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Abstract: A class of zipper fractal functions is more versatile than corresponding classes of traditional
and fractal interpolants due to a binary vector called a signature. A zipper fractal function constructed
through a zipper iterated function system (IFS) allows one to use negative and positive horizontal
scalings. In contrast, a fractal function constructed with an IFS uses positive horizontal scalings only.
This article introduces some novel classes of continuously differentiable convexity-preserving zipper
fractal interpolation curves and surfaces. First, we construct zipper fractal interpolation curves for the
given univariate Hermite interpolation data. Then, we generate zipper fractal interpolation surfaces
over a rectangular grid without using any additional knots. These surface interpolants converge
uniformly to a continuously differentiable bivariate data-generating function. For a given Hermite
bivariate dataset and a fixed choice of scaling and shape parameters, one can obtain a wide variety
of zipper fractal surfaces by varying signature vectors in both the x direction and y direction. Some
numerical illustrations are given to verify the theoretical convexity results.

Keywords: iterated function system; fractals; convexity; rational cubic spline; blending functions;
convergence; zipper; zipper fractal surfaces

1. Introduction

The technique of constructing fractal interpolation functions (FIFs) initiated by Barnsley [1]
can produce nonsmooth or smooth interpolants [2], where the graph of an FIF is an attractor
of a suitable IFS. This technique involves a free parameter to control the variation of
ordinates so that it provides flexibility to generate a range of interpolants from smooth
to nowhere differentiable on a compact domain. A class of spline interpolants can be
generalized using the class of smooth fractal interpolants. Implementing the idea of
spline FIFs given by Barnsley and Harrington [2], cubic spline FIFs with general boundary
conditions were introduced by Chand and Kapoor [3]. Since the classical splines are used
in the problem of shape-preserving interpolation, it is natural to think that their fractal
generalization can also do the same. Chand et al. in [4] introduced rational cubic FIFs,
which can preserve the fundamental features of univariate Hermite data.

In the literature, univariate FIFs are studied more than fractal interpolation surfaces
(FISs). It may be the case that the graph of a linear FIS is not continuous [5], whereas the
graph of a linear fractal interpolation function (one-dimensional) is always continuous [1].
Massopust [6] proposed the construction of FISs on triangular domains. He used coplanar
interpolation points on the boundary of the domain for constructing the FISs. Geronimo and
Hardin in [7] presented the constructions of FISs on flexible domains. Zhao [8] generalized
that construction using barycentric co-ordinates. In [9,10], the researchers generated FISs
on rectangular grids for collinear interpolation points on the boundary. The construction
of an FIS given in [10] was improved in [9]. A new construction for FISs for every set of
data and a generalization to higher dimensions is given in [11]. FISs with recurrent IFSs
were constructed in [12,13]. Navascués et al., in [14], analyzed the spanning properties of
the fractal functions on the rectangle. Chand et al., in [15], investigated FISs that lie above
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a plane. Fractal surfaces have been found to be effective in scientific applications, such
as metallurgy, geology, computer graphics, physics, brain electrical activity, and image
processing, e.g., [16–19].

The idea of a zipper, which generalizes the concept of an IFS using a binary vector
named signature, was given by Aseev et al. in [20]. Tetenov and collaborators studied many
interesting topological and structural properties of zippers related to dendrites and self-
similar continua in [21–25]. Chand et al. in [26] generated affine zipper FIFs and examined
their range-restricted properties. Recently, the approximation features of smooth zipper
fractal functions have been studied in [27]. In this article, we construct one-dimensional
and two-dimensional continuously differentiable zipper fractal interpolants. To construct a
class of continuously differentiable zipper fractal surface interpolants, we use the technique
given in [28], where the horizontal scalings in the x and y directions can be negative. This
technique of constructing surface interpolants using the network of univariate boundary
curves and blending functions is beneficial in the design environment. Since the generated
surface inherits all the properties of the network of boundary curves, see [29], we generate
convexity-preserving surface interpolants using some restriction on the zipper IFS parame-
ters. Our scheme can produce a wide variety of surface interpolants due to the presence
of a signature, scaling factors, and shape parameters. It is more convenient to model
smooth convex bivariate interpolants in shape abstraction and modeling, computer-aided
design, biomedical instruments, object recognition, computer graphics, reverse engineering
material science, and metallurgy to capture the irregularities associated with the partial
derivatives of the surface interpolants.

2. Basics of Fractal Interpolation

We shall begin with the basics of fractal interpolation, and fractal perturbation of a
function through α-fractal functions. The details can be found in the references [1,2,30].

Consider a finite interpolation dataset {(xi, yi) ∈ R2 : i ∈ NN := {1, 2, . . . , N}}, where
x1 < x2 < . . . < xN and N > 2. Let I := [x1, xN ] and Ii := [xi, xi+1] for i ∈ NN−1. Let
Li : I → Ii be homeomorphisms such that for all x, x∗ ∈ I and for some 0 ≤ li < 1,

|Li(x)−Li(x∗)| ≤ li |x− x∗|; Li(x1) = xi, Li(xN) = xi+1, i ∈ NN−1. (1)

Define N − 1 continuous maps Fi : I ×R→ R such that

|Fi(x, y)−Fi(x, y∗)| ≤ |αi| |y− y∗|; Fi(x1, y1) = yi, Fi(xN , yN) = yi+1, i ∈ NN−1, (2)

for all x ∈ I, y, y∗ ∈ R, and for some αi ∈ (−1, 1). Now construct the elementary functions

Wi : I ×R→ Ii ×R ⊆ I ×R, Wi(x, y) =
(
Li(x),Fi(x, y)

)
, i ∈ NN−1.

Theorem 1 ([1]). The iterated function system (IFS) {I×R;Wi, i ∈ NN−1} has a unique attractor
G, which is the graph of a continuous function g∗ : I → R satisfying g∗(xi) = yi for all i.
Furthermore, if Ĉ(I) := {g : I → R, g is continuous on I, g(x1) = y1, g(xN) = yN} is endowed
with the uniform metric, and the Read–Bajraktarević (RB) operator Tα : Ĉ(I)→ Ĉ(I) is defined by
Tαg(x) = Fi

(
L−1

i (x), g ◦ L−1
i (x)

)
, x ∈ Ii, i ∈ NN−1, then g∗ is the unique fixed point of Tα.

The function g∗ in the above theorem is called an FIF corresponding to the interpolation
dataset {(xi, yi) ∈ I ×R : i = 1, 2, . . . , N}. The popular fractal interpolation in theory and
applications is taken from the following IFS:

{I×R;Wi =
(
Li(x),Fi(x, y)

)
, i ∈ NN−1}; Li(x) = aix+ bi, Fi(x, y) = αiy+ qi(x). (3)

Here, αi is called the vertical scaling factor corresponding to the mapWi. The corresponding
fractal function g∗ satisfies

g∗(x) = αi
(
L−1

i (x)
)

g∗
(
L−1

i (x)
)
+ qi

(
L−1

i (x)
)
, x ∈ Ii, i ∈ NN−1.
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Let Ck(I) be a collection of all k-times continuously differentiable real-valued functions on
I. The existence of differentiable fractal functions or spline FIFs is given in the following:

Theorem 2 ([2]). Let {(xi, yi), i = 1, 2, . . . , N} be a given dataset, where x1 < . . . < xN . Suppose
that Li(x) = aix + bi,Fi(x, y) = αiy + qi(x), where qi is continuous for i ∈ NN−1. Suppose for

some integer p ≥ 0, |αi| < ap
i , i ∈ NN−1. Let F k

i (x, y) = αiy+q(k)i (x)
ak

i
, q(k)i (x) represents the kth

derivative of qi(x),

yk
1 =

q(k)1 (x1)

ak
1 − α1

, yk
N =

q(k)N−1(xN)

ak
N−1 − αN−1

, k = 1, 2, . . . , p.

If F k
i (xN , yk

N) = F k
i+1(x1, yk

1), i ∈ NN−2, k = 1, 2, . . . , p,

then the IFS {I × R;Wi(x, y) =
(
Li(x),Fi(x, y)

)
, i ∈ NN−1} determines a spline FIF g∗ ∈

Cp[x1, xN ], and g∗(k) is the FIF determined by {I ×R;Wi(x, y)=
(
Li(x),F k

i (x, y)
)
, i ∈ NN−1}.

If qi(x)’s are taken as rational functions, one can obtain rational fractal splines, see for
instance [4,31].

The concept of FIFs can be used to associate a family of continuous fractal functions
with a prescribed function f ∈ C(I) (see [30]). For this procedure, consider a partition
π∆ := {x1, x2, . . . , xN} of I with increasing abscissae. Suppose that b ∈ C(I) satisfies
b(x1) = f (x1) and b(xN) = f (xN). For i ∈ NN−1, we construct qi(x) := f

(
Li(x)

)
− αib(x),

and then the corresponding RB-operator provides a fixed point denoted by f α
∆,b = f α,

where α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1. The associate fractal function f α is called the
α-fractal function corresponding to f and it satisfies the self-referential equation:

f α(x) = f (x) + αi( f α − b)
(
L−1

i (x)
)
, x ∈ Ii, i ∈ NN−1.

This model is used to construct a fractal perturbation of any standard function in numerical
analysis and approximation theory.

For a Cp(I)-fractal perturbation function f α from a germ f in the same space, we
proceed as follows: Let f ∈ Cp(I), and |αi| < ap

i , i ∈ NN−1. In order to construct f α ∈ Cp(I)
corresponding to f , it is sufficient to find the conditions on the base function b according to
Theorem 2.

Theorem 3 ([32]). Let f ∈ Cp(I), and x1 < x2 < . . . < xN be an arbitrary partition of I.
Suppose |αi| < ap

i for all i ∈ NN−1. Further, assume that the base function b obeys

b(k)(x1) = f (k)(x1), b(k)(xN) = f (k)(xN) for k = 0, 1, . . . , p.

Then, the corresponding fractal function f α is p-times differentiable, and ( f α)(k)(xi) = f (k)(xi)
for i ∈ NN ; k = 0, 1, . . . , p.

In the next section, we will take f as a zipper rational cubic spline, and then we will
perturb it to construct the desired zipper fractal rational cubic spline as f α. Since it is
difficult for a zipper fractal spline constructed using a single base function to preserve the
shape of the data, we will use a family of base functions satisfying the conditions given in
Theorem 3 to perturb a zipper rational cubic spline.

3. Construction of Univariate Hermite Zipper RCS and Its Fractal

A classical spline can be written as a function from the entire interval [x1, xN ] to the
subinterval [xi−1, xi], and the contraction factor is always positive. If the interval is also
allowed to map in the reverse direction to any subinterval, i.e., x1 maps to xi and xN maps
to xi−1, then the horizontal contraction factor will be negative. A classical spline can be
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extended in this manner using a positive contraction or a negative contraction in each
subinterval. Thus, we need a binary signature to fulfill such options, and hence the zipper.
We construct a family of novel continuously differentiable zipper rational cubic splines
(RCSs) using a binary vector signature in Section 3.1 in the first step. The rational cubic
spline is a member of this family. In Section 3.2, we generate a new class of continuously
differentiable zipper fractal interpolants by fractalizing each member of the family of zipper
RCSs using a suitable family of base functions.

3.1. Construction of Hermite Zipper RCS

Consider a finite set of Hermite interpolation data {(xi, yi, di) ∈ I × R2 : i ∈ NN},
where yi and di are the function value and the first derivative value at the knot xi, respec-
tively, I = [x1, xN ] with x1 < x2 < . . . < xN . For all i ∈ NN , assume that yi ∈ [$1, $2],
for some $1, $2 ∈ R, and di are either given or calculated from data by some appropri-
ate methods given in [4]. For a fixed signature ε := (ε1, ε2, . . . , εN−1) ∈ {0, 1}N−1, let
Li : I → Ii = [xi, xi+1], i = 1, 2, . . . , N − 1, be contractive homeomorphisms such that

Li(x1) = xi+εi , Li(xN) = xi+1−εi , Li(x) = aix + bi,

|Li(x)−Li(x∗)| ≤ li|x− x∗|, ∀x, x∗ ∈ I,
(4)

for some 0 ≤ li < 1.
Let h∗i := xi+1−εi − xi+εi , hi := xi+1 − xi, ∆i := yi+1−yi

xi+1−xi
, i ∈ NN−1, and |I| := xN − x1.

For 0 ≤ θ := x−x1
xN−x1

≤ 1, σi > 0, and ηi > 0, let Qi(θ) = σi(1− θ)2 + 2σiηi(1− θ)θ + ηiθ
2.

Now, consider a rational function with a cubic numerator and a quadratic denominator of
the form:

Rε(Li(x)) =
Ri(θ)

Qi(θ)
, i ∈ NN−1, x ∈ I, (5)

where

Ri(θ) =
3

∑
k=0

Aik(1− θ)3−kθk,

Ai0 = σiyi+εi , Ai1 = (2σiηi + σi)yi+εi + σih∗i di+εi ,

Ai2 = (2σiηi + ηi)yi+1−εi − ηih∗i di+1−εi , Ai3 = ηiyi+1−εi .

One can easily obtain the following results:

Theorem 4. Let {(xi, yi, di) ∈ I ×R2 : i ∈ NN} be a Hermite interpolation dataset. For the fixed
signature ε := (ε1, ε2, . . . , εN−1) ∈ {0, 1}N−1, the rational function Rε defined in (5) has the
following properties:

(i) Rε is a member of the space C1(I);
(ii) Rε interpolates the given Hermite data, i.e., Rε(xi) = yi and R′ε(xi) = di for all i ∈ NN .

We call this rational function Rε as zipper RCS for the given Hermite data. These
σi and ηi, i ∈ NN−1, which we used to construct Hermite zipper RCS, are called shape
parameters, and we call σ = (σ1, σ2, . . . , σN−1) and η = (η1, η2, . . . , ηN−1) shape parameter
vectors. For the given Hermite interpolation data {(xi, yi, di) ∈ I ×R2 : i ∈ NN}, if we take
σi and ηi such that σi 6= ηi for all i ∈ NN−1, then using different values of signature (we have
2N−1 number of choices to choose a signature), one can construct 2N−1 distinct Hermite
zipper RCSs. The proposed class of these Hermite zipper RCSs takes the classical rational
cubic spline (when ε ≡ 0) defined in [33] and the piecewise zipper cubic polynomial (when
σi = ηi = 1, ∀i ) as particular cases.
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3.2. Construction of a C1-RCS ZFIF

In this subsection, we generate α-fractal functions corresponding to Rε using Theorem 3.
For a fixed signature ε := (ε1, ε2, . . . , εN−1) ∈ {0, 1}N−1, let Rε defined in (5) be

a zipper RCS for the given Hermite interpolation data {(xi, yi, di) ∈ I × R2 : i ∈ NN}.
Consider a set of C1-functions {Bi : i ∈ NN−1} such that

Bi(x) =
R∗i (θ)
Qi(θ)

, i ∈ NN−1, (6)

where

R∗i (θ) =
3

∑
k=0

A∗ik(1− θ)3−kθk,

A∗i0 = σiy1, A∗i1 = (2σiηi + σi)y1 + σi|I|d1,

A∗i2 = (2σiηi + ηi)yN − ηi|I|dN , A∗i3 = ηiyN .

Easily, we can obtain Bi(xk) = yk and B′i(xk) = dk for k = 1, N. We can take this family
of base functions Bi, i ∈ NN−1 to construct N − 1 continuous functions Fi : K := I ×
[$1, $2]→ R such that

Fi(x, y) = αiy +
(

Rε(Li(x))− αiBi(x)
)
,

where −1 < αi < 1. For each i ∈ NN−1, we have

Fi(x1, y1) = yi+εi , Fi(xN , yN) = yi+1−εi ,

|Fi(x, y)−Fi(x, y∗)| ≤ |αi||y− y∗|, ∀x ∈ I, y, y∗ ∈ [$1, $2].
(7)

Define mappingsWi : K → Ii ×R, i = 1, 2, . . . , N − 1 by

Wi(x, y) =
(
Li(x),Fi(x, y)

)
, ∀(x, y) ∈ K.

Definition 1. Let X be a complete metric space. For given vertices v1, v2, . . . , vN ∈ X and signa-
ture ε = (ε1, ε2, . . . , εN−1) ∈ {0, 1}N−1, a zipper IFS is a collection of X with some contraction
maps on X to itself, which is denoted by I := {X ;Zi : i ∈ NN−1}, where Zi(v1) = vi+εi and
Zi(vN) = vi+1−εi for all i ∈ NN−1. The compact set G ⊂ X, which satisfies

G =
N−1
∪

i=1
Zi(G),

is called the attractor or fractal corresponding to the zipper IFS I .

Since K := I × [$1, $2] is a complete metric space with the usual metric and each
Wi is a contraction mapping such that Wi(x1, y1) = (xi+εi , yi+εi ) and Wi(xN , yN) =
(xi+1−εi , yi+1−εi ), then I = {K;Wi : i ∈ NN−1} becomes a zipper IFS with vertices
(x1, y1), (x2, y2), . . . , (xN , yN) and signature ε = (ε1, ε2, . . . , εN−1). Since Rε and Bi for
each i ∈ NN−1 belong to C1(I) and agree on the endpoints of subinterval I, if we choose
|αi| < |ai|, then the zipper IFS I determines a unique attractor G, which is a graph of a
continuously differentiable function , say Rα

ε , on I. Rα
ε interpolates the given Hermite data,

i.e., Rα
ε(xi) = yi and Rα

ε
(1)(xi) = di for all i = 1, 2, . . . , N, see [27]. We name this Rα

ε as a
rational cubic spline zipper fractal interpolation function (RCS ZFIF). It can also be called
α-fractal function corresponding to Rε. One can observe that Rα

ε is a unique fixed point of
the RB operator Tα

ε : Ĉ1(I)→ Ĉ1(I) defined as

Tα
ε g(Li(x)) = Rε(Li(x)) + αi

(
g(x)−Bi(x)

)
, x ∈ I, i = 1, 2, . . . , N − 1, (8)
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which is a contraction map on Ĉ1(I), where Ĉ1(I) := {g ∈ C1(I) : g(x1) = y1, g(xN) =
yN , g′(x1) = d1, and g′(xN) = dN} is a closed subspace of a complete metric space C1(I)
with respect to C1-norm. Therefore, Rα

ε ∈ C1(I) and satisfies

Rα
ε(Li(x)) = Rε(Li(x)) + αi

(
Rα

ε(x)−Bi(x)
)
, ∀x ∈ I, i = 1, 2, . . . , N − 1. (9)

From (9), one can deduce that Rα
ε interpolates the given Hermite data. The class of RCS

ZFIFs generalizes the class of Hermite zipper RCSs defined in (5) and the class of rational
cubic spline fractal interpolation functions (RCS FIFs).

Example 1. Consider a univariate Hermite interpolation dataset

{(−2, 1, 3), (−1,−2, 1), (0, 2,−2), (1,−1, 1), (2, 3,−4)}.

Using the parameters given in Table 1, we plotted the proposed univariate interpolants in Figure 1a–f.
In Figure 1a–c, we generated zipper RCSs using different values of signature with the same values
of shape parameters. One can notice that these zipper RCSs are different functions. Since we have
25−1 = 16 choices to choose a signature for the given data, we can construct 16 different zipper
RCSs. Hence, the class of zipper RCSs extends the class of classical RCSs. Taking ε = (0, 0, 0, 0), we
constructed the classical RCS in Figure 1c. To show the effects of shape parameters, we constructed
Figure 1a,d using different values of σ1 only. From their plots, it can be observed that, if we take a
large value of shape parameter on some subinterval, then the corresponding plot on that subinterval
becomes nearly a straight line. Figure 1e,f are the graphs of the RCS ZFIFs. We have plotted these
graphs using different values of α3, and one can notice the changes in subinterval [0, 1].

Table 1. Zipper IFS parameters for Figure 1.

Figure 1 σ η ε α

(a) (0.1, 0.2, 0.1, 0.2) (1, 2, 2, 1) (1, 1, 0, 1) – –

(b) (0.1, 0.2, 0.1, 0.2) (1, 2, 2, 1) (0, 1, 0, 1) – –

(c) (0.1, 0.2, 0.1, 0.2) (1, 2, 2, 1) (0, 0, 0, 0) – –

(d) (2, 0.2, 0.1, 0.2) (1, 2, 2, 1) (1, 1, 0, 1) – –

(e) (2, 0.2, 0.1, 0.2) (1, 2, 2, 1) (1, 1, 0, 1) (0.2,−0.15, 0.1, 0.24)

(f) (2, 0.2, 0.1, 0.2) (1, 2, 2, 1) (1, 1, 0, 1) (0.2,−0.15,−0.2, 0.24)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3

4

R (x)

Data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3

4

R (x)

Data

(a) Zipper RCS. (b) Effects of ε1.

Figure 1. Cont.
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(c) Classical RCS. (d) Effects of shape parameters.
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(e) RCS ZFIF. (f) Effects of scaling parameters.

Figure 1. Univariate interpolants.

4. Convexity Preserving Zipper RCS and RCS ZFIF

For a convex Hermite dataset {(xi, yi, di) : i = 1, 2, . . . , N}, where d1 < ∆1 < . . . <
di < ∆i < di+1 < ∆i+1 < . . . < ∆N−1 < dN , first we will derive sufficient conditions on
the shape parameters so that the corresponding zipper rational cubic spline Rε becomes
convex on I. Then, we will give sufficient conditions on the zipper IFS parameters so that
the proposed RCS ZFIF Rα

ε becomes convex on I. Since the first derivative of the proposed
RCS ZFIF can be nowhere differentiable on I, to prove the convexity of the RCS ZFIF, we
will show that its right-handed double derivative or the left-handed double derivative on
each point of the interpolating interval exists and is non-negative.

Proposition 1 ([34]). For a continuous function g on I = [x1, xN ] and for each x ∈ (x1, xN), if
one of the one-sided derivatives g(1)(x+) or g(1)(x−) exists, and is non-negative (can be +∞), then
the continuous function g is monotonically increasing on I.

We use the above proposition for the first derivative of the proposed interpolant to
preserve the convexity feature of the data.

Theorem 5. Let {(xi, yi, di) : i = 1, 2, . . . , N} be a convex Hermite dataset, where d1 < ∆1 <
. . . < di < ∆i < di+1 < ∆i+1 < . . . < ∆N−1 < dN . For a fixed signature ε ∈ {0, 1}N−1, if the
shape parameters are chosen such that

σi > max
{

0,
di+1−εi − ∆i

2(∆i − di+εi )

}
, ηi > max

{
0,

∆i − di+εi

2(di+1−εi − ∆i)

}
, i = 1, 2, . . . , N − 1,

then the corresponding zipper RCS will be convex on I.
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Proof. From the construction (5), R(2)
ε may be discontinuous at the internal grids. In

addition, R(2)
ε (x−i ) and R(2)

ε (x+i ) exist but may be R(2)
ε (x−i ) 6= R(2)

ε (x+i ). Therefore, to

prove Rε is convex, it is enough to show that min{R(2)
ε (x), R(2)

ε (x+i ), R(2)
ε (x−i+1) : x ∈

(xi, xi+1)} ≥ 0 for each i ∈ NN−1. Let the shape parameters satisfy the assumptions given
in the statement. Now, differentiating twice Rε given in (5), we obtain

R(2)
ε (Li(x)) =

∑5
k=0 D̊ik(1− θ)5−kθk

h∗i Q3
i (θ)

, i ∈ NN−1,

where

D̊i0 = 4ηiσ
3
i (∆i − di+εi ) + 2ηiσ

2
i (∆i − di+1−εi ),

D̊i1 = 8ηiσ
3
i (∆i − di+εi ) + 4ηiσ

2
i (∆i − di+1−εi ) + 6ηiσ

2
i (∆i − di+εi ),

D̊i2 = 6η2
i σi(di+1−εi − ∆i) + 4ηiσ

3
i (∆i − di+εi ) + 12ηiσ

2
i (∆i − di+εi ) + 2ηiσ

2
i (∆i − di+1−εi ),

D̊i3 = 6ηiσ
2
i (∆i − di+εi ) + 4η3

i σi(di+1−εi − ∆i) + 12η2
i σi(di+1−εi − ∆i) + 2η2

i σi(di+εi − ∆i),

D̊i4 = 8η3
i σi(di+1−εi − ∆i) + 4η2

i σi(di+εi − ∆i) + 6η2
i σi(di+1−εi − ∆i),

D̊i5 = 4η3
i σi(di+1−εi − ∆i) + 2η2

i σi(di+εi − ∆i).

If εi = 0, then h∗i > 0, and the given assumptions on the shape parameters confirm that

Q3
i > 0 and D̊ik ≥ 0 for each k = 0, 1, . . . , 5. Therefore, R(2)

ε (Li(x)) ≥ 0 for all x ∈ I.
Similarly, if εi = 1, then h∗i < 0, and the given assumptions on the shape parameters

confirm that Q3
i > 0 and D̊ik ≤ 0 for each k = 0, 1, . . . , 5. Therefore, R(2)

ε (L(x)) ≥ 0 for all
x ∈ I and for each i = 1, 2, . . . , N − 1. Hence, Rε is convex.

Remark 1. When εi = 0 for all i ∈ NN−1, the sufficient conditions given in Theorem 5 reduce to
sufficient conditions:

σi > max
{

0,
di+1 − ∆i
2(∆i − di)

}
, ηi > max

{
0,

∆i − di
2(di+1 − ∆i)

}
,

for a classical rational cubic interpolant defined in [33] to be convex for given convex interpolation data.

Now, using the convexity of Rε, we will show that Rα
ε is also convex if the scaling and

shape parameters are restricted suitably. We have

Rα
ε(Li(x)) = αiRα

ε(x) +
R∗∗i (θ)

Qi(θ)
, (10)

where

R∗∗i (θ) =
3

∑
k=0

Cik(1− θ)3−kθk, Ci0 = σi(yi+εi − αiy1),

Ci1 = (2σiηi + σi)(yi+εi − αiy1) + σi(h∗i di+εi − αi|I|d1),

Ci2 = (2σiηi + ηi)(yi+1−εi − αiyN))− ηi(h∗i di+1−εi − αi|I|dN),

Ci3 = ηi(yi+1−εi − αiyN).

Theorem 6. Let {(xi, yi, di) : i = 1, 2, . . . , N} be a convex Hermite dataset, where d1 < ∆1 <
. . . < di < ∆i < di+1 < ∆i+1 < . . . < ∆N−1 < dN . Let ε ∈ {0, 1}N−1 be fixed and the shape
parameters be chosen as

σi > max
{

0,
di+1−εi − ∆i

2(∆i − di+εi )

}
, ηi > max

{
0,

∆i − di+εi

2(di+1−εi − ∆i)

}
, i ∈ NN−1.
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If we choose scaling factors such that

0 ≤ αi < a2
i min

{
1,

ν
′′

Vi,2

}
, i ∈ NN−1,

where ν
′′

:= min
x∈I
{R(2)

ε (x+), R(2)
ε (x−)} and Vi,2 > max

{
0, max{B(2)i : x ∈ I}

}
, i ∈ NN−1,

then the corresponding C1-RCS ZFIF Rα
ε will be convex on I.

Proof. From the construction (5), it is obvious that the second derivative of Rε exists on each
x ∈ (xi, xi+1), i ∈ NN−1, and also, R2

ε(x+i ) and R2
ε(x−i+1) exist. However, at the endpoints

of the subintervals, it can happen that R2
ε(x−i ) 6= R2

ε(x+i ). Therefore, using the given
assumptions on the shape parameters in Theorem 5, we have min{R2

ε(x), R2
ε(x+i ), R2

ε(x−i+1) :
x ∈ (xi, xi+1)} ≥ 0. Thus, ν

′′
> 0. For each i ∈ NN−1, Bi is infinitely differentiable on I.

Let the zipper IFS parameters satisfy the assumptions given in the statement. To
prove Rα

ε is convex, it is enough to prove that (Rα
ε)

(2)(x+) or (Rα
ε)

(2)(x−) exists and is
non-negative (possibly +∞) for all x ∈ (x1, xN) (see, Proposition 1). Let 0 ≤ αi < a2

i .
From (9), informally, we can write

(Rα
ε)

(2)(Li(x)) = R(2)
ε (Li(x)) +

αi

a2
i
(Rα

ε)
(2)(x)− αi

a2
i
B(2)i (x), i ∈ NN−1. (11)

First, we will prove that the assumptions on parameters imply (Rα
ε)

(2)(x+1 ) ≥ 0 and
(Rα

ε)
(2)(x−N) ≥ 0.

Case 1 : Let ε1 = 0 and εN−1 = 0.

Taking i = 1 and x = x1 in (11), we obtain

(Rα
ε)

(2)(x+1 ) =

(
1− α1

a2
1

)−1

[R(2)
ε (x+1 )− α1

a2
1
B(2)1 (x+1 )].

Now, R(2)
ε (x+1 )− α1

a2
1
B(2)1 (x+1 ) ≥ ν

′′ − α1
a2

1
V1,2. Thus, α1 ≤

a2
1ν
′′

V1,2
implies (Rα

ε)
(2)(x+1 ) ≥ 0.

Taking i = N − 1 and x = xN , we have

(Rα
ε)

(2)(x−N) =
(

1− αN−1

a2
N−1

)−1

[R(2)
ε (x−N)−

αN−1

a2
N−1
B(2)N−1(x−N)].

Similarly, we can obtain (Rα
ε)

(2)(x−N) ≥ 0 if αN−1 ≤
a2

N−1ν
′′

VN−1,2
.

Case 2 : Let ε1 = 1 and εN−1 = 1.

From (11), we obtain

(Rα
ε)

(2)(x+1 ) = R(2)
ε (x+1 ) +

α1

a2
1
(Rα

ε)
(2)(x−N)−

α1

a2
1
B(2)1 (x−N), (12)

(Rα
ε)

(2)(x−N) = R(2)
ε (x−N) +

αN−1

a2
N−1

(Rα
ε)

(2)(x+1 )− αN−1

a2
N−1
B(2)N−1(x+1 ). (13)

Adding (12) and (13), we have(
1− αN−1

a2
N−1

)
(Rα

ε)
(2)(x+1 )+

(
1− α1

a2
1

)
(Rα

ε)
(2)(x−N) =[

R(2)
ε (x+1 )− α1

a2
1
B(2)1 (x−N)

]
+

[
R(2)

ε (x−N)−
αN−1

a2
N−1
B(2)N−1(x+1 )

]
.
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If α1 ≤
a2

1ν
′′

V1,2
and αN−1 ≤

a2
N−1ν

′′

VN−1,2
, then(

1− αN−1

a2
N−1

)
(Rα

ε)
(2)(x+1 ) +

(
1− α1

a2
1

)
(Rα

ε)
(2)(x−N) ≥ 0.

This implies either (Rα
ε)

(2)(x+1 ) ≥ 0 or (Rα
ε)

(2)(x−N) ≥ 0. Therefore, if (Rα
ε)

(2)(x+1 ) ≥ 0,
then (13) implies

(Rα
ε)

(2)(x−N) ≥ R(2)
ε (x−N)−

αN−1

a2
N−1
B(2)N−1(x+1 ) ≥ 0.

Similarly, we can prove that if (Rα
ε)

(2)(x−N) ≥ 0, then (Rα
ε)

(2)(x+1 ) ≥ 0.

Case 3 : Let ε1 = 0 and εN−1 = 1.

We have

(Rα
ε)

(2)(x+1 ) =

(
1− α1

a2
1

)−1
[

R(2)
ε (x+1 )− α1

a2
1
B(2)1 (x+1 )

]
, (14)

(Rα
ε)

(2)(x−N) = R(2)
ε (x−N) +

αN−1

a2
N−1

(Rα
ε)

(2)(x+1 )− αN−1

a2
N−1
B(2)N−1(x+1 ). (15)

Using the steps from Case 1 and Case 2, we can conclude that (Rα
ε)

(2)(x+1 ) ≥ 0 and

(Rα
ε)

(2)(x−N) ≥ 0 if α1 ≤
a2

1ν
′′

V1,2
and αN−1 ≤

a2
N−1ν

′′

VN−1,2
.

Case 4 : Let ε1 = 1 and εN−1 = 0. This case is similar to the previous case.

Thus, we have
(Rα

ε)
(2)(x+1 ) ≥ 0 and (Rα

ε)
(2)(x−N) ≥ 0. (16)

Now, we are moving to the other knots. For a fixed i ∈ NN−1, if εi = 0, then (11) gives

(Rα
ε)

(2)(x+i ) = R(2)
ε (x+i ) +

αi

a2
i
(Rα

ε)
(2)(x+1 )− αi

a2
i
B(2)i (x+1 ). (17)

Now, using (Rα
ε)

(2)(x+1 ) ≥ 0 and αi ≤
a2

i ν
′′

Vi,2
, we have (Rα

ε)
(2)(x+i ) ≥ 0.

If εi = 1, we have

(Rα
ε)

(2)(x−i+1) = R(2)
ε (x−i+1) +

αi

a2
i
(Rα

ε)
(2)(x+1 )− αi

a2
i
B(2)i (x+1 ).

Similarly, we can obtain (Rα
ε)

(2)(x−i+1) ≥ 0 using the assumptions on the zipper IFS param-
eters. Hence, the condition

(Rα
ε )

(2)(x+1 ) ≥ 0 and αi ≤
a2

i ν
′′

Vi,2
⇒

{
(Rα

ε )
(2)(x+i ) ≥ 0 if εi = 0,

(Rα
ε )

(2)(x−i+1) ≥ 0 if εi = 1 for i ∈ NN−1.
(18)

Similarly,

(Rα
ε )

(2)(x−N) ≥ 0 and αi ≤
a2

i ν
′′

Vi,2
⇒

{
(Rα

ε )
(2)(x+i ) ≥ 0 if εi = 1,

(Rα
ε )

(2)(x−i+1) ≥ 0 if εi = 0 for i ∈ NN−1.
(19)

Therefore, using the given assumptions on the zipper IFS parameters, we have

min
{
(Rα

ε)
(2)(x+1 ), (Rα

ε)
(2)(x−N), (Rα

ε)
(2)(x−i ), (Rα

ε)
(2)(x+i ) : i = 2, 3, . . . , N − 1

}
≥ 0.
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Now, we are moving to the next iteration. If εi = 0, we have

(Rα
ε)

(2)(Li(xj)
+) = R(2)

ε (Li(xj)
+) +

αi

a2
i
(Rα

ε)
(2)(x+j )−

αi

a2
i
B(2)i (x+j ),

(Rα
ε)

(2)(Li(xj)
−) = R(2)

ε (Li(xj)
−) +

αi

a2
i
(Rα

ε)
(2)(x−j )−

αi

a2
i
B(2)i (x−j ), j = 2, 3, . . . , N − 1.

If εi = 1, we have

(Rα
ε)

(2)(Li(xj)
+) = R(2)

ε (Li(xj)
+) +

αi

a2
i
(Rα

ε)
(2)(x−j )−

αi

a2
i
B(2)i (x−j ),

(Rα
ε)

(2)(Li(xj)
−) = R(2)

ε (Li(xj)
−) +

αi

a2
i
(Rα

ε)
(2)(x+j )−

αi

a2
i
B(2)i (x+j ), j = 2, 3, . . . , N − 1.

Using a similar procedure, we have mini∈NN−1{(Rα
ε)

(2)(Li(xj)
+), (Rα

ε)
(2)(Li(xj)

−) : j ∈
NN} ≥ 0, provided the parameters satisfy the given assumptions. Similarly, (Rα

ε)
2(x+) and

(Rα
ε)

2(x−) exist, and are non-negative on the new points generated in the next iteration.
Since (Rα

ε)
(2) is determined iteratively, we can conclude that Rα

ε is convex.

Example 2. Consider a univariate Hermite interpolation dataset

{(−4, 0, 0.25), (−2, 1, 1), (0, 4, 1.8), (2, 8, 3.2), (4, 15, 4)}.

Clearly, the given Hermite dataset is convex and satisfies d1 < ∆1 < d2 < ∆2 < d3 < ∆3 <
d4 < ∆4 < d5. Using the parameters given in Table 2 and signature ε = (1, 1, 1, 0), we plotted the
proposed interpolants in Figure 2a–c.

We chose random parameters for plotting Figure 2a, and the corresponding RCS ZFIF is not
convex, which can be seen from its first derivative plotted in Figure 2d, as it is not monotonically
increasing, or it can be seen from its double derivative plotted in Figure 2g, as it takes some
negative values.

We used sufficient conditions provided in Theorems 5 and 6 to plot the RCS ZFIF in Figure 2b
and zipper RCS in Figure 2c, respectively. From their figures or the plot of their second derivatives in
Figure 2h,i, it can be observed that they preserve the convexity of the given data. As the magnitude
of each scaling factor is close to zero, the difference between the RCS ZFIF plotted in Figure 2b and
zipper RCS plotted in Figure 2c cannot be seen much from their plots, but it can be easily observed
from their second derivatives. In addition, one can observe that the second derivative of the RCS
ZFIF plotted in Figure 2h does not exist on more points than the second derivative of the zipper RCS
plotted in Figure 2i.

Table 2. Shape parameters and scaling vectors for Figure 2.

Figure 2 σ η α

(a) (0.03, 0.01, 0.1, 4) (1, 0.02, 1, 0.01) (−0.02, 0.02,−0.03,−0.03)

(b) (1, 2, 5, 2) (2, 4, 5, 3) (0.01, 0, 0.01, 0.01)

(c) (1, 2, 5, 2) (2, 4, 5, 3) −−
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Figure 2. Verification of convexity by RCS ZFIFs. (a) Nonconvex RCS ZFIF. (b) Convex RCS ZFIF.
(c) Convex zipper RCS. (d) The first derivative of the RCS ZFIF plotted in Figure 2a. (e) The first
derivative of the RCS ZFIF plotted in Figure 2b. (f) The first derivative of the RCS ZFIF plotted
in Figure 2c. (g) The second derivative of the zipper RCS plotted in Figure 2a. (h) The second
derivative of the zipper RCS plotted in Figure 2b. (i) The second derivative of the zipper RCS plotted
in Figure 2c.

5. Construction of Bicubic Partially Blended RCZFIS

In this section, we will generate zipper fractal interpolation surfaces for given Hermite
bivariate data Γ := {(xi, yj, zi,j, zx

i,j, zy
i,j) : i ∈ NN , j ∈ NM}, where x1 < x2 < . . . < xN ,

y1 < y2 < . . . < yM, and zx
i,j is x-partial and zy

i,j is y-partial at the point (xi, yj). First, we
split the given Hermite bivariate or surface data into univariate Hermite datasets along
the x-axis and the y-axis, i.e., along each j-th grid line parallel to the x-axis and along each
i-th grid line parallel to the y-axis, see Figure 3. Thus, we have M number of Hermite
datasets Γyj := {(xi, zi,j, zx

i,j) : i ∈ NN} along the x-axis and N number of Hermite datasets

Γxi := {(yj, zi,j, zy
i,j) : j ∈ NM} along the y-axis. Then, we construct RCS ZFIFs using these

univariate Hermite datasets. We generate a zipper fractal interpolation surface with the
Coons patch technique [28] using these RCS ZFIFs as the boundary curves and blending
them with two cubic blending functions. Here, we obtain the advantage of using signature
vectors as we can obtain M× N × 2N+M−2 different zipper fractal interpolation surfaces
by varying the values of signature vectors only.
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(a) Bivariate data. (b) Univariate datasets.

Figure 3. Splitting bivariate data into univariate datasets.

For i ∈ NN−1 and j ∈ NM−1, denote I := [x1, xN ], Ii := [xi, xi+1], J := [y1, yM], Jj :=
[yj, yj+1], Ri,j := Ii × Jj, R := I × J = ∪N−1

i=1 ∪
M−1
j=1 Ri,j, hi := xi+1 − xi, h := max{hi : i ∈

NN−1}, hj := yj+1 − yj, h := max{hj : j ∈ NM−1}, ∆j
i :=

zi+1,j−zi,j
xi+1−xi

, and ∆i
j :=

zi,j+1−zi,j
yj+1−yj

. For
fixed j ∈ NM, consider the univariate Hermite data Γyj . Let the signature corresponding to

the dataset Γyj denoted by εj = (ε
j
1, ε

j
2, . . . , ε

j
N−1) ∈ {0, 1}N−1 be fixed. For each i ∈ NN−1,

let Lj
i : [x1, xN ] → [xi, xi+1] be a contractive homeomorphism such that Lj

i(x) = aj
i x + bj

i

satisfying Lj
i(x1) = x

i+ε
j
i

and Lj
i(xN) = x

i+1−ε
j
i
, α

j
i be a scaling factor such that |αj

i | < |a
j
i |,

σ
j
i and η

j
i > 0 be the shape parameters, hj

i := x
i+1−ε

j
i
− x

i+ε
j
i
, and B j

i be a base function.

Using these notations in Section 3, the RCS ZFIF corresponding to the univariate Hermite
data Γyj denoted by N αj

εj can be written as

N αj

εj (x) = Nεj(x) + α
j
i

(
N αj

εj

(
(Lj

i)
−1(x)

)
−B j

i
(
(Lj

i)
−1(x)

))
, x ∈ Ii, i ∈ NN−1, (20)

where Nεj is the univariate Hermite zipper RCS that interpolates the data Γyj . Thus,

N αj

εj (xi) = Nεj(xi) = zi,j,
dN αj

εj (xi)

dx
=

dNεj(xi)

dx
= zx

i,j, ∀j ∈ NM, ∀i ∈ NN . (21)

By fixing the signature εj for each univariate dataset Γyj , j ∈ NM, we can generate a RCS
ZFIF, which interpolates Γyj , i.e., we can construct M number of RCS ZFIFs along the x-axis.

Similarly, we construct RCS ZFIFs along the y-axis. For fixed i ∈ NN , consider the
univariate Hermite data Γxi = {(yj, zi,j, zy

i,j) : j ∈ NM}. Let the signature corresponding to

the data Γxi denoted by εi = (εi
1, εi

2, . . . , εi
M−1) ∈ {0, 1}M−1 be fixed. For each j ∈ NM−1,

let Li
j : [y1, yM] → [yj, yj+1] be a contractive homeomorphism such that Li

j(y) = ai
jy + b

i
j

satisfying Li
j(y1) = yj+εi

j
and Li

j(yM) = yj+1−εi
j
, αi

j be a scaling factor such that |αi
j| < |ai

j|,

σi
j and ηi

j > 0 be the shape parameters, h
i
j := yj+1−εi

j
− yi+εi

j
, and Bi

j be a base function.

Now, the RCS ZFIF corresponding to the univariate Hermite data Γxi denoted by N αi

εi can
be written as

N αi

εi (y) = N εi (y) + αi
j

(
N αi

εi
(
(Li

j)
−1(y)

)
−Bi

j
(
(Li

j)
−1(y)

))
, y ∈ Jj, j ∈ NM−1, (22)

where N εi is the univariate Hermite zipper RCS that interpolates the data Γxi . Thus,

N αi

εi (yj) = N εi (yj) = zi,j,
dN αi

εi (yj)

dy
=

dN εi (yj)

dy
= zy

i,j, ∀i ∈ NN , ∀j ∈ NM. (23)
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Now, for the boundary of subrectangle Ri,j = [xi, xi+1]× [yj, yj+1], we have four curves
(two along the i-th and i + 1-th grid lines and two along the j-th and j + 1-th grid lines)

N αj

εj (x)
∣∣
[xi ,xi+1]

,N αj+1

εj+1 (x)
∣∣
[xi ,xi+1]

,N αi

εi (y)
∣∣
[yj ,yj+1]

, andN αi+1

εi+1 (y)
∣∣
[yj ,yj+1]

. Using the transfinite

interpolation method via blending functions, we can define the surface F α
ε of the form:

F α
ε (x, y) = F α

ε,1(x, y) +F α
ε,2(x, y)−F α

ε,3(x, y), x ∈ Ii, y ∈ Jj, i ∈ NN−1, j ∈ NM−1, (24)

where

F α
ε,1(x, y) := Ω0

(
µ∗i (x)

)
N αi

εi (y) + Ω1
(
µ∗i (x)

)
N αi+1

εi+1 (y),

F α
ε,2(x, y) := Ω0

(
µj(y)

)
N αj

εj (x) + Ω1
(
µj(y)

)
N αj+1

εj+1 (x),

F α
ε,3(x, y) := Ω0

(
µ∗i (x)

)
Ω0
(
µj(y)

)
zi,j + Ω0

(
µ∗i (x)

)
Ω1
(
µj(y)

)
zi,j+1

+ Ω1
(
µ∗i (x)

)
Ω0
(
µj(y)

)
zi+1,j + Ω1

(
µ∗i (x)

)
Ω1
(
µj(y)

)
zi+1,j+1,

µ∗i (x) =
x− xi

xi+1 − xi
, µj(y) =

y− yj

yj+1 − yj
, Ω0(µ) := (1− µ)2(1 + 2µ), Ω1(µ) := µ2(3− 2µ).

In (24), F α
ε,1 and F α

ε,2 each generates a surface using two boundary curves by blending

these curves with cubic functions. F α
ε,1 uses N αi

εi (y) and N αi+1

εi+1 (y), and F α
ε,2 uses another

two curves N αj

εj (x) and N αj+1

εj+1 (x). Since we added the corners twice, we used F α
ε,3. These

smooth cubic functions Ω0 and Ω1, satisfying

Ω0(0) = 1, Ω0(1) = 0, Ω′0(0) = 0, Ω′0(1) = 0,

Ω1(0) = 0, Ω1(1) = 1, Ω′1(0) = 0, Ω′1(1) = 0,
(25)

are called blending functions as they blend four different univariate functions together on
the boundary to produce a well-defined surface.

Theorem 7. Let {(xi, yj, zi,j, zx
i,j, zy

i,j) : i ∈ NN , j ∈ NM} be a given bivariate Hermite dataset.
The bivariate function F α

ε defined in (24) has the following properties:

(i) F α
ε ∈ C1(I × J);

(ii) F α
ε interpolates the given bivariate data, i.e.,

F α
ε (xi, yj) = zi,j,

∂F α
ε

∂x

∣∣∣
(xi ,yj)

= zx
i,j,

∂F α
ε

∂y

∣∣∣
(xi ,yj)

= zy
i,j, ∀i ∈ NN , ∀j ∈ NM;

(iii) If the given bivariate data {(xi, yj, zi,j, zx
i,j, zy

i,j) : i ∈ NN , j ∈ NM} is taken from a function

Ψ ∈ C1(I× J), then bivariate interpolant F α
ε converges uniformly to Ψ as h→ 0 and h→ 0.

Since boundary curves satisfying (20)–(23) and blending functions satisfying (25) are
continuously differentiable functions, it is easy to observe that the generated surface F α

ε

holds properties (i) and (ii) given in Theorem 7. Part (iii) of this theorem can be proved
in a similar manner as described in [15]. We call the bivariate interpolant F α

ε a rational
cubic zipper fractal interpolation surface (RCZFIS). For each j ∈ NM, we can generate
2N−1 number of different RCS ZFIFs corresponding to the univariate data Γyj by varying
the signature vector εj only. Therefore, we can construct M× 2N−1 number of RCS ZFIFs
along the x-axis. Similarly, we can construct N × 2M−1 number of RCS ZFIFs along the
y-axis. Therefore, we can construct N × M × 2N+M−2 number of different RCZFISs for
the given bivariate data {(xi, yj, zi,j, zx

i,j, zy
i,j) : i ∈ NN , j ∈ NM} by varying the signature

vectors only, where all the other parameters are the same. The proposed class of partially
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blended rational cubic zipper fractal interpolation surfaces generalizes the existing class of
partially blended rational cubic fractal interpolation surfaces and partially blended rational
cubic interpolation surfaces. If we choose all the scaling factors to be zero, then the bicubic
partially blended rational cubic ZFIS (24) reduces to the bicubic partially blended zipper
rational cubic surface, and we denote it Fε.

Example 3. For the Hermite surface interpolation data points of the form (xi, yj, zi,j, zx
i,j, zy

i,j) given
in Table 3, we constructed different RCZFISs using the different signature vectors given in Table 4
and the fixed shape parameters and scaling function vectors given in Table 5.

In Figure 4a,b, we plotted the RCS ZFIFs along the x-axis and the y-axis. We used them
to plot RCZFIS 1 given in Figure 4c. Then, using different signature vectors only, we plotted
RCZFIS 2, RCZFIS 3, and RCZFIS 4 in Figure 4d–f, respectively. One can observe that we obtain a
different surface when we change the signature. Since for the given surface data of 4× 4 points, we
have 4× 4× 23 × 23 = 1024 choices to choose a signature vector, we can generate 1024 different
RCZFISs by changing the values of signature vectors with the fixed sets of shape parameters and
scaling functions.

Table 3. Bivariate Hermite data.

↓ x/y→ −1 −1/3 1/3 1

−1 (3, 1,−1) (−1,−2, 2) (−2,−12, 3) (5, 8, 1)

−1/3 (2,−4,−10) (−5,−2, 2) (3, 4,−3) (−9, 5, 4)

1/3 (−1, 5, 1) (4,−3, 3) (−5,−1, 5) (3,−4,−1)

1 (7, 3, 6) (−8, 2, 3) (1,−2, 4) (−3, 7,−2)

Table 4. Signature vectors.

RQZFIS 1: ε1 = ε2 = ε3 = ε4 = (1, 0, 0),
ε1 = ε2 = ε3 = ε4 = (0, 1, 0).

RQZFIS 2: ε1 = ε2 = ε3 = ε4 = (0, 1, 1),
ε1 = ε2 = ε3 = ε4 = (0, 1, 0).

RQZFIS 3: ε1 = ε2 = ε3 = ε4 = (0, 1, 1),
ε1 = ε2 = ε3 = ε4 = (1, 0, 1).

RQZFIS 4: ε1 = ε2 = ε3 = ε4 = (0, 0, 0),
ε1 = ε2 = ε3 = ε4 = (0, 0, 0).

Table 5. Shape parameters and scaling function vectors.

σ1 = σ2 = σ3 = σ4 = (0.1, 0.2, 0.3),
η1 = η2 = η3 = η4 = (0.3, 0.6, 0.1),

α1 = α2 = α3 = α4 = (0.2,−0.3, 0.3),
σ1 = σ2 = σ3 = σ4 = (1, 0.2, 3),

η1 = η2 = η3 = η4 = (0.2, 0.6, 0.1),
α1 = α2 = α3 = α4 = (−0.3, 0.25, 0.3).
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(a) RCSZFIFs along x-axis. (b) RCSZFIFs along y-axis.

(c) RCZFIS 1. (d) RCZFIS 2.

(e) RCZFIS 3. (f) RCZFIS 4.

Figure 4. Zipper fractal network curves and surface interpolants.

6. Convexity-Preserving RCZFIS

In this section, we will generate convex RCZFISs for a given convex bivariate dataset.
Casciola and Romani [29] observed that the bicubic partially blended surface inherits all
the properties of the network of boundary curves.

Let Γ = {(xi, yi, zi,j, zx
i,j, zy

i,j) : i ∈ NN , j ∈ NM} be a convex surface data, where

∆j
i < ∆j

i+1, zx
i,j < zx

i+1,j, zx
i,j < ∆j

i < zx
i+1,j; i ∈ NN−1, j ∈ NM,

and
∆i

j < ∆i
j+1, zy

i,j < zy
i,j+1, zy

i,j < ∆i
j < zy

i,j+1; i ∈ NN , j ∈ NM−1.
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Therefore, the univariate Hermite datasets Γyj for all j ∈ NM and Γxi for all i ∈ NN are also
convex. Now, with these notations in Theorem 6, we obtain the following results:
(i) For fixed j ∈ NM, N αj

εj is convex if

σ
j
i > max

0,
zx

i+1−ε
j
i ,j
− ∆j

i

2
(

∆j
i − zx

i+ε
j
i ,j

)
, η

j
i > max

0,
∆j

i − zx
i+ε

j
i ,j

2
(

zx
i+1−ε

j
i ,j
− ∆j

i

)
,

0 ≤ α
j
i <

(
aj

i
)2 min

1,
(ν
′′
)j

V j
i,2

, ∀i ∈ NN−1,

(26)

where

(ν
′′
)j := max

{
N (2)

εj (x+),N (2)
εj (x−) : x ∈ I

}
, V j

i,2 > max
{

0, max
{
B j

i
(2)

(x) : x ∈ I
}}

;

(ii) For fixed i ∈ NN , N αi

εi is convex if

σi
j > max

0,
zy

i,j+1−εi
j
− ∆i

j

2
(

∆i
j − zy

i,j+εi
j

)
, ηi

j > max

0,
∆i

j − zy
i,j+εi

j

2
(

zy
i,j+1−εi

j
− ∆i

j

)
,

0 ≤ αi
j <

(
ai

j
)2 min

1,
(ν′′)i

V i
j,2

, ∀j ∈ NM−1,

(27)

where

(ν′′)i := max
{
N (2)

εi (y+),N (2)
εi (y−) : y ∈ J

}
, V i

j,2 > max
{

0, max
{
Bi

j
(2)

(y) : y ∈ J
}}

.

Thus, for the given convex surface data, we can restrict the parameters so that each
RCS ZFIF that we used to generate the surface RCZFIS is convex. Hence, using [29], we
have the following theorem:

Theorem 8. For given convex surface data Γ = {(xi, yi, zi,j, zx
i,j, zy

i,j) : i ∈ NN , j ∈ NM}, if the
shape parameter vectors and the scaling vectors satisfy (26) and (27) for each i ∈ NN and j ∈ NM,
then the corresponding bicubic partially blended RCZFIS F α

ε will be convex on R = I × J.

Numerical algorithm for generating a convex RCZFIS for given convex surface data
Γ = {(xi, yi, zi,j, zx

i,j, zy
i,j) : i ∈ NN , j ∈ NM}:

• Step 1: Split Γ into convex univariate Hermite datasets along the x-axis and y-axis.
• Step 2: Fix the values of signature vectors.
• Step 3: Choose the shape parameters and scaling factors as restricted in (26) and (27).
• Step 4: Construct the convexity-preserving univariate RCS ZFIFs along these univari-

ate datasets with the parameters chosen in Step 2 and Step 3.
• Step 5: Construct a RCZFIS using these convex RCS ZFIFs and cubic blending func-

tions Ω0 and Ω1 in (24).

The RCZFIS constructed in Step 5 is a convex surface interpolating the given convex
data Γ.

Remark 2. One can construct concave RCZFISs for given concave surface data with a similar
procedure.

Example 4. We generated convex Hermite surface data on {−1, −1
3 , 1

3 , 1} × {−1, −1
3 , 1

3 , 1} from
a bivariate function Z f (x, y) = x2 + y2. We plotted Figure 5a,b using the zipper IFSs parameters
given in Table 6. For Figure 5a, we chose random shape parameters and scaling functions, and the
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corresponding RCZFIS is not convex on [−1, 1]× [−1, 1], which we can observe from its xz-view
and yz-view plotted in Figure 5c,e, respectively. However, when we restrict the shape parameters
and scaling function as prescribed in Theorem 8, the corresponding RCZFIS plotted in Figure 5b
becomes convex on [−1, 1]× [−1, 1], which one can examine from its xz-view and yz-view plotted
in Figure 5d,f, respectively.

(a) Nonconvex RCZFIS. (b) Convex RCZFIS.

(c) xz-view of nonconvex RCZFIS. (d) xz-view of convex RCZFIS.

(e) yz-view of nonconvex RCZFIS. (f) yz-view of convex RCZFIS.

Figure 5. Verification of convexity by RCZFIS.



Math. Comput. Appl. 2023, 28, 74 19 of 20

Table 6. Zipper IFSs parameters for Figure 5.

Figure 5a Figure 5b

σ1 = σ2 = σ3 = σ4 = (0.1, 0.06, 0.3), σ1 = σ2 = σ3 = σ4 = (1, 2, 3),
η1 = η2 = η3 = η4 = (0.3, 0.2, 0.6), η1 = η2 = η3 = η4 = (3, 2, 5),

ε1 = ε2 = ε3 = ε4 = (1, 0, 0), ε1 = ε2 = ε3 = ε4 = (1, 0, 0),
α1 = α2 = α3 = α4 = (0.3, 0.25, 0.3), α1 = α2 = α3 = α4 = (0.02, 0.05, 0.02),
σ1 = σ2 = σ3 = σ2 = (0.1, 0.06, 0.3), σ1 = σ2 = σ3 = σ2 = (1, 2, 3),
η1 = η2 = η3 = η4 = (0.3, 0.2, 0.6), η1 = η2 = η3 = η4 = (3, 2, 5),

ε1 = ε2 = ε3 = ε4 = (0, 1, 1), ε1 = ε2 = ε3 = ε4 = (0, 1, 1),
α1 = α2 = α3 = α4 = (0.2, 0.25, 0.2), α1 = α2 = α3 = α4 = (0.02, 0.05, 0.05).

7. Conclusions

This article introduces a class of novel continuously differentiable surface interpolants
(RCZFISs) on a rectangular grid. The proposed surface interpolant is based on 16 pa-
rameters (8 shape parameters, 4 scaling factors, and 4 signature components) and two
blending functions on each rectangular patch. It was observed that the RCZFIS converges
the continuously differentiable data generated function uniformly. It can capture the irreg-
ularities associated with the partial derivatives of the data-generating function. For the
fixed signature vectors, one can preserve the convexity of the data through RCZFIS using
mild conditions on shape parameters and scaling functions. Some numerical examples
have been given so the reader can become more familiar with these interpolants. The
proposed scheme is more appropriate for modeling smooth convex surfaces with irregular
partial derivatives in many areas of science and engineering. In automobile industries,
convex and concave surfaces are used extensively for the shape of a vehicle. By varying
signature only, one can design a wide variety of vehicles with very much similar shapes
based on a variation on 1st order partial derivatives. The existence of minimum energy
among C2 zipper fractal splines, when the scale vector is fixed, is an open problem. The
monotonicity- and convexity-preserving zipper fractal surfaces directly from zipper IFSs
are open problems. The zipper fractal rational splines can be used as solutions of differen-
tial and integral equations if the associated problem contains a continuous and nowhere
differentiable function.
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