classes are supported by numerous well-labeled examples,
we can very effectively train an image classification algorithm that employs supervised
learning like convolutional neural networks (CNNs), which are the most widely used tool
for this task. While these networks cannot deal with the recognition of new classes, their
ability to extract meaningful features can be exploited to design a mechanism that can detect
objects of new classes based on the distribution of feature vectors in the embedded space
that, when aggregated between feature extraction and classification, would adopt an OSR
approach. However, feature vectors are usually of high dimensionality, their distribution
is not always clear, and there is no assurance that the behavior will be maintained in
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instances of unknown classes, which can complicate the representation and interpretation
of the space to detect new classes. To tackle these problems, we propose to train a CNN
with contrastive learning using the contrastive loss function during the training stage to
reorganize the space where the feature vectors are mapped. Instead of separating the
images with a hyperplane, the contrastive loss function brings similar images in near space
(in terms of, e.g., Euclidean distance, cosine similarity, or some other metric) and moves
dissimilar images away, generalizing this behavior on new unseen data.

Although there are CNN architectures such as VGG16, AlexNet, etc., that have
achieved state-of-the-art results in the most well-known benchmarks such as ImageNet,
CIFAR-100, etc., we propose a new CNN architecture designed from images of the applica-
tion domain of this work (VMM) and the contrastive loss function using a neuroevolution
technique to ensure consistent distribution of feature vectors within the embedded space,
which serves as the main guide for a probabilistic model and a clustering algorithm that
carry out the detection of objects of new classes and simultaneously discover their classes.

The remainder of this paper is organized as follows: Section 2 presents the related work.
Section 3 describes the proposed methodology to approach VMMR as an OSR problem
with an extension for new class discovery. This section also presents the proposed global
scheme and delves deeper into each stage, detailing how the techniques of neuroevolution,
contrastive loss function, the probabilistic model, and clustering are linked so as to achieve
the general purpose. Section 4 details the tests performed, including the parameters
and justifications for each test and the results obtained at each stage with their respective
interpretation. Finally, the conclusions are drawn, and future work is discussed in Section 5.

2. Literature Review
2.1. Open-Set Recognition

OSR [14] introduced a more realistic scenario for real-world recognition/classification
tasks, where new classes not seen during training appear at query time during testing.
To deal with these unforeseen situations, OSR algorithms have to consider that their
knowledge of the world is incomplete and formulate strategies to minimize the risk of
considering an unknown instance as known. The authors of [14] formalized this risk as an
open-set risk (RO) in a probabilistic formulation (Equation (1)) as the relative measure of
positively labeled open space O compared with the overall measure of positively labeled
space SO.

RO( f ) =

∫
O f (x)dx∫

SO
f (x)dx′

(1)

where f denotes a measurable recognition function.
Numerous studies have been conducted to minimize the risk of open sets and more

effectively reject objects of unknown classes [15–18], which is the main goal of OSR. How-
ever, in a more desirable context, an OSR should go further and discover the unknown
classes hidden inside the rejected objects. Within this context, some authors have proposed
the use of incremental learning [19], transfer learning [20,21], or clustering [22]. Bendale
and Boult [19] extended the open-set recognition problem to open-world recognition (OWR)
to jointly consider the OSR and incremental learning of new classes. They proposed that an
effective OWR system must perform four tasks: detecting unknown objects, choosing which
objects to label for addition to the model, labeling these objects, and updating the model. In
their paper, they presented the NNO algorithm. However, the tasks they proposed are not
automated in the NNO, they require human supervision for labeling, and the determination
of the number of classes happens in a later event after the recognition of new instances.
In [20], Wang et al. studied the OWR problem in more detail by incorporating transfer
learning to transfer knowledge from old classes to new ones. However, they needed to
retrain their model with the presence of samples of unknown classes, which is a limitation
since, in an OSR context, information from unknown classes is almost never available. A
similar knowledge transfer proposal was presented by Han et al. [21]; however, they have
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the same limitation since their idea was to pretrain their model with images of known and
unknown classes. Another interesting proposal was developed in [22] by some authors
of [21], where they also took advantage of the knowledge transfer approach but used
clustering. The main limitation of this work is that they determined the number of new
classes in a separate event from the discovery of new instances, which, as in [19], can lead
to suboptimal solutions.

To our knowledge, the most related work to ours, in terms of simultaneously discov-
ering the objects of new classes and these classes themselves, is [23]. They introduced a
collective/batch decision-strategy-based OSR framework (CD-OSR) by slightly modifying
the hierarchical Dirichlet process (HDP). CD-OSR first involves a co-clustering process in
the training phase to obtain the appropriate parameters. In the testing phase, each known
class is modeled as a group using a Gaussian mixture model (GMM) with an unknown
number of subclasses (one or more subclasses representing the same class can be obtained),
and the entire test set (collective/batch) is treated in the same way. Then, all the groups
are co-clustered under the HDP framework, and each one is labeled as one of the known
classes or as unknown, depending on whether the subclass assigned to it is associated with
a known class or not. Other works on OSR such as [24] also took advantage of Gaussian
distributions to obtain discriminative representations of the data to detect unknowns and
classify knowns.

Another proposal that may be related to our work was presented in [18], where the
OSR problem was addressed within a transfer learning approach using contrastive learning
to model the data. They also highlighted the importance of developing and testing OSR
solutions with domain-specific databases to test their efficiency in dealing with real-world
applications. Unfortunately, this solution only rejects objects of new classes and does not
include the discovery of their classes.

2.2. Neuroevolution and Contrastive Learning

In the field of evolutionary computation (EC), a technique called neuroevolution (NE)
emerged to optimize artificial neural networks (ANNs) at different levels. Its current overall
process can be summarized as follows: A random population of individual networks is
generated (with a neural coding), real networks are created from them, and the networks
are evaluated with a function that measures the quality of the results (the fitness function).
The networks with the highest fitness are selected, certain random changes are introduced
to generate offspring from them, and a new population (generation) is selected. This
process is repeated until a certain level of fitness or number of generations is reached.

NE has achieved excellent results in this optimization task and has rapidly advanced
toward the optimization of CNN topologies [25–32]. A crucial point in the performance
of NE algorithms is neural encodings, which contain the topology information of an
ANN and therefore have a great impact on the complexity of the search space. So, in
order to implement this technique in CNNs, NE was faced with the problem of designing
neural encodings that could abstract the parameters of CNNs in order to deal with these
highly complex architectures. There are two types of neural encodings that are commonly
employed: direct and indirect. Among the proposals using an indirect coding framework,
we find works such as [25–27], and in the case of works that used indirect encodings, we
find proposals such as [28–30]. In recent years, researchers have started to study a “hybrid”
neural coding, which combines elements of the encodings mentioned above to eliminate
some of their limitations. These “hybrid” representations have proved to be very useful to
distribute the CNN representations in different substructures, leading to improvement in
the search [31–33]. The advantages and disadvantages of different encoding schemes, as
well as important niches of opportunity for future research, were described in detail in [34].

Although NE algorithms have a strategy to determine how well individuals are
meeting the criterion (or criteria) being optimized (the fitness function), CNNs have their
own strategy to quantify how close their predictions are to the expected output (the
loss function), for which cross-entropy or negative log-likelihood are some of the most
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frequently used functions. However, the study of these functions has continued, and
alternatives have been proposed that have achieved superior results. In these advances, the
supervised contrastive loss function (SupCon) [35] was developed following the contrastive
learning approach but in a supervised environment, which allowed it to maintain the
principle of mapping examples into the embedded space of contrastive learning (distance
is minimized in terms of Euclidean distance, cosine similarity, etc., between similar objects
and maximized for dissimilar objects) but take advantage of labeled data.

Although there are marked differences between various versions of contrastive loss
functions, the family of contrastive loss functions, in general, considers the following:
For A set of N randomly sampled sample/label pairs (batch), {xk, yk} k = 1 . . . N is
considered; the corresponding batch used for training (multiviewed batch) consists of 2N
pairs,

{∼
x
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is the set

of all positive sample indices different than i, |P(i)| is its cardinality, the • symbol denotes
the inner (dot) product, and τ is a scalar temperature parameter. SupCon’s formulation
generalizes the SimCLR loss function [36] to an arbitrary number of positive examples to
deal with scenarios in which labels are available so that it is known that more than one
sample can belong to the same class.

3. Materials and Methods

This section describes the methodology proposed to approach VMMR as an OSR
problem with an extension for new class discovery. Figure 1 shows the overall process of
our proposal, and the following subsections describe the process in detail, covering the
following objectives:

1. Employ an NE algorithm and contrastive learning to design a domain-specific CNN
that generates feature vectors spatially close in terms of cosine distance if the instances
belong to the same class and distant if they belong to different classes, preserving this
behavior in instances of unknown classes.

2. Implement a mechanism between the feature extraction and classification sections
of the CNN capable of detecting objects of unknown classes and simultaneously
discovering their classes, taking the mapping of feature vectors, described in the
previous objective, as the main guide.

3. Run a series of tests using the test set that includes images of classes with which the
CNN was designed and trained (known) and images of new classes (unknown) to
test that the algorithm is able to detect objects of unknown classes and simultaneously
discover their classes.

4. Classify images of known classes with a classification accuracy above 90%.
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3.1. Dataset

The VMMRdb database [37] (available at https://github.com/faezetta/VMMRdb,
accessed on 13 March 2023) was used in this work since it is one of the most cited in the
specialized literature [12,38,39]. Only eight classes from the VMMRdb database were used
and were manually filtered to retain only unduplicated images showing the rear view
of the vehicles (i.e., samples of each class were not balanced). The filtered images were
transformed to grayscale, resized to 28 × 28 pixels, and normalized with a mean of 0.456
and a standard deviation of 0.224.

Of the eight classes, five classes were used as “known classes”: Chevrolet Silverado
2004, Ford Explorer 2002, Ford Mustang 2000, Honda Civic 2002, and Nissan Altima 2005.
A sample of six images of each “known class” was used in the NE process to design the
domain-specific CNN for VMMR. For the training of the resulting CNN from the NE
process, the largest number of examples per class was needed, which had to be the same
among different classes. However, due to the number of available samples in the database
and the image filtering mentioned above, the final number of functional samples per “known
class” varied between 75 and 250 images. Among the functional samples, three images of
each class were kept for testing the complete OSR framework, and the rest were subjected
to a data augmentation process to balance the number of examples per class, resulting in
250 images of each “known class”. Furthermore, 200 images were used to train the CNN
and model the “known classes” with a Gaussian mixture model (GMM), and the remaining
50 images were used to test the CNN classification accuracy and define the threshold of
“known classes” in the GMM.

From the three remaining classes chosen from the database (Acura RSX 2003, Chevrolet
Avalanche 2009, and Ford Escape 2011), three images of each class were chosen to only be
used during the testing stage to represent “unknown classes” and validate that the proposed
approach can detect them and discover their classes.

3.2. Neuroevolution and Contrastive Loss

One of the main objectives of this work is to exploit the ability of a CNN to extract
meaningful features for designing a mechanism to detect objects of unknown classes
based on the distribution of the feature vectors in the embedded space. To facilitate
the interpretation of the embedded space, feature vectors extracted using the CNN are

https://github.com/faezetta/VMMRdb
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considered to be spatially close in terms of cosine similarity if they belong to the same class
and spatially distant if they belong to different classes, maintaining this behavior even if
the classes are unknown. According to the state-of-the-art review, adding the contrastive
loss function to the CNNs causes the feature vectors to be mapped in near space (in terms
of, e.g., Euclidean distance, cosine similarity, or some other metric) if they are similar and
far if they are dissimilar.

Although there are CNN architectures such as VGG16, AlexNet, etc., that have
achieved state-of-the-art results in the most well-known benchmarks such as ImageNet,
CIFAR-100, etc., we propose a new domain-specific architecture that would generate the
previously described behavior in feature vectors, using the images mentioned in Section 3.1,
an NE algorithm called DeepGA [33] (shown in Algorithm 1), and SupCon [35] expressed
in Equation (2).

In [35], the authors made their PyTorch implementation of SupCon generally available
(https://t.ly/supcon, accessed on 13 March 2023), and this was used in this work as a loss
function in the CNNs generated in the NE process with DeepGA. (Originally, the negative
log-likelihood loss was used.) The fitness function of DeepGA (Algorithm 1, line 15) was
also modified to measure the desired behavior in feature vectors since optimization was the
objective of our study. Thus, as the fitness function, we used the value of SupCon in the last
training epoch of each generated CNN. Since the loss function decreases as the desired output
is approached, DeepGA was set to work as a minimization problem, i.e., as the generated
CNNs approached the desired target, the value of the loss/fitness function decreased.

The hybrid coding employed in DeepGA allows the algorithm to consider the number
of fully connected layers and their corresponding number of neurons in its search for the
best solution. However, during the NE process, it was detected that leaving the number of
fully connected layers to DeepGA only increased the complexity and execution time since
with only two fully connected layers, classification accuracies above 90% were achieved.
To limit the number of fully connected layers during the evolutionary process, the first
level of the mutation operator was modified. At the first level of the mutation operator,
if U1(0, 1) > 0.5, a new block is added, and if U2(0, 1) > 0.5, the added block is a fully
connected layer; then, the operator was modified so that if U2(0, 1) > 0.5, no block is added.
This modification is shown in line 4 of Algorithm 2, which shows the mutation operator of
DeepGA. This ensures that, during the whole evolutionary process, the generated networks
only have two fully connected layers, allowing the algorithm’s search to focus on the blocks
of convolutional layers since they would be in charge of generating the feature vectors with
the desired behavior.

To access the feature vectors generated using the CNNs, the CNN class of DeepGA,
which builds the model for training and testing, was modified. As output, this class
only generated the probabilities of the images belonging to the different classes. The
modification consisted of the addition of the flattened outputs of the convolutional block
(feature vectors) to the original output to be able to access them in the next process (i.e., to
distinguish objects from new classes and simultaneously discover these classes).

The last modification to the DeepGA algorithm was an improvement in image reading.
The PyTorch ImageFolder function was used to be able to read the images of all classes in a
single process instead of reading the images of each class individually.

https://t.ly/supcon
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Algorithm 1: DeepGA pseudocode.

1 Input: A population P of N individuals. The number of generations T,
2 crossover rate CXPB, mutation rate MUPB, tournament size TSIZE.
3 Output:
4 Initialize population (training the networks).
5 t← 1
6 while t ≤ T do
7 Select N/2 parents with probabilistic tournament selection
8 Offs← {}
9 while |Offs| < N/2 do
10 Select two random parents p1 and p2.
11 if random(0,1) ≤ CXPB then
12 O1, O2← Crossover(p1, p2) // Crossover
13 if random(0,1) ≤MUPB then
14 Mutation(O1, O2) // Mutation (modified)
15 fitness(O1, O2) (Equation (1)) // Evaluation (modified)
16 P← P ∪ Offs
17 Select the best N individuals in P as survivals.
18 end
19 end

Algorithm 2: Mutation process DeepGA.

1 if random(0,1) ≤MUPB then
2 if random(0,1) ≤ U1 then // Adding a new block
3 if random(0,1) ≤ U2 then
4 A convolutional block is added // Removed
5 else
6 A fully connected block is added
7 else // Restarting a block
8 if random(0,1) ≤W1 then
9 Restarting a convolutional block
10 else
11 Restarting a fully connected block

3.3. Neuroevolved CNN

The CNN architecture with the best fitness generated using DeepGA and SupCon
was split to fulfill two purposes. First, the goal was to train the convolutional block with
the contrastive loss function and the fully connected block with the cross-entropy loss
function, using the full test set described in Section 3.1 (200 images of each of the five
“known classes”), and to perform a classification accuracy test momentarily assuming a
closed-set environment to validate that a good classification accuracy could be obtained
since it is an essential point for OSR. Second, we sought to have the feature extraction
process and the classification process separate since the detection of new class objects and
the discovery of their classes must be accomplished between these events.

3.4. Gaussian Mixture Model (GMM) and Clustering

The main objective of this work is to approach VMMR as an OSR problem with an
extension for the discovery of new classes. To achieve this, we divided our strategy into
two phases, both relying on the consistent distribution of feature vectors in the embedded
space generated using DeepGA and SupCon.

The first phase consisted of extracting the feature vectors from the images used to train
the CNN and validating its classification accuracy. The feature vectors were compressed
using principal component analysis (PCA) where the second and third components, which
contributed 27.81 and 20.97 to the percentage of variance, respectively, were selected to
perform a linear regression on the original feature vectors to obtain their projections. As
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mentioned in Section 3.1, with the same proportion of data with which the CNN was trained
and tested (80–20%), the 2D projections of the feature vectors were used to model each
“known class” with a Gaussian mixture model (GMM) and define a recognition threshold
of “known classes”. In the test stage, where objects of both known and unknown classes
were included, the GMM divided the objects as a group of unknown classes that did not
pass the threshold and subsets of known classes whose probabilities matched the “known
class” models. The above only served as a partial guide in the recognition of new class
objects since, in the second phase of the strategy, a multiobjective clustering algorithm with
automatic determination of the number of clusters (MOCKs) was employed and optimized
with a multiobjective evolutionary algorithm (MOEA), called NSGA-II [40].

In the second phase, the clustering algorithm grouped the feature vectors extracted
using the domain-specific CNN without any modification in their dimensionality. Since
the GMM can determine the objects of known classes and their respective classes with
some confidence, due to the threshold, we compared the subgroups of known classes
generated using the GMM with the solutions of MOCK/NSGA-II to select the individual
from the population with the highest similarity, where different criteria were used. First,
the solutions that grouped the instances that the GMM determined as known and were
in the same structures (subgroups) as the GMM had a higher score (one point for each
shared structure). Although all the solutions of the clustering algorithm were optimal for
the problem, we selected the solution that had the highest score (higher match with the
GMM in the known classes) and was closest to the knee point as the “best solution”.

Finally, we determined which clusters of the “best solution” contain known objects and
separated them from the clusters containing unknown objects in a similar way to how the
solutions were scored. Then, since the GMM also detected the objects of unknown classes
(the objects that did not pass the threshold) with some confidence, those clusters that only
contained objects that the GMM determined as unknown were automatically determined
as new classes. After these processes, if there were still undetermined clusters as known or
unknown, the number of known and unknown instances within the undetermined clusters
were counted (according to the GMM determination), and the clusters were defined in the
same category as that containing the majority of instances or as unknown if it contained
the same number of examples to try to mitigate the open-set risk.

At the end of this strategy, the objects of the clusters that were determined as known
were entered into the CNN’s fully connected block to be classified, and the clusters that
were determined to be unknown were the newly discovered classes of the objects detected
as unknown.

The original version of the MOCK algorithm was proposed in 2004 by Handl et al. [41]
and employed the MOEA called PESA-II. In 2016, Martinez-Peñaloza et al. [42] managed
to improve the results by using the MOEA NSGA-II instead of PESA-II. In the MOCK
version improved with NSGA-II, individuals are ranked and sorted according to their
non-dominated level, and a crowding distance is used to perform niching. This distance
is calculated for each member to be used by the selection operator to maintain a diverse
front by ensuring that each member stays a crowding distance apart. Algorithm 3 shows
NSGA-II’s pseudocode.
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Algorithm 3: NSGA-II pseudocode.

1 Initialize Population
2 Generate random population -size M
3 Evaluate Objective values
4 Assign Rank (level) Based on Pareto Dominance -”sort”
5 Generate Child Population
6 Binary Tournament Selection
7 Recombination and Mutation
8 for i = 1 to Number of Generations do
9 for each Parent and Child in Population do
10 Assign Rank (level) Based on Pareto –”sort”
11 Generate sets of non-dominated fronts
12 Loop (inside) by adding solutions to next generation starting
13 from the “first” front until M individuals found determine
14 crowding distance between points on each front
15 end
16 Select points (elitist) on the lower front (with lower rank) and
17 are outside a crowding distance. Create next generation
18 Binary Tournament Selection
19 Recombination and Mutation
20 end

4. Experiments and Results

This section describes the experiments and results obtained from our proposal to
approach VMMR as an OSR problem with an extension for new class discovery.

For the neuroevolution process of CNNs performed with DeepGA [33] and Sup-
Con [35], as mentioned in Section 3.1, six images of each “known class” taken from the
VMMRdb [37] database were used.

The parameters described in Table 1 were used to initialize the population. Due to
time constraints, it was not possible to use a parameter calibration program. Then, the
parameters for the evolutionary process were calibrated manually. The parameters with
which the best results were obtained, and which were used to generate the CNNs are
shown in Table 2. The different values that each hyperparameter could have during the
evolutionary process were the same as those established by the author of DeepGA and are
presented in Table 3.

Table 1. Parameters for the population initialization.

Parameter Values

Min number of convolutional layers 4
Max number of convolutional layers 9
Min number of fully connected layers 1
Max number of fully connected layers 1

Table 2. Parameters for the evolutionary process.

Parameter Values

Population size 20
No. of generations 100
Tournament size 5
Crossover rate 0.7
Mutation rate 0.7
No. of epochs per individual 20
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Table 3. Values that each hyperparameter could have during the evolutionary process.

Hyperparameter Values

No. of filters * {2, 4, 8, 16, 32}
Filter size * {2, 3, 4, 5, 6, 7, 8}
Pooling type * {Max, Avg}
Pooling size * {2, 3, 4, 5}
No. of neurons {4, 8, 16, 32, 64, 128}

Rows marked with * correspond to the convolutional block, while the unmarked row corresponds to the fully
connected block.

Seven executions of the NE process with DeepGA and SupCon were performed.
Figure 2 shows the convergence curves of the seven executions and a short analysis of the
fitness values obtained in each one. As can be seen, all the executions started with a fitness
within a range of 3.3 and 3.5, and most reached premature convergence or stalled at local
optima. However, one of the executions (marked in red) achieved a more accurate search
space that led to a fitness value of 1.96096.
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The CNN with the best fitness obtained in the NE process (henceforth referred to
as the “domain-specific CNN”) had a value of 1.96096, which was the value of SupCon
in the last training epoch of the CNN (its justification is explained in Section 3.2 in more
detail) and took 7 h to execute in the Visual Studio Code editor running on a MacBook
Pro with a 2.2 GHz Quad-Core Intel Core i7 processor with 16 GB 1600 MHz DDR3 of
memory. Figure 3 illustrates the architecture in terms of its encoding. In the first level, it
can be observed that the architecture has 13 convolutional blocks (each one consisting of
a single convolutional layer) and 2 fully connected blocks (each one comprising a single
layer and a fully connected layer). The last convolutional block/layer generates feature
vectors of 288 features. At the second level, the binary string defines the connectivity
between convolutional blocks. Each bit represents the connectivity of a previous non-
consecutive layer, starting from the third block. For a better understanding, we will explain
three examples to understand the connections. The third convolutional block (first bit
marked in red) can only have connections with previous blocks that are not its immediately
previous consecutive block, so the third block cannot have a connection with the second
convolutional block, but it can with the first one, which is why only one bit is assigned to it,
and the bit value is 1. This means that there is a connection, which is represented by the
red line on the first level. The next two bits (green) are for the fourth block, which can have
a connection with the first or second block, and since the bit values are 1, both connections
exist (represented by the green lines on the first level). A different case is shown in the next
three bits (highlighted in yellow) assigned to the fifth block, which can have connections
with the first, second, and third blocks; however, of those three bits, only the second one
has a value of 1, which means that the fifth block only connects to the second block.
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Figure 3. CNN architecture with the best fitness obtained using DeepGA and SupCon. The first
level (blocks) represents simple convolutional operations instead of a set of convolutional layers. The
second level (binary string) determines the skip connections received from the third block onward.
Each bit represents the connectivity from previous layers, from the third layer onward.

To verify that the domain-specific CNN could generate the feature vectors extracted
spatially close in terms of cosine similarity if they belong to the same class and far apart
if they belong to different classes, a distance matrix using cosine similarity as the metric
was generated with the feature vectors obtained in the last training epoch of the domain-
specific CNN. On the same feature vectors, the t-SNE [43] technique was used to reduce
the dimensionality from 288 to 2 in order to visualize them in a two-dimensional plane.
The results of the distance matrix and t-SNE are shown in Figure 4. By means of these two
techniques, it could be seen that the desired behavior in the feature vectors was achieved.
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Figure 4. Distance matrix (with cosine similarity) and the projection in a two-dimensional plane of
the feature vectors of the last training epoch of the domain-specific CNN.

As mentioned in Section 3.3, the domain-specific CNN was split to train the convo-
lutional block with the contrastive loss function and the fully connected block with the
cross-entropy loss function. For the training process, 1000 images of rear views of vehicles
of the five “known classes” (200 images of each class) were used. A classification accuracy
test was performed using 250 images of rear views of vehicles of the five “known classes”
(50 images of each class) momentarily assuming a closed-set environment to validate that
good classification accuracy was being achieved since it is an essential point for OSR. A
90% classification accuracy was reached during this test; more details regarding the data
used are presented in Section 3.1.

The next test was to verify that the domain-specific CNN could generate feature
vectors spatially close in terms of cosine similarity if they belong to the same class and
far apart if they belong to different classes. This behavior was maintained in objects of
unknown classes since the detection of objects of new classes and the discovery of their
classes depended on this behavior. For this, the testing images, both the nine testing
images of “unknown classes” shown in Figure 5 on the right and the fifteen images of the
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five “known classes” shown in Figure 5 on the left, were entered into the convolutional
block of the domain-specific CNN to extract their feature vectors. To visualize the results,
which are shown in Figure 6, a distance matrix using cosine similarity as the metric was
generated, and a two-dimensional projection was performed using linear regression with
the two components described in Section 3.4. Figure 6 shows that the domain-specific CNN
managed to generate feature vectors close in terms of cosine similarity if they belonged to
the same class and distant if they belonged to different classes and managed to maintain
such behavior even in objects of “unknown classes”.
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Later, the feature vectors of the images used to train the domain-specific CNN and
validate its classification accuracy were compressed to two dimensions, and a linear re-
gression was performed on these feature vectors to obtain their projections using the two
components described in Section 3.4. With the projections of the 1000 images used to train
the domain-specific CNN, we modeled the “known Classes” using a GMM, and the distribu-
tion of the Gaussians is shown in Figure 7. We then defined a “known class” recognition
threshold within the GMM with a value of 9.999, using the projections of the 250 images
that were used in the domain-specific CNN classification accuracy test.
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Finally, the strategy proposed in Section 3.4 was carried out to detect the objects of
new classes and discover their classes. The first step was to enter the two-dimensional
projections used in Figure 6, which contain objects of both known and unknown classes
(Figure 5), into the GMM to obtain their density probabilities. As its output, the model
provided the probability of each object belonging to the known classes, and the threshold
allowed us to set a probability limit for known or unknown classes. As can be seen in
Table 4, the objects of known classes were correctly identified within their classes, and in
the case of the objects of unknown classes, it can be seen that with the limit marked by
the threshold, eight of the nine objects were correctly identified as unknown. A clearer
representation of the results obtained can be seen in Figure 8, which indicates that the
GMM divided the objects as a set of unknown classes that did not pass the threshold as
well as the subsets of known classes whose probabilities matched the known class models.

Table 4. Probabilities of the test instances obtained with the GMM. The probabilities that exceeded
the threshold (9999) are marked in orange.

x y Real Label Probability
(Class 0)

Probability
(Class 1)

Probability
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Probability
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1.000 × 100 8.152 × 10−27 7.294 × 10−57 1.650 × 10−89 1.483 × 10−73

1 5.40 × 10−2 −9.16 × 10−3 0 1.000 × 100 4.920 × 10−22 6.332 × 10−48 8.417 × 10−77 1.826 × 10−67
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8 1.02 × 10−2 9.51 × 10−3 2 5.701 × 10−5 4.896 × 10−6 9.999 × 10−1 5.240 × 10−7 1.290 × 10−8
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10 6.30 × 10−3 5.86 × 10−2 3 3.311 × 10−28 6.318 × 10−30 2.282 × 10−61 1.000 × 100 1.830 × 10−42

11 6.97 × 10−3 5.96 × 10−2 3 2.972 × 10−29 1.191 × 10−30 1.055 × 10−63 1.000 × 100 1.461 × 10−43

12 −2.66 × 10−2 −1.18 × 10−2 4 2.727 × 10−28 2.310 × 10−17 1.384 × 10−65 1.521 × 10−56 1.000 × 100

13 −2.68 × 10−2 −1.64 × 10−2 4 8.075 × 10−32 2.380 × 10−17 1.771 × 10−72 2.738 × 10−59 1.000 × 100

14 −3.14 × 10−2 −1.81 × 10−2 4 3.329 × 10−36 3.051 × 10−21 3.378 × 10−87 2.106 × 10−71 1.000 × 100
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17 2.41 × 10−2 −1.54 × 10−3 5 9.779 × 10−1 4.606 × 10−3 1.751 × 10−2 2.796 × 10−15 1.285 × 10−18

18 9.74 × 10−3 −4.05 × 10−3 6 4.675 × 10−5 9.986 × 10−1 1.350 × 10−3 2.120 × 10−9 2.322 × 10−8

19 1.57 × 10−2 −2.33 × 10−3 6 1.208 × 10−2 4.648 × 10−1 5.231 × 10−1 9.067 × 10−10 1.078 × 10−11

20 1.01 × 10−2 −7.46 × 10−4 6 9.939 × 10−4 5.405 × 10−1 4.585 × 10−1 7.914 × 10−8 2.899 × 10−7
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23 2.57 × 10−3 2.45 × 10−2 7 2.779 × 10−4 8.184 × 10−8 1.406 × 10−5 9.997 × 10−1 4.287 × 10−7
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Figure 8. Instances grouped according to GMM probabilities and the threshold.

As previously mentioned, the GMM results were the first phase of the strategy and
only served as a partial guide in the recognition of objects of unknown classes. In the
second phase of the strategy, a clustering algorithm called MOCK was used, which was
enhanced with NSGA-II. For the second phase, the 24 feature vectors without projection
(288 features) were entered into the clustering algorithm. For execution, the algorithm was
run with the parameters shown in Table 5.

Table 5. Parameters for the clustering algorithm MOCK/NSGA-II.

Parameter Values

Population size (M) 9
Nearest neighbors (L) 2
Number of generations 10

The nine final individuals of the clustering process are shown in Figure 9 in terms of their
fitness values, and Figure 10 shows how the vectors were grouped in different structures.
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Figure 9. The Pareto front generated using the MOCK clustering algorithm improved with NSGA-II.
The individual marked with a red star is the knee point.
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Figure 10. The final nine individuals generated using the MOCK clustering algorithm improved with
NSGA-II. The individual marked in red is the knee point.

Subsequently, the comparison described in Section 3.4 was performed to select the
“best solution”. The individuals generated using the MOCK/NSGA-II algorithm (Figure 10)
and the known class subgroups generated using the GMM (Figure 8) were compared. The
results of this comparison are shown in Table 6. It can be seen that Solutions 1, 2, 3, and 5
have four structures shared with the subgroups of known classes generated with the GMM.
However, since the solution closest to the knee point was selected as the “best solution”,
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Solution 5 was chosen (marked with *), which in this case, was found to be the knee point,
marked in red in Figure 10.

Table 6. Scores obtained from the comparison of the individuals generated using MOCK/NSGA-II
and the known class subgroups generated using GMM. The solution marked with * was selected as
the “best solution”.

Pareto Frontier Position Score

Solution 1 1 4
Solution 2 2 4
Solution 3 3 4
Solution 4 4 3

Solution 5 * 5 4
Solution 6 6 2
Solution 7 7 2
Solution 8 8 1
Solution 9 9 0

Given the “best solution”, the four clusters with shared structures with the known
class subgroups generated with the GMM were determined as “known classes”. Then, the
clusters containing only objects that the GMM determined as unknown, shown in Figure 8,
were determined as “new classes”. The result of these processes can be seen in Figure 11.
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Figure 11. Selection of “known classes” and “new classes”.

Since there were still unspecified clusters as known or new, we counted the number
of known and unknown instances (as determined using the GMM) in the indeterminate
clusters and defined the clusters in the same category as that comprising the majority of
instances. Thus, we obtained five groups of “known classes” and three “new classes”, as
shown in Figure 12. Given the data in Table 4, we can confirm that indeed the vectors of
the “new classes” corresponded to the instances of unknown objects and that they were
grouped in the same structure as their “unknown class”, thus confirming that both the
“new classes” of objects of “unknown classes” can indeed be discovered.
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Finally, the objects of known classes were entered into the classification section of the
domain-specific CNN where a classification accuracy of 100% was obtained. Given the
classification results obtained, we calculated the critical values of true positive (TP), false
positive (FP), and false negative (FN) of both known and unknown classes. Subsequently,
we calculated the micro-F1 score since it is one of the most commonly used metrics in OSR
algorithms. The results obtained are shown in Table 7.
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Table 7. Calculation of the micro-F1 score.

Label True
Positive (TP)

False
Positive (FP)

False
Negative (FN) Micro-F1

K
no

w
n

C
la

ss
es

Chevrolet
Silverado 2004 3 0 0

Precision = 1.0
Ford Explorer

2002 3 0 0

Ford Mustang
2000 3 0 0

Honda Civic
2002 3 0 0

Recall = 1.0Nissan Altima
2005 3 0 0

U
nk

no
w

n
C

la
ss

es

Unknown Class 1 3 0 0

Unknown Class 2 3 0 0

Micro-F1 Score = 1.0Unknown Class 3 3 0 0

Total 24 0 0

5. Discussion and Conclusions

The main contribution of this work is to present a strategy to approach the VMMR as
an OSR problem that is extended to the discovery of new classes, taking the distribution of
feature vectors generated using a domain-specific CNN as the main guideline. This work
seeks to highlight the importance of generating domain-specific OSR strategies and the need
to apply them to real-world classification/recognition problems such as VMMR in order to
obtain classifiers that are not only more accurate but also more robust, as they are prepared
to face real-life scenarios. Although we focused on VMMR, the proposed methodology can
be used as a benchmark for future domain-specific OSR problems and can be applied to
other domains like handwritten digit recognition, chest X-ray classification, etc.

For the development of this work, we considered four main objectives to fulfill the
purpose of approaching VMMR as an OSR problem extended for new class discovery. The
fulfillment of our first objective could be validated with the results shown in Figure 6,
where it can be seen that the CNN designed through the NE process with contrastive loss
managed to map within the embedded space the feature vectors close in terms of cosine
distance if they belonged to the same classes and far away if they belonged to different
classes, maintaining this behavior for both known and unknown classes.

The second objective was described in detail in Section 3.4, which is the theoretical
part of the third objective. In the Section 4, the proposed methodology was described step
by step, and the experiments carried out validated that the proposed mechanism is able to
detect objects of unknown classes and simultaneously discover their classes. One point to
highlight is that our strategy is not restricted by training data, as it can be adjusted as these
data change. More precisely, by using contrastive learning to train the feature extraction
of the domain-specific CNN, the distribution of feature vectors is not only guided by
“known classes” but is able to perform a consistent mapping even for objects of “unknown
classes”, which allows us to effectively detect objects of known classes and discover their
classes simultaneously.

From the outset, we decided to employ a CNN not only to exploit the powerful ability
of CNNs to extract meaningful features but also because these networks are known to be
powerful classifiers. Therefore, since our domain-specific CNN was trained with numerous
well-labeled examples, we could rely on its accuracy in classifying instances of known
classes. Therefore, the last objective was met by achieving 100% classification accuracy of
the images of the known classes in the test set.
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Overall, the entire algorithm achieved a micro-F1 score of 1.00 by accurately classifying
instances of known classes and effectively discovering the classes of instances whose classes
were not included in the training. In a closed-set context, which is where most classification
algorithms are developed, all instances of unknown classes would have been classified
into some known class, so the model would not have been able to achieve a classification
accuracy higher than 62.5% with the test set used in this work since 9 of the 24 test images
belonged to unknown classes. The poor classification accuracy in this specific context,
which simulates a real-life scenario, would be due to the incomplete knowledge of the
world and not due to the classification potential that the classifier could achieve. Therefore,
in this work, we proposed to add a mechanism to one of the most used image classifiers
such as CNNs in order to detect objects of unknown classes and identify these classes. This
highlights the possibility to expand the classification potential of CNNs and increase their
robustness to work more effectively in real-life scenarios, thus enabling these classifiers not
only to react to queries but also to continue learning even after being trained.

One of the limitations of this work was that due to time constraints, the neuroevolution
algorithm was executed only seven times with the specified parameters, and it is left as
future work to create a statistically more representative sample of executions and use a
parameter calibration algorithm to possibly have better and more efficient results. It is
also left as future work to increase the number of “known classes” to be able to classify
more models with the domain-specific CNN and apply other OSR strategies to the VMMR
problem for a more representative comparison.
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