
Citation: Heizmann, N. On the

Fluctuations of Internal DLA on

the Sierpinski Gasket Graph. Math.

Comput. Appl. 2023, 28, 73. https://

doi.org/10.3390/mca28030073

Academic Editors: Balázs Bárány,

István Kolossváry, Roland Molontay

and Michał Rams

Received: 23 February 2023

Revised: 29 May 2023

Accepted: 4 June 2023

Published: 7 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

On the Fluctuations of Internal DLA on the Sierpinski
Gasket Graph
Nico Heizmann

Department of Mathematics, Technische Universität Chemnitz, Straße der Nationen 62,
D-09111 Chemnitz, Germany; nico.heizmann@math.tu-chemnitz.de

Abstract: Internal diffusion limited aggregation (IDLA) is a random aggregation model on a graph G,
whose clusters are formed by random walks started in the origin (some fixed vertex) and stopped
upon visiting a previously unvisited site. On the Sierpinski gasket graph, the asymptotic shape
is known to be a ball in the graph metric. In this paper, we improve the sublinear bounds for the
fluctuations known from its known asymptotic shape result by establishing bounds for the odometer
function for a divisible sandpile model.
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1. Introduction

The internal diffusion limited aggregation model (IDLA), which was introduced by Dia-
conis and Fulton in [1], is a stochastic aggregation model grown by consecutively started
particles, where a particle is added upon exiting the current cluster. Let G be an infinite but
locally finite connected graph with a specified vertex ◦ acting as the origin of these particles.
Let

(
X1(t)

)
t≥0,

(
X2(t)

)
t≥0, . . . be a sequence of independent simple random walks on G

started in ◦, representing the particles. The IDLA cluster I(i) after i ≥ 0 particles is now
iteratively defined as

I(0) = ∅, I(i) = I(i− 1) ∪
{

Xi(σi)}
where σi = inf{t ≥ 0|Xi(t) /∈ I(i− 1)} is the first time that particle i leaves the existing
cluster. So, the first particle stops immediately at ◦ and I(1) = {◦}. After i particles, the
cluster contains exactly i vertices, i.e., |I(i)| = i. Notice that (I(i))i≥0 is a Markov chain on
the connected subsets of G. An important question concerning IDLA is the typical shape of
the random set I(i) for large i. On Zd, Lawler, Bramson and Griffeath [2] identified the limit
shape as a Euclidean ball, and later in [3], Lawler improved the bounds for the fluctuations.
Finally, later in [4,5], these bounds were further improved to sublogarithmic bounds for
d ≥ 3 and logarithmic ones for d = 2 in [6,7] via two different approaches. Convergence to
a scaling limit, that is, rescaling the graph of Zd and taking the limit of clusters started from
a particle distribution rather than a single source, is shown in [8] for IDLA and two other
aggregation models. For finitely generated groups having exponential growth in [9], the
authors prove a shape theorem with a suitable metric. For the special case of homogeneous
trees, the authors also give lower bounds for the fluctuations from this basic shape. In [10],
the author proves an inner bound for IDLA on supercritical percolation clusters, whereas
in [11], a corresponding outer bound (depending on the inner bound) is established. For
the comb, i.e., Z2 without all horizontal edges except the x-axis, [12] show a basic shape
result and in [13], fluctuations are established. On the cylinder graph, that is, ZN × Z,
where ZN is the cyclic group with N elements, a basic shape result, the fluctuations, and the
existence of a coupling between two IDLA chains are introduced in [14]. See also [15] for a
survey on IDLA and its counterpart: external DLA, where random walks start from outside
the cluster.
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Recently, some interest has developed in the study of aggregation models on fractals,
namely on the double-sided Sierpinski gasket graph SG, which is defined as follows. Let

V0 :=
{(

0, 0
)
,
(
1, 0
)
,
(
1/2,
√

3/2
)}

,

E0 :=
{((

0, 0
)
,
(
1, 0
))

,
((

1, 0
)
,
(
1/2,
√

3/2
))

,
((

0, 0
)
,
(
1/2,
√

3/2
))}

and then recursively

Vn+1 = Vn ∪
((

2n, 0
)
+ Vn

)
∪
((

2n−1, 2n−1
√

3
)
+ Vn

)
,

En+1 = En ∪
((

2n, 0
)
+ En

)
∪
((

2n−1, 2n−1
√

3
)
+ En

)
,

where (x, y) + S = {(x, y) + z|z ∈ S}. The Sierpinski gasket graph is defined by
(V∞ =

⋃
n∈N Vn, E∞ =

⋃
n∈N En) and from this, we obtain the double-sided Sierpinski

gasket graph SG by adding a copy of the one-sided version reflected along the y-axis,
namely, SG = (−V∞ ∪V∞,−E∞ ∪ E∞). See Figure 1 for an illustration of SG.

◦

Figure 1. The double sided Sierpinski gasket graph as illustrated in Figure 1 of [16].

Set ◦ = (0, 0) as the origin, from which random walks are launched successively. We
denote by Bx(n) the closed graph metric balls of radius n centered at vertex x, and by
bn := |B◦(n)| the cardinality of the ball B◦(n). In [16], Chen, Huss, Sava-Huss and Teplyaev
prove a basic shape result on SG.

Theorem 1 (Theorem 1.1 of [16]). On SG, the IDLA cluster after bn = |B◦(n)| particles occupies
a set of sites close to ball of radius n. That is, for all ε > 0 and n large enough, we have

B◦(n(1− ε)) ⊆ I(bn) ⊆ B◦(n(1 + ε)) with probability 1.

For the rotor router aggregation, which is a deterministic counterpart of IDLA starting
rotor router walks instead of simple random walks, the shape of the cluster is exactly
known to be a ball up to the fluctuations of ±1 from the radius [17]. In [18], the authors
determine the shape of the divisible sandpile model, also a ball with respect to the graph
metric. This yields that the universal shape conjecture—all three aggregation clusters share
the same limit shape—holds true for SG. Furthermore, SG is the only known non-trivial
graph (other than Z), where even a fourth model, the Abelian sandpile model, also shares
this basic shape [17].
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The Sierpinski gasket graph is originated as an approximation of the Sierpinski gasket,
where the latter is a well-known nested fractal of Hausdorff dimension α = ln(3)/ ln(2).
In [19], the authors define a Brownian motion on the fractal as a limit of rescaled simple
random walks on the Sierpinski gasket graph. The finite generation of the Sierpinski
gasket graph can also be used to define a Dirichlet form and a Laplacian on the fractal;
see the standard monographs [20,21] for an introduction to the analysis on the Sierpinski
gasket. In [22], the author uses the Sierpinski gasket graph to define and study the spectral
properties of the Laplacian on the infinite Sierpinski gasket. Additionally, the Sierpinski
gasket graph itself found interest in research. From a probabilistic standpoint, the various
properties of the random walk on SG [23–25], the loop erased random walk [26,27], and
the uniform spanning tree [27] have all been well studied. Combinatorial results, such as
the average distances of vertices [28] and the number of spanning trees [27,29,30], have
been established. An extension of the Sierpinski gasket to higher dimensions has also been
studied in multiple aspects. In [31], the author calculates the exact measures of the gasket in
any dimension d ≥ 2. For dimension d = 3 in [32], the authors investigate the loop erased
random walk on the corresponding approximating graph and its continuum-limit process
on the gasket. Again, on the graph, approximately for the three- and two-dimensional
gasket, there exist geometric criteria to decide whether the shortest path between two
vertices in neighboring triangles uses the common vertex of those triangles; see [33].

In this work, we will use the ideas from [3] to improve the sublinear fluctuations
bounds of the IDLA cluster known from the basic shape Theorem 1.

Theorem 2. On SG, the IDLA cluster after bn = |B◦(n)| particles satisfies, with probability 1 for
any κ > 0, some constant c > 0 and n that is large enough:

B◦
(

n− cn1/2 ln(n)(1+κ)/2α
)
⊆ I(bn) ⊆ B◦

(
n + c n1/2+1/2α ln(n)(1−1/α)(1+κ)/2α

)
,

where α = ln(3)/ ln(2) is the Hausdorff dimension of the Sierpinski gasket.

The main improvement from the existing result is based on the analysis of the afore-
mentioned divisible sandpile model, which was first introduced in [34]. In contrast to the
Abelian sandpile model, it distributes non-integer mass to its neighbors during the toppling
procedure, making it more tractable. We develop lower bounds for the odometer function
for vertices with a certain distance to the boundary of the cluster in Section 3. We then use
these bounds to prove the inner fluctuation of Theorem 2 in Section 4. The bounds for the
outer bound in Section 5 work analogously to [11,16].

2. Preliminaries

Let G = (V, E) be an infinite locally finite connected graph. For convenience, we write
x ∈ G instead of x ∈ V and x ∼ y if (x, y) ∈ E. Furthermore, we write d(x, y) for the usual
graph distance between vertices x, y ∈ G, and for x ∈ G and A ⊆ G, denote

deg(x) := {z ∈ G | x ∼ z} the vertex degree of x,

Bx(n) := {z ∈ G | d(x, z) ≤ n} the ball of radius n with center x,

∂I A := {y ∈ A | ∃z/∈A y ∼ z} the inner boundary of A.

Let Px be the probability law of the simple random walk X = (X(t))t≥0 on G started in
vertex x ∈ G, and let Ex be the expectation with respect to Px. For this simple random
walk, we define the stopping times

τx(n) := inf{t ≥ 0 | X(t) ∈ ∂I Bx(n) ∪ Bc
x(n)}, τ(n) := τ◦(n)
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and the stopped Green function

gn(x, y) := Ex

( τ(n)−1

∑
n=0

1{X(t)=y}

)
,

which plays a major role in the analysis of bounds of IDLA. For any function f : G → R,
we define the (probabilistic) graph Laplacian as

∆ f (x) :=
1

deg(x) ∑
y∼x

h(y)− h(x)

and call any h : G → R satisfying ∆h(x) = 0 ∀x∈S a harmonic function on S ⊆ G. It is easy
to show that the aforementioned stopped Green function satisfies ∆gn(◦, x) = δ◦(x) for all
x ∈ B◦(n)\∂I B◦(n) and, therefore, is harmonic on B◦(n)\({◦} ∪ ∂I B◦(n)).

Now, due to its special structure, one can derive three major properties of SG, all of
which can be proven using coverings of proper triangles.

Lemma 1. The SG satisfies the following properties:

(EHI) The elliptic Harnack inequality: there exists a positive constant C such that for all x ∈ G,
n > 0, and functions h ≥ 0 that are harmonic on Bx(2n), the following holds:

sup
y∈Bx(n)

h(y) ≤ C inf
y∈Bx(n)

h(y).

(Vα) The uniform volume growth condition: there exist constants c, C > 0 such that for all x ∈ G,
n > 0, the following holds:

cnα ≤ |Bx(n)| ≤ Cnα.

(Eβ) The uniform exit time growth condition: there exist constants c, C > 0 such that for all
x ∈ G, n > 0, the following holds:

cnβ ≤ Ex(τx(n)) ≤ Cnβ.

The respective constants in the exponents are α := ln(3)/ln(2), the Hausdorff dimension, and
β := ln(5)/ln(2), the walk dimension of the Sierpinski gasket.

Proof. See Chapter 2.2 of [35] for the proofs of (Vα) and (Eβ). The proof of (EHI) is then
given in Theorem 2.6 of [35].

For our proof of the inner bound in Theorem 2, we need some slightly sharper bounds
than the ones used in Lemma 2.8, 2.10 of [16]. In fact, the proofs of such lemmas can be
easily improved to obtain the following.

Lemma 2. There exist constants c1, c2 > 0 such that for every x ∈ SG and n > 0, we have

Ex(τ◦(n)) ≥ c1 d(x, ∂I B◦(n))β and

gn(x, x) ≤ c2 d(x, ∂I B◦(n))β−α.

In the following sections, occurring constants will always be denoted as c ∈ R and
may differ from line to line.

3. The Divisible Sandpile

In this section, we will establish a lower bound in Lemma 7 needed for our arguments
in Section 4. We derive this from the results in [18], which are briefly outlined here.
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We call a function µ : SG → [0, ∞) with finite support |supp(µ)| < ∞ a sand distribu-
tion, and we call any x ∈ SG unstable if µ(x) > 1. Any unstable vertex can be toppled such
that the excess mass µ(x)− 1 is split evenly among its neighboring vertices. The resulting
distribution is then given by

Txµ := µ + max{µ(x)− 1, 0}∆δx,

where δx(y) equals 1 if x = y and 0 otherwise. We call Tx the toppling operator at vertex x.
Note that there is no need for x to be an unstable vertex since, otherwise, Tx = Id. We start
with an initial sand distribution µ0, and let (xk)k≥1 be a sequence of vertices containing
each vertex of SG infinitely often. We call such sequences toppling sequences and define
the sand distribution after k topples as

µk(y) := Txk µk−1(y) = Txk . . . Tx1 µ0(y)

as well as the odometer function uk, which counts the mass emitted by a vertex up to
k topples

uk(y) := ∑
j∈{i≤k|xi=y}

µj(y)− µj+1(y) = ∑
j∈{i≤k|xi=y}

max{µj(y)− 1, 0}.

Intuitively, toppling many vertices should spread the mass out such that the mass is
covered by more and more vertices until there is not enough mass left to cover any new
vertices. This intuition turns out to be the case as the next lemma states. Note here that [34]
is dedicated to the case of Zd, but the proof works for any graph.

Lemma 3 (Lemma 3.1 of [34]). As k → ∞, µk converges to a sandpile distribution µ and uk
converges from below to a limit function u. Moreover, these limits satisfy

µ(z) = µ0(z) + ∆u(z) and µ(z) ≤ 1, for any z ∈ SG. (1)

The least action principle Lemma 3.2 of [8] states that the odometer function u in
Lemma 3 is the smallest function satisfying Equation (1). At first sight, the limits u and µ
seem to depend on the choice of the toppling sequence selected for the toppling procedure.
This, however, turns out not to be the case as the Abelian property of the divisible sandpile
model states.

Lemma 4 (Lemma 3.6 of [18]). The limiting odometer function u is independent of the choice of
the toppling sequence.

Therefore, we call µ the sand distribution and u the odometer function according to
the starting distribution µ0; its sandpile cluster is defined as S := {z ∈ SG | µ(z) = 1}. In
our case, we are particularly interested in the limiting functions according to the starting
distribution µ0 = |B◦(n)|δ◦ since the odometer function then satisfies ∆u = 1− |B◦(n)|δ◦
on the sandpile cluster. This will help us in the analysis of the stopped Green function gn.
The next lemma gives the solution to this problem and is a direct consequence of a result
from Huss and Sava–Huss in Theorem 4.2 of [18].

Lemma 5. For any n ≥ 1, the sandpile distribution and therefore the sandpile cluster according to
the starting distribution µ0 = |B◦(n)|δ◦ on SG are given by

µ(z) = 1B◦(n)(z) =

{
1 for z ∈ B◦(n)
0 otherwise

and S = B◦(n).

Note that, from this, we also know that the odometer function on z ∈ ∂I B◦(n) equals
u(z) = 0 since, otherwise, there would be mass outside of the cluster. For our analysis, we
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need a lower bound for the odometer function depending on the distance to the boundary
∂I B◦(n), which we derive from the calculations in Section 5 of [18].

Let ũ : SG+ → R be the function on SG+ = SG ∩ (R≥0 ×R) = (V∞, E∞) defined by

ũ
(
x, 0
)
= 0 for all x ≥ 0,

ũ
(

x,
√

3/2
)
= 2, for all x ≥ 0, s.t.

(
x,
√

3/2
)
∈ SG+,

and ∆ũ(x, y) = 1 for all (x, y) ∈ SG+.

Lemma 6 (Theorem 5.6 of [18]). Let k ∈ N, then for z =
(
2k−1, 2k−1

√
3
)
, the upper boundary

point of Vk, which is a triangle of side length 2k, holds ũ(z) = 2 · 5k.

Note that Ref. [18] uses a different parametrization of SG, giving a slight different
expression. Let ψk : R2 → R2 be given by ψk(x, y) = (−x/2−

√
3y/2 + 2k,

√
3x/2− y/2),

which rotates Vk by 120◦ around its big lacuna. With this and the function ũ, one can
calculate the odometer function for specific starting masses.

Theorem 3 (Theorem 5.12 of [18]). Let u(k) : SG → R be the odometer function of the divisible
sandpile with initial mass distribution µ0 = 3k+1δ◦ = (|B◦(2k)| − 2)δ◦. Then, for all k ≥ 0

u(k)(x, y) =

{
ũ ◦ ψk(|x|, y) if (x, y) ∈ B◦(2k),
0 otherwise.

Notice that, together with the previous lemma, we obtain u(k)(◦) = 2 · 5k. Using this
and the fact that the odometer grows when adding the missing mass of 2, we can derive a
lower bound for the odometer function.

Lemma 7. Let n, δ ∈ N such that δ ≤ n/2, and u : SG → R, the odometer function of the sandpile
cluster according to the starting distribution µ0 = |B◦(n)|δ0. Then, for all z ∈ B◦(n− 3δ), the
following holds

u(z) ≥ c δβ,

for some c > 0.

Proof. Let m ∈ N such that 2m+1 > δ ≥ 2m. Then, there are triangles {4i} of size 2m−1

inside the annulus B◦(n)\B◦(n− δ). The removal of all triangles 4i leaves ◦ in a finite
component of a union of larger triangles. Now let zi ∈ 4i be the boundary point closest to
◦. For all such boundary points zi, zj, u(zi) = u(zj) holds due to symmetry. Now, any lower
bound for u(zi) also holds on u(z) for all z ∈ B◦(n− δ) since the odometer is decreasing in
distance to ◦ as can be seen by the generalized 1/5− 2/5 rule Theorem A.1 of [18]. Let u4
be the odometer when starting with just enough mass in ◦ to fill up all the triangles4i, then
we obviously have u4 ≤ u since after that we only add more mass into the system, which
has to be distributed to the outer boundary. Now, u4(zi) equals the odometer at vertex ◦
of the sandpile cluster with starting mass |4i|, and from Theorem 3, we can deduce

u(zi) ≥ u4(zi) ≥ u(m−1)(◦) = 2 · 5m−1 ≥ c δβ,

for some c > 0.

4. The Inner Bound for IDLA

Similar to [16], we use the standard approach for bounds of the IDLA cluster from [3],
which heavily depends on the analysis of the stopped Green functions.
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We consider fixed z ∈ B◦
(
n− c nα/2 ln(n)(1+κ)/2) and for i = 1, . . . , bn, let (Xi(t))t≥0

be the random walks generating the IDLA cluster. Now let

M := |{1 ≤ i ≤ bn | τi
z < τi(n)}| =

bn

∑
i=1

1τi
z<τi(n)

L :=
∣∣{1 ≤ i ≤ bn | σi < τi

z < τi(n)}
∣∣ = bn

∑
i=1

1σi<τi
z<τi(n)

where σi := inf{t ≥ 0 | Xi(t) /∈ I(i− 1)} and τi
z := inf{t ≥ 0 | Xi(t) = z}. So M equals the

number of random walks visiting vertex z before hitting the boundary ∂I B◦(n), whereas L
equals the number of those walks that visit z after the according particle is already added
to the cluster. Therefore, we have

{z /∈ I(bn)} ⊆ {M = L}.

Now for any a ≥ 0, we have

P
(
z /∈ I(bn)

)
≤ P(M = L) ≤ P

(
{M ≤ a} ∪ {L ≥ a}

)
≤ P(M ≤ a) + P(L ≥ a).

We will look for a specific a, giving us bounds that vanish fast enough. Now for M, the
summands are obviously independent and identically distributed, whereas the summands
of L are not. Therefore, we will instead consider L̃ satisfying P(L̃ ≥ a) ≥ P(L ≥ a) for all
a ∈ R as follows. For every y ∈ B◦(n), there is at most one i, for which Xi(σi) = y since y is
already inside the cluster for the following indices, j > i. Additionally, after the time σi, the
random walk Xi has the same distribution as a random walk started from y = Xi(σi). With
the random variable 1y

τz<τ(n) denoting the indicator function of the event that a random
walk started in y visits vertex z before hitting the boundary ∂I B◦(n), we have

L D=
bn

∑
i=0

∑
y∈B◦(n)

1{Xi(σi)=y}1
y
τz<τ(n) ≤ ∑

y∈B◦(n)
1

y
τz<τ(n) =: L̃.

Now the summands in L̃ are independent and we can easily calculate

E(L̃) = ∑
y∈B◦(n)

Py(τz < τ(n)) =
1

gn(z, z) ∑
y∈B◦(n)

gn(y, z) =
1

gn(z, z)
Ez(τ(n)),

E(M) = bn P◦(τz < τ(n)) = bn
gn(◦, z)
gn(z, z)

.

With the help of the following lemma, we are able to calculate E(M)−E(L̃).

Lemma 8. Let u be the odometer function of the divisible sandpile on SG for the starting distribution
µ0 = |B◦(n)|δ0, then it holds for all x ∈ G

|B◦(n)| gn(◦, x)− ∑
y∈B◦(n)

gn(y, x) = u(x).

Proof. By Lemmas 3 and 5, the odometer function solves the following Dirichlet problem:{
∆u(x) = 1− |B◦(n)|δ◦(x) if x ∈ B◦(n)\∂I B◦(n)
u(x) = 0 if x ∈ ∂I B◦(n)
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Now, let hn(z) = |B◦(n)| gn(◦, z)−∑y∈B◦(n) gn(y, z), then we have for z ∈ B◦(n)\∂I B◦(n)

∆hn(x) = ∑
y∈B◦(n)

δy(x)− |B◦(n)|δ0(x)

= 1− |B◦(n)|δ◦(x)

and for x ∈ ∂I B◦(n), y ∈ SG, we have gn(y, x) = 0 by definition. So hn and u solve the
same Dirichlet problem and by the uniqueness principle, we have hn = u.

Now since by Lemma 2 Ez(τ(n)) ≥ c1 d(z, ∂I B◦(n))β, gn(z, z) ≤ c2 d(z, ∂I B◦(n))β−α,
we have the two following major inequalities:

c nα ≥ E(M) ≥ E(L̃) ≥ c
gn(z, z)

d(z, ∂I B◦(n))β ≥ c d(z, ∂I B◦(n))α,

E(M)−E(L̃) =
1

gn(z, z)

(
|B◦(n)| gn(◦, z)− ∑

y∈B◦(n)
gn(y, z)

)
≥ c d(z, ∂I B◦(n))−(β−α) u(z) ≥ c d(z, ∂I B◦(n))α

where in the last inequality, we used the bound u(z) ≥ cd(z, ∂I B◦(n))β from Lemma 7.

Lemma 9 (Lemma 4 of [2]). Let S be a finite sum of independent indicator functions and
E(S) = µ. Then, for all sufficiently large n and 0 < γ < 1

2

P
(
|S− µ| ≥ µ1/2+γ

)
≤ 2 exp

(
− 1

4
µ2γ

)
.

Choose γ, γ′ such that E(M)2γ = ln(n)1+κ and E(L)2γ′ = ln(n)1+κ , then we have for
pn := c n− ln(n) declining faster to 0 than any polynomial:

pn ≥ P
(
|M−E(M)| ≥ E(M)1/2 ln(n)(1+κ)/2)+ P

(
|L−E(L)| ≥ E(L)1/2 ln(n)(1+κ)/2)

≥ P
(

M ≤ E(M)−E(M)1/2 ln(n)(1+κ)/2)+ P
(

L ≥ E(L) +E(L)1/2 ln(n)(1+κ)/2)
≥ P(M ≤ a) + P(L ≥ a),

if a ∈ [E(L) +E(L)
1
2 ln(n)

1+κ
2 ,E(M)−E(M)

1
2 ln(n)

1+κ
2 ] =: I.

Now, since E(M)−E(L̃) ≥ c d(z, ∂I B◦(n))α and E(M) ≤ cnα, the above interval I is
nonempty if d(z, ∂I B◦(n))α ≥ cnα/2 ln(n)(1+κ)/2. To finish the proof one uses the upper
bound of pn with Borel–Cantelli. �

The bottleneck of the proof is obviously the very large upper bound of E(M) ≤ cnα.
Sadly, this poor bound cannot be improved without considering the specific position in
the graph: Consider the boundary points of proper triangles z at distance 2m from ◦ which
satisfy P◦(τz < τ(n)) ≥ 1/2 for any n > 2m and therefore E(M) ≥ cnα.

5. The Outer Bound

The improved outer bound is a direct consequence from our inner bound: with very
little adjustments, one can deduce our bound from the results in Section 3.2 of [16]. Since
our result can be applied to any inner bound, and for the sake of completeness, we will
quickly sketch this here.

The idea of the proof is to consecutively stop the particles generating the cluster when
leaving balls of growing radius. For this, we need a little more general notation than we
introduced in Section 1. For an existing cluster S ⊆ SG, we define the IDLA cluster after
starting a particle in vertex x and stopping upon leaving the set A as

I(S; x → A) := S ∪
{

X
(

min(σS, σA − 1)
)}

,
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where σA := inf{t ≥ 0|X(t) /∈ A} and the paused particles as

P(S; x → A) :=

{
X(σA) if σA ≤ σS

⊥ otherwise,

where⊥ connotes that the random walk was not paused and the particle has settled in the cluster.
For starting consecutive particles from vertices x1, . . . , xn, we write I(S; x1, . . . , xn → A) for
the resulting cluster and P(S; x1, . . . , xn → A) for the sequence of paused particles. Due to
the Abelian property of the IDLA cluster (see [1]), that is

I
(
I(S; x1, . . . , xn → A);P(S; x1, . . . , xn → A)

) D
= I(S; x1, . . . , xn → SG),

it is possible to work on consecutively stopped clusters instead of the unstopped one. For
ease of notation, we denote

In(x → r) := I(∅; ◦, . . . , ◦︸ ︷︷ ︸
n times

→ B◦(r)), Pn(x → r) := P(∅; ◦, . . . , ◦︸ ︷︷ ︸
n times

→ B◦(r)).

The next lemma will be essential for the proof and claims that with high probability at
least a proportion δ of started particles will settle before reaching the next radius, at which
they will be stopped again.

Lemma 10 (Lemma 3.7 of [16]). There are δ > 0 and p < 1 such that for all n large enough with
n1/(α+1) < k < nα we have for x1, . . . , xk ∈ B◦(n) and S ⊆ B◦(n)

P
(∣∣I(S; x1, . . . , xk → B◦(n + k1/α)

)
\S
∣∣ ≤ δk

)
≤ pk.

With this, we are now able to establish an outer bound depending on the already
proved inner bound in Section 4.

Theorem 4 (Outer bound in dependence of the inner bound). Suppose we already established
an inner bound DI(n) on SG such that

∑
n∈N

P
(

B◦(n− DI(n)) * Ibn(◦ → n)
)
< ∞

Then for any D ≥ D1−1/α
I n1/α, it holds with probability 1 for n large enough

I(bn) ⊆ B◦(n + D).

Proof. We will show that the probability of the event {I(bn) * B◦(n + D)} is summable.
The claim then follows directly from the Borel–Cantelli lemma. For this, let

n0 := n, nj+1 :=

{
nj + k1/α

j if k j > n1/(α+1)
j

∞ otherwise,

I0 := Ibn(0→ n), Ij+1 := I
(
Ij;Pj → B◦(nj+1)

)
,

P0 := Pbn(0→ n), Pj+1 := P
(
Ij;Pj → B◦(nj+1)

)
,

k0 := |P0| k j+1 := |Pj+1|

be ascending clusters, whose union form the IDLA cluster. That is, we stop the particles
on the boundary of balls of growing radii as long as there are enough unstopped particles.
This iterative construction will stop once we do not have enough stopped particles in Pj.

Let J := min
{

j
∣∣k j ≤ n1/(α+1)

j
}

be the time, after which we let all particles in PJ evolve
until settlement. Now for j > J, we have Ij = Ij+1 and by the Abelian property of the
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IDLA cluster, IJ+1 and I(bn) have the same distribution. By construction, IJ ⊆ B◦(nJ) and

since k J ≤ n1/(α+1)
J , we can deduce IJ+1 ⊆ B◦

(
nJ + n1/(α+1)

J

)
. Therefore, we have

P
(
I(bn) * B◦(n + D)

)
= P

(
IJ+1 * B◦(n + D)

)
≤ P

(
B◦
(

nJ + n1/(α+1)
J

)
* B◦(n + D)

)
= P

(
nJ + n1/(α+1)

J > n + D
)

.

For SG, there is an annulus growth bound shown in Lemma 3.8 of [16]: for all ε > 0, it holds
bn − bn(1−ε) ≤ 4εα−1bn for n large enough. Furthermore, by assumption and Borel–Cantelli, we
have, with probability 1 for n large enough, B◦(n− DI) ⊆ Ibn(0→ n). From this, we can
deduce k0 ≤ bn − |Ibn(0 → n)| ≤ bn − bn−DI ≤ cDα−1

I n < nα almost surely for n large

enough. So the amount of paused particles k j−1 satisfies n1/(α+1)
j < k j−1 < nα < nα

j almost
surely for j ≤ J, and we can apply Lemma 10. Accordingly, there are δ < 1 and p < 1
such that

P
(∣∣∣I(S;Pj−1 → B◦

(
nj−1 + l1/α

))
\S
∣∣∣ ≤ (1− δ)l

)
≤ pl .

Notice that k j− k j−1 are exactly the number of settled particles in wave j. Conditioning
on S, the total law of probability yields

P
(
k j ≥ (1− δ)k j−1

∣∣nj−1 = i, k j−1 = l
)
≤ ∑

S⊂B◦(i)
plP(Ij−1 = S

∣∣nj−1 = i, k j−1 = l) = pl .

With this at hand, by applying the total law of probability twice, we can deduce

P
(
k j ≥ (1− δ)k j−1 ∩ j ≤ J

)
≤

∞

∑
i=n

P(nj−1 = i)
nα

∑
l=i1/(α+1)

plP(k j−1 = l ∩ j ≤ J|nj−1 = i) ≤ pn1/(α+1)

and using this bound finally gives

P
(
∃1≤j≤J k j ≥ (1− δ)k j−1

)
≤

nα

∑
j=1

P
(
k j ≥ (1− δ)k j−1 ∩ j ≤ J

)
≤ nα pn1/(α+1)

.

Since {∃1≤j≤l k j ≥ (1− δ)k j−1} ⊇ {kl ≥ (1− δ)lk0}, we have

P
(
∃1≤l≤J kl ≥ (1− δ)lk0

)
≤ nα pn1/(α+1)

.

On the complementary event {∀1≤j≤J k j < (1− δ)jk0)}, the following inequality holds:

nJ = n +
J−1

∑
j=0

k1/α
j < n + k1/α

0

J−1

∑
j=0

(
(1− δ)1/α

)j
< n + k1/α

0
1

1− (1− δ)1/α
.

If additionally nJ + n1/(α+1)
J > n + D holds, taking c′ =

(
1 + 1

1−(1−δ)1/α

)1/(α+1)
gives

that for n large enough,

n + k1/α
0

1
1− (1− δ)1/α

+ c′n1/(α+1)

> nJ + n1/(α+1)
J > n + D.
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From this, we can easily deduce

k1/α
0 > (D− c′n1/(α+1))(1− (1− δ)1/α) > c1D for n large enough

By conditioning on the event nJ < n + k1/α
0
(
1− (1− δ)1/α

)−1, we obtain

P(I(bn) * B◦(n + D)) ≤ P
(

nJ + n1/(α+1)
J > n + D

)
= P

(
nJ + n1/(α+1)

J > n + D
∣∣∣nJ < n + k1/α

0
1

1− (1− δ)1/α

)
P
(

nJ < n + k1/α
0

1
1− (1− δ)1/α

)
+ P

(
nJ + n1/(α+1)

J > n + D
∣∣∣nJ ≥ n + k1/α

0
1

1− (1− δ)1/α

)
P
(

nJ ≥ n + k1/α
0

1
1− (1− δ)1/α

)
≤ P

(
k0 > cDα

)
+ nα pn1/(α+1)

.

Since, by assumption, P
(
k0 > cDα−1

I n
)
≤ P

(
B◦(n − DI) * I(bn)

)
is summable,

the above probability for any D ≥ D1−1/α
I n1/α is summable as well. Now applying

Borel–Cantelli yields

I(bn) ⊆ B◦
(
n + D

)
almost surely for n large enough.

Note that in Section 4, we actually show an inner bound for the stopped cluster Ibn(◦ → n)
as is needed here. This is because the considered M, L only depends on the behavior of the
random walks before leaving the ball of radius n. Therefore, {z ∈ Ibn(◦ → n)} ⊆ {M = L}
holds for any z ∈ B◦(n) as well. Applying the theorem to the established inner bound
DI(n) = cn1/2 ln(n)(1+κ)/2α yields the desired outer bound

D = D1−1/α
I n1/α = c n1/2+1/2α ln(n)(1+κ)(1−1/α)/2α.

6. Conclusions

For the inner bound, we used the difference between the expected visits in vertices
and visits after settlement of the random walks generating the cluster. Our lower bound
for this difference is already pretty sharp since the odometer of the divisible sandpile gives
the exact solution for this, and the bound for the odometer function itself is also sharp for
some special vertices. Considering the outer bound, our technique rests on stopping at
the boundary of growing balls and letting paused particles develop on the annulus to the
next bigger ball. In some sense, we consider the balls on whose boundary the particles are
stopped to be already completely settled in the subsequent process (since in Lemma 10,
there is no further assumption on the sets S ⊆ B◦(n)). Now, suppose the ball is a proper
triangle of size n = 2m and suppose we filled the ball perfectly up to bn−DI , where DI = 2k,
then the remaining particles amount to

bn − bn−DI =
2m−k(3k+1 + 3)

3k+1 + 2
bn ≥ cDα−1

I n.

The radius to cover all these particles would be at least D ≥ cD1−1/α
I n1/α. Therefore,

this result is also optimal, in the sense that for better bounds one would need to consider
different techniques in order to prove these.

Furthermore, this approach can also be used for other self-similar graphs approxi-
mating nested fractals. For example, the graphical approximation of the extension of the
Sierpinski gasket to higher dimensions d ≥ 3 can be extended to a regular graph as we did
for SG. We also expect the divisible sandpile on this graph to be an exact ball in the graph
metric. Evaluating its odometer function, like we did in Section 3, should lead to fluctuation
bounds completely analogous to our approach in Sections 4 and 5. For the Vicsek graph,



Math. Comput. Appl. 2023, 28, 73 12 of 13

the graph approximation of the Vicsek set Example 4.1.5 of [21], we also conjecture our
technique to work since the divisible sandpile is also an exact ball. Here, the difficulty lies
mainly in the additional technicalities and the exact analysis of a normalized odometer
function, which is needed since the graph is not regular anymore. We expect this to also
generalize to other nested fractals. However, one may need to consider another metric other
than the graph metric to describe the shape of the cluster since the harmonic measure on the
usual graph metric balls is not uniform anymore. Take a modified Sierpinski gasket graph,
where instead of three copies in each stage of the construction, we take nine copies of the
triangle in the previous stage. Here, the cluster will grow much faster on the outer middle
triangle than on the other ones. Figure 2 shows a simulation on the 6th generation of such a
modified Sierpinski gasket graph, where the fluctuation is of the size of a third-generation
triangle. Considering infinitely ramified fractals, our approach seems not too promising, as
the generations of the approximating graphs are connected on unbounded many vertices.
This makes the analysis of the divisible sandpile and its odometer function very hard. See
Figure 2 of [16] for a simulation of IDLA clusters on the Sierpinski carpet graph.

Figure 2. Simulation on the modified Sierpinski gasket graph with nine copies.
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