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Abstract: Artificial intelligence’s rapid advancement has enabled various applications, including
intelligent video surveillance systems, assisted living, and human–computer interaction. These
applications often require one core task: video-based human action recognition. Research in human
video-based human action recognition is vast and ongoing, making it difficult to assess the full scope
of available methods and current trends. This survey concisely explores the vision-based human
action recognition field and defines core concepts, including definitions and explanations of the
common challenges and most used datasets. Additionally, we provide in an easy-to-understand
manner the literature approaches and their evolution over time, emphasizing intuitive notions.
Finally, we explore current research directions and potential future paths. The core goal of this work
is to provide future works with a shared understanding of fundamental ideas and clear intuitions
about current works and find new research opportunities.

Keywords: video-based human action recognition; action recognition; deep learning methods;
handcrafted methods; human action; overview

1. Introduction

Artificial intelligence (AI) redefines our understanding of the world by enabling high-
impact applications such as intelligent video surveillance systems [1], self-driving vehi-
cles [2], and assisted living [3]. In addition, AI is revolutionizing areas such as education [4],
healthcare [5], abnormal activity recognition [6], sports [7], entertainment [4,8], and human–
computer interface systems [9]. These applications frequently rely upon the core task of
video-based human action recognition, an active research field to extract meaningful informa-
tion by detecting and recognizing what a subject is doing in a video [10–12]. Since its critical
role in computer vision applications, the action recognition study can lead to innovative
solutions that can benefit society in various ways. Nevertheless, it can take time to introduce
oneself to the subject thoroughly.

On the one hand, current research points out numerous directions, including effectively
combining multi-modal information [13,14], learning without annotated labels [15], training
with reduced data points [15,16], and exploring novel architectures [17,18].

On the other hand, recent surveys shifted their focus towards comprehensively ana-
lyzing a particular contribution. For example, Ref. [8] categorized standard vision-based
human action recognition datasets, whereas Ref. [19] analyzes the classification perfor-
mance of standard action recognition algorithms. Ref. [20] was one of the first surveys
to review deep learning algorithms, providing a comprehensive overview of the datasets
employed. Ref. [21] offers a comprehensive taxonomy centered on deep learning method-
ologies, while Refs. [22,23] concentrates on its applicability. Ref. [24] explores human action
recognition from visual and non-visual modalities. Ref. [25] provides proper taxonomy for
action transformers according to their architecture, modality, and intended use. Ref. [26]
evaluates existing solutions based on the computer vision challenge they solve. Ref. [22]
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explores the action recognition field in conjunction with the related tasks of action detection
and localization. Finally, Ref. [27] delved into future directions of the field.

Considering the vast expanse of knowledge and numerous potential directions within
video-based human action recognition, introducing oneself to the subject requires significant
time to develop a comprehensive understanding. As a result, this work strives to offer a
comprehensive and intuitive overview of the vision-based human action recognition field:

• In Section 2, we start by defining core concepts, including definitions and explanations
of the common challenges and most used datasets that may help future researchers
have a shared understanding of the fundamental ideas.

• In Section 3, we break down the literature approaches and their evolution over time,
emphasizing the intuitive notions that underpin the approaches’ advancements. There-
fore, future research may have a clear intuition of what researchers have proposed,
and complex concepts make it more accessible to future works.

• In Section 4, we explore current research directions and potential future paths to help
future works identify opportunities and boost the process to build further contribu-
tions. Finally, we discuss the conclusions in Section 5.

2. Understanding Video-Based Human Action Recognition

The aim of this section is threefold. First, Section 2.1 explains what this work under-
stands as action. Second, we introduce the common challenges of video-based human
action recognition in Section 2.2. Third, in Section 2.3, we introduce the commonly used
datasets for action recognition. A summary can be found in Figure 1.

Figure 1. Video-based human action recognition overview. Part (A) represents human action; we
instinctively associate a sequence of gestures with an action. For example, we might think of the
typical hand wave when we think of the action greeting. On the contrary, imagining a person running
will create a more dynamic scene with movement centered on the legs. Part (B) explains current
challenges in the field, and Part (C) shows the relevant dataset used.
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2.1. What Is an Action?

To understand the idea behind an action, picture the image of a person greeting another.
Probably, the mental image constructed involves the well-known waving hand movement.
Likewise, if we create a picture of a man running, we may build a more dynamic image
by focusing on his legs, as depicted in Figure 1. We unconsciously associate a particular
message with a sequence of movements, which we call “an action” [4,28]. In other words,
human action is an observable entity that another entity, including a computer, can decode
through different sensors. The human action recognition goal is to build approaches to
understand the encoded message in the sequence of gestures.

Although it is a natural talent for a person to recognize what others do, it is not an easy
assignment for a computer since it faces numerous challenges [20], explained in Section 2.2.

2.2. Challenges Involved in Video-Based Human Action Recognition

While humans have a natural ability to perceive and comprehend actions, computers
face various difficulties when recognizing such human actions [26]. We categorize the
challenges into five primary categories: action-class variability, sensor capabilities, environ-
ment conditions, dataset restrictions, and computational constraints. By understanding
these challenges, we may build strategies to overcome them and, consequently, improve
the model’s performance.

2.2.1. Action Class Variability

Both strong intra- and inter-class variations of an action class represent a challenge for
video-based human action recognition [26]. The intra-class variations refer to differences
within a particular action class [29]. These variations stem from various factors, such as
age, body proportions, execution rate, and anthropometric features of the subject [30]. For
example, the running action significantly differs between an older and a younger individual.
Additionally, we have repeated some of the actions so many times that we already perform
them naturally and unconsciously, making it difficult even for the same person to act
precisely the same way twice [26,30]. Finally, cultural contexts can impact how humans
act, such as in the case of the greeting action class [31]. Due to the variability, developing a
single model that accurately represents all instances of the same class is challenging [26].
Therefore, mitigating intra-class variation is a crucial research area in computer vision to
represent all instances of the same class accurately.

Conversely, inter-class variation refers to the dissimilarities between distinct action
classes [26], representing a significant challenge because some actions could share major
feature vectors [27]. For example, while standing up and sitting down may be perceived
as distinct actions, they share the same structure and semantics, making it challenging
to differentiate one from another if the model approach does not consider their temporal
structure [32]. A similar case is the walking and running actions, which, despite being
different, can be seen as variations of the same underlying action. Therefore, to make
computer vision applications more accurate and valuable, it is essential to make models
that can handle inter-class variations.

2.2.2. Sensor Capabilities

In computer vision, a sensor detects and measures environmental properties such as
light, temperature, pressure, and motion to convert them into electrical signals for computer
processing [33]. Due to the capture of rich visual information, the RGB camera is the most
common sensor used in video-based human action recognition, which senses the light
intensity of three color channels (red, green, and blue) [4,33].

Using an RGB camera entails some challenges, including a reduced perspective due to
the limited field of view [26], which may cause our target to be partially or not present in
the camera field; a partial temporal view of the target subject is known as occlusion [4,26,34]
and can be caused either by an object, another subject, the same subject or even the light
conditions. Dealing with missing information is difficult because the occlusion may hide
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the action’s representative features [26]. For example, if a player’s legs during a kick are
not visible to the camera’s field of view throughout a soccer match, it can be challenging to
establish if they made contact with the ball.

Furthermore, there is no semantic of how to place the camera sensor, which implies
that the target subject can appear in infinite perspectives and scales [35]. On the one hand,
some perspectives may not help recognize an action [35,36]; for instance, when a person is
reading a book, they will usually hold it in front of them; if the camera viewpoint is the
subject’s back, it will not perceive the book, and therefore, it will not be able to recognize
the action.

On the other hand, our perception of speed is affected by the distance of the object
from the camera [37]; even if two objects are moving at the same rate, but one of them is
farther away from the camera, our brain will perceive that the farther objects are moving
slower, an illusion known as “depth perception distortion” [37]. Earlier, we mentioned that
running and walking actions differ in their temporal component, and this scaling effect can
affect the accuracy recognition.

Another limitation is the low-video quality that some cameras feature [38], which
can lead to a scenario where the target function represents only a few pixels that do not
provide enough appearance information or the low camera frame rate does not capture the
temporal nature of the action.

Although the camera has fixed placement, it does not imply that it is entirely static [39];
for instance, outdoor cameras are commonly affected by external factors that lead to image
motions. Despite this, it may be imperceptible for a human. For a computer, it can be
challenging because it may change the appearance features due to the lighting perception
or misleading mix of the camera motion with the subject motion.

Another limitation is that the sensors extract only RGB images and, in some cases,
audio [24]. Therefore, we are omitting complementary information that can boost the
model’s capabilities to represent an action class better [24].

2.2.3. Environment Conditions

Environmental conditions can significantly impact the classification accuracy of a
model to recognize human actions by affecting the significance of the captured data [4,26].
To illustrate, poor weather conditions such as rain, fog, or snow reduce the target subject’s
visibility and affect the appearance features extracted. Likewise, in “real” conditions, the
target subject will find itself in a scene with multiple objects and entities, which will cause
a dynamic, unpredictable, and non-semantic background [26]; the delineation and compre-
hension of the objective and background can become increasingly complex and challenging
when additional factors or variables are presented, which obscure the distinction between
the foreground and background. Additionally, environmental conditions can generate
image noise that limits representative visual features’ extraction and complicates the subject
track over time [40].

The environment light is also critical in identifying human actions [26], primarily if the
model approach only relies on visual data for feature representation. Lighting conditions
can cause subjects to be covered by shadows, resulting in occlusions or areas of high/low
contrast, making taking clear, accurate, and visual-consistent pictures of the target subject
complex. These circumstances may also result in images differing from those used during
model training, confounding the recognition process even further.

2.2.4. Dataset Restrictions

The effectiveness of a machine learning model for recognizing human actions heavily
depends on the dataset’s quality used in its training phase [41]. The dataset’s features, such
as the number of samples, diversity, and complexity, are crucial in determining the model’s
performance. However, using a suitable dataset to boost the model’s accuracy takes time
and effort [42].
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The first approach is constructing the dataset from scratch, ensuring the action samples
fit the application’s requirements. However, this process can be resource-intensive [42]
because most effective machine learning models work under a supervised methodology,
and consequently, a labeling process is required [43]. Data labeling [43] involves defining
labeling guidelines, class categories, and storage pipelines to further annotate each action
sample individually, either manually or by outsourcing to an annotation service to ensure
consistent and high-quality data samples.

For some application domains, data acquisition can be challenging due to various
factors [44], such as the unique nature of the application, concerns regarding data privacy,
or ethical considerations surrounding the use of certain types of data [45]. Consequently,
data acquisition can be scarce, insufficient, and unbalanced in the action classes, presenting
significant obstacles to developing effective models or conducting meaningful analyses [44].

The second approach involves utilizing well-known datasets with a predefined evalua-
tion protocol, enabling researchers to benchmark their methodology against state-of-the-art
techniques. Nevertheless, there are some limitations, including the availability of labeled
data; for example, the UCF101 [46] and HMDB51 [47] are one of the most used benchmark
datasets [21]. Still, their data dimensionality is insufficient to boost the deep-learning
model [48]. Furthermore, current datasets for action recognition face the challenge of
adequately representing and labeling every variation of a target action [26], which is nearly
impossible due to the immense variability in human movements and environmental factors.
This limitation can impact the accuracy and generalizability of action recognition models if
the dataset does not represent the same data distribution of the target application [26].

Another main problem with publicly available datasets is their degradation over
time [26]; for example, a researcher that aims to use the kinetics dataset [48] must download
each video sample from the Internet. However, some download links may no longer work,
and specific videos may have been removed or blocked. As a result, accessing the same
dataset used in prior research is impossible, leading to inconsistent results [26].

Most of the datasets provide the video along with a textual label tag [13]. Although
this is enough to train a model to recognize human action, they have two main limitations.
On the one hand, there is no clear intuition that text label tags are the optimal label space
for human action recognition [49], particularly in cases where a more nuanced or fine-
grained approach to labeling is required or in an application scenario where multi-modal
information is available [13]. On the other hand, the exclusive use of RGB information in
current datasets overlooks the potential benefits of other input sensors [24], such as depth
or infrared sensors, which may provide more detailed and complementary representations
of human actions in specific application scenarios.

2.2.5. Computational Constraints

The computational resources required to train and deploy a machine-learning model
for video-based human action recognition can pose significant challenges for researchers [13].

Regarding model training, most approaches use a supervised methodology [42] whose
performance depends on the data dimensionality, and hyperparameter tuning [50]. Conse-
quently, they involve sophisticated architecture designs [51], leading to over-parameterized
models requiring extensive computational resources [51]. The well-known model GPT-3 [52]
comprises 175 billion parameters and is estimated to demand 3.14E23 FLOPS of computing
power. If a V100 GPU were employed, it would require 355 GPU years to complete and cost
roughly USD 4.6 million [52]. Additionally, sometimes researchers work with low-quality
data; hence, they need to review and preprocess the dataset before the training process [53],
which could be labor-intensive considering the data dimensionality required for model
deep learning architectures.

Second, some application domains, such as video surveillance systems, require fast
inference responses [27], which can be challenging because the model’s complexity can
exceed the processing capabilities of the underlying hardware [26,27]. To achieve fast
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inference response, the model must analyze and classify video data in a time frame, almost
in real-time [26,27].

Other application domains restrict to edge devices that prioritize small factors, porta-
bility, and convenience instead of processing power [54]. Some devices cannot perform
high-end operations such as 3D convolutions [54].

2.3. Datasets for Video-Based Human Action Recognition

As the field of video-based human action recognition continues to grow, researchers
increasingly rely on datasets to benchmark their proposed approaches [26], accelerate
model development, and mitigate some of the challenges described in Section 2.2.

Finding a dataset that comprehensively covers all possible matches is nearly im-
possible. Consequently, the researchers must ensure the feature’s dataset covers their
application requirements.

Early works in RGB-based approaches used the KTH [55] and Weizmann [56] datasets,
commonly known as constrained datasets [22]. Although the video clips provide valuable
insights about the action samples, they may only partially represent the complexities
and challenges of real-world scenarios since they were artificially recorded in controlled
environments [22,32]. In the present state of video-based human action recognition, the
KTH [55] and Weizmann [56] datasets no longer represent a challenge because current
methods outperform them with nearly 100% of classification accuracy [22].

Conversely, due to the growth of video content on social media, including youtube
and movie productions, researchers created datasets with a more comprehensive view of
the complexity of human action in natural environments [26]. Two of the most common
datasets are the UCF101 [46] and HMDB51 [47] datasets. On the one hand, the UCF101 [46]
dataset gathered 13,320 video samples from the youtube dataset and divided it into 101
action categories that contain variations in camera motion, object appearance, and pose,
object scale, viewpoint, cluttered background, illumination conditions to mitigate some of
the challenges described in Section 2.2.

On the other hand, the HMDB51 [47] dataset consists of 6849 video samples extracted
from multiple sources, including movies, Preminger archive, YouTube, and Google Videos,
divided into 51 action classes. The HMDB51 [47] provides a comprehensive view of human
action in a natural environment with variability in the illumination, subject appearance,
and backgrounds.

To date, current approaches have achieved high-accuracy performance on the UCF101 [46]
and HMDB51 [47]. Even though they still considered benchmark datasets in action recog-
nition and related tasks [27], including self-supervised action recognition [43], zero-shot
action recognition [57], and video generation [58], they have the central problem of data
dimensionality since the number of video samples is not enough for deep learning require-
ments [48].

The Kinetics [48] dataset was introduced to address the limitations of existing action
recognition benchmarks. The Kinetics [48] size was several orders of magnitude larger
compared to UCF101 [46], and HMDB51 [47], including 400 action classes and 300 thousand
video samples. Since its introduction, Kinetics has evolved into a family of datasets,
including Kinetics-400 [48], Kinetics-600 [59], and Kinetics-700 [60], each containing at least
400, 600, and 700 video clips, respectively, for their corresponding number of action classes.

Continuing this trend, ActivityNet [61] introduced a large-scale video benchmark
with 849 h of untrimmed videos of daily activities divided into 203 activity classes. Ad-
ditionally, to the label tag, the activity net adds the temporal boundaries of the action
sample in the video, which help other related tasks, including temporal action detection
and action segmentation.

A prominent dataset is YouTube-8M [62], which contains 350,000 hours of videos with
audio divided into 3862 classes. In addition to video-based human action recognition,
the dataset can be used for understanding tasks, such as content-based video retrieval
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and video summarization. A recent extension, Youtube-8M Segments [63], added 237,000
human-verified segment labels that make the dataset appropriate for temporal localization.

In addition to these RGB-based datasets, the NTU RGB+D [64], Kinectics-Skeleton [65]
dataset, and J-HMDB [66] include depth and skeleton information, which can further aid
in action recognition with additional information on the spatial and temporal features. On
the other hand, MUGEN [67] is a novel dataset with 233,000 unique videos focused on
multi-modal research, specifically to understand the relation between audio, video, and
text. Finally, the something-something v2 dataset [49] contains 20,847 labeled videos of
everyday actions that capture the granularity of video action.

3. The Evolution of Video-Based Human Action Recognition Approaches

This section provides an overview of the evolution of video-based human action
recognition. We break down into two parts; first, in Section 3.1, we explain the first family
of approaches known as handcrafted approaches. Second, in Section 3.2, we speak about
the rise of deep learning approaches.

3.1. Handcrafted Approaches

As described in Figure 2, handcrafted approaches established the foundation for
video-based human action recognition, which entails a manual feature engineering process,
where human experts manually design features that support a computer to understand.

Video-based human action recognition

Global representations

First Family of approaches Encoding images as a global feature

More robust methods are required.

Deep Learning era

Local representations

Focus on the details.

Deep learning

spatio-temporal

First
deep-learning
approaches

Two-stream networks

Deep learning approaches outperforms handcrafted

One Network for visual information
and another for motion

Multi-modal networks
Beyond temporal and

visual features

Two-stream generalization

3D convNet
The power of pretraining

Can be used in a  two-stream network setting

Identification of interest points

Dense

Without any semantic

Keypoints

Corner detection

Statistical properties

Pose estimation

Extraction of video descriptors

Cuboids-basedNot suitable for
modeling temporal

data.
Trajectories-based

Best hand-crafted method

(B)

(A)

(C)

Contributions can be three fold

 Aggregation of local descriptors

Bag of Visual Worlds

Fisher Vector

Stacked Fisher Vector

Figure 2. The Evolution of Action Recognition Approaches. The initial attempt at vision-based human
action recognition relied on global representations (A), which were inferior to local representations
(B). Lastly, deep learning approaches (C) became the most popular, with 3D convolutional neural
networks becoming the most advanced because they can learn multiple levels of representations.

Two main components usually form handcrafted approaches. Firstly, feature extrac-
tion [4] transforms the input video into a video representation of the action. Secondly, the
Action Classification [4] component maps the video representation onto a label tag.

3.1.1. Feature Extraction

Global representations [20] are the first attempt to recognize actions whose intuition
is to capture the video input into one global feature. A simple intuition of the effects of
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this type of method is our natural ability to recognize human actions only by looking
at the subject’s silhouette. However, this approach proved inadequate in addressing
the numerous challenges posed by videos or images, such as different viewpoints and
occlusions. Consequently, global representations could not fully capture the variability of
an action. Among the most relevant methods are Motion Energy Image (MEI) [68], Motion
History Image (MHI) [69], silhouettes [70], and Spacetime Volume (STV) [71].

The world is full of little details that are difficult to capture using the “big picture”.
Intuitively, as humans, to discover those little secrets, we need to explore, focus on the
details, and zoom in on the regions of interest, which is the idea behind local representa-
tions [21,72], as shown in Figure 2B. Local representations seek to extract descriptors from
multiple regions of the video to obtain insights into the details. Local approaches break
down into a sequence of steps: (a) detection of points of interest, (b) extraction of video
descriptors, and (c) aggregations of local descriptors. As a consequence, the researcher’s
contributions can be three-fold.

As the name suggests, the first step is to detect which regions of the video to analyze.
Nevertheless, determining the significance of a region can be a relatively tricky undertaking.
Applying edge detection algorithms is one method, such as Space-Time Interest Points
(STIPs) [73] and hessian detector [74]. However, its application could lead to noise and lousy
performance due to the extraction of edges that belong to something other than the target
subject. To assess the regions’ relevance and eliminate noisy information, Liu et al. [75]
propose using statistical properties as a pruning method.

Camarena et al. [76,77] suggest that pose estimation can be used as the regions of
interest, resulting in a method that has a fixed and low number of processing areas, which
ensures a consistent frame processing rate. However, the approach is dependent on the
subject body’s visibility.

Another solution is to apply dense sampling [78], which consists of placing points
without semantics. Dense sampling increases the classification accuracy, but it is computa-
tionally expensive [76]. In addition, noise injected by other motion sources can affect the
classifier’s performance [76,77].

Once we have determined which regions to analyze, we must extract the correspond-
ing region description. Visual and motion data are essential for accurately characterizing
an action [76]. In this regard, the typical approach combines several descriptors to have a
complete perspective of the target action. Regarding the visual information, we have a His-
togram Of Oriented Gradients 3D (HOG3D) [79], Speed-Up Robust Features (SURF) [80],
3D SURF [74], and pixel pattern methods [81–83]. On the other hand, descriptors that focus
on motion information include Histogram of Oriented Flow (HOF) [84], Motion Boundaries
Histogram (MBH) [78], and MPEG flow [85].

Capturing motion information is a complex task; videos are composed of images
in which the target person moves or changes location over time [78]. The naive method
uses cuboids, which utilize static neighborhood patterns throughout time. However,
cuboids are unsuitable for modeling an object’s temporal information. Its natural evolution
was trajectory-based approaches [78,86,87] that rapidly became one of the most used
methods [21,77].

Trajectory-based methods use optical flow algorithms to determine the position of
the object of interest in the next frame, which helps to improve the classification perfor-
mance [21]. Although several efficient optical flow algorithms exist, their application at
different points of interest can be computationally expensive [77]. To reduce the computa-
tional time, it is essential to know that there are several motion sources besides the subject
of interest, including secondary objects, camera motions, and ambient variables. Focusing
on the target motion may reduce the amount of computation required. On the one hand,
we can use homographies [21] for reducing the motion’s camera; on the other hand, pose
estimation [77] can be used to remove the optical flow process thoroughly.

Descriptor aggregation is the final stage in which the video descriptor is constructed
using the region descriptors acquired from the preceding processes. There are several
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methods, including Bag-of-Visual-Words (BoVW) [88], Fisher Vectors [89], Stacked Fisher
Vector (SFV) [90], Vector Quantization (VQ) [91], Vector of Locally Aggregated Descriptors
(VLAD) [92], Super Vector Encoding (SVC) [93]. Among the handcrafted approaches, it
is popularly referred to as FV and SFV, along with dense trajectories achieving the best
classification performance [20].

3.1.2. Action Classification

Action classification aims to learn a mapping function to convert a feature vector to a
label tag. The literature exposes different approaches, including template-based [68,158,159],
generative [160,161], and discriminative models [20,78].

Template-based models are the naive method that compares the feature vector to a
set of predefined templates to assign the label tag of the closest instance given a similarity
measure. The generative models [160,161] are based on probability and statistics techniques;
some representative works include Bayesian Networks and Markov chains.

Discriminative models are one of the most common techniques, including most ma-
chine learning methods [20,78]. Due to its performance, handcrafted approaches commonly
rely on Support Vector Machines (SVM).

Researchers rely on dimensionality reduction techniques [94] to lower the model’s
complexity and extract meaningful feature vectors that boost the performance in high-
dimensional datasets. Standard techniques include Principal Component Analysis (PCA) [95]
and Linear Discriminant Analysis (LDA) [96]. On the one hand, PCA assists in identifying
the most representative features, while LDA aids in finding a linear combination of feature
vectors that distinguish different action classes.

3.2. Deep Learning Approaches

Due to their strong performance in various computer vision tasks [1–3], Convolutional
Neural Networks (CNNs) have become increasingly popular. Hence, its application to
vision-based human action recognition appeared inevitable.

Andrej et al. [97] developed one of the first approaches, which involved applying a
2D CNN to each frame and then determining the temporal coherence between the frames.
However, unlike other computer vision problems, using a CNN does not outperform
handcrafted approaches [27]. The main reason was that human actions are defined by
spatial and temporal information, and using a standalone CNN does not fully capture the
temporal features [27]. Therefore, subsequent deep learning research for human action
recognition has focused on combining temporal and spatial features.

As a common practice, biological processes inspire computer vision and machine
learning approaches. For example, as individuals, we use different parts of our brain
to process the appearance and motion signals we perceive [98,99]. This understanding
can be used for human action recognition, as suggested by [98]. The concept is straight-
forward. On the one hand, a network extracts spatial characteristics from RGB images.
On the other hand, a parallel network extracts motion information from the optical flow
output [98]. The network can effectively process visual information by combining spatial
and temporal information.

Due to the comparable performance of two-stream networks to trajectory-based meth-
ods [27], interest in these approaches grows, leading to novel research challenges such as
how to merge the output of motion and appearance features. The most straightforward
process, referred to as late fusion [100], is a weighted average of the stream’s predictions.
More sophisticated solutions considered that interactions between streams should occur as
soon as possible and proposed the method of early fusion [100].

Because of the temporal nature of videos, researchers investigated the use of Recurrent
Neural Networks (RNN) [101] and Long-Term Short-Term Memory (LSTM) [102,103] as the
temporal stream for two-stream approaches. As proven by Ma et al. [104], pre-segmented
data are necessary to fully explore the performance of an LSTM in videos thoroughly,
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eventually leading to Temporal Segment Networks (TSN), which has become a popular
configuration for two-stream networks [27].

A generalization of two-stream networks is multi-stream networks [27], which describe
actions using additional modalities such as pose estimation [105], object information [106],
audio signals [107], text transcriptions [108], and depth information [109].

One factor that impacts the performance of deep neural networks is the amount
of data used to train the model. In principle, the more data we have, the higher our
network performance. However, the datasets employed in vision-based human action
recognition [46,55,110] do not have the scale that requires a deep learning model [48]. Not
disposing of enough data has various implications, one of which is that it is difficult to
determine which neural network architecture is optimal. Carreiera et al. [48] introduced
the Kinetics dataset as the foundation for re-evaluated state-of-the-art architectures and
proposed a novel architecture called Two-Stream Inflated 3D ConvNet (I3D) architecture,
based on 2D ConvNet inflation. I3D [48] demonstrates that 3D convolutional networks
can be pre-trained, which aids in pushing state-of-the-art action recognition further. Deep
learning methods work under a supervised methodology implicating considerable high-
quality labels [111]. Nevertheless, data notation is a time-intensive and costly process [111].
Pretraining is a frequent technique to reduce the required processing time and amount of
labeled data [111]. Consequently, researchers explored the concept of 2D CNN inflation
further [112,113], yielding innovative architectures such as R(2+1)D [114].

Current research in vision-based human action recognition has several directions. First,
novel architectures such as visual transformers have been ported to action recognition [114,115].
Second, there is a need for novel training methods such as Self-Supervised Learning
(SSL) [43], which is a novel training technique that generates a supervisory signal from
unlabeled data, thus eliminating the need for human-annotated labels. Third, few-shot
learning action recognition is also being investigated [44].

Most of the architectures described are known as discriminative approaches [116], but
there is another family of deep learning methods based on generative techniques [116]. Its
core idea is based on the popular phrase “if I cannot create it, then I do not understand
it” [117]. Auto-encoders [118], variational autoencoders [119], and Adversarial Networks
(GAN) [120] are examples of this approach.

4. Current Research and Future Directions

The video-based human action recognition field is currently undergoing promising
research in multiple directions that will shape its future directions.

4.1. New Video-Based Architectures

Since the growing popularity of transformers in natural language processing [25] due
to their outstanding capability to process sequential data and superior performance to the
well-known convolutional neural networks (CNN) in image-related tasks [25], researchers
have been exploring the benefits of visual transformers for human action recognition in
video-based applications.

Human action is defined in a visual and temporal space, and understanding the
sequential information became crucial to comprehend individual actions and the relation-
ships and dependencies between them [71]. Nevertheless, current methods only focus
on the short time frame, which limits the understanding of the impact and consequences
of action in the long term, a crucial aspect for the model deployment in real open-world
scenarios [22]. Hence, novel architectures should improve an action’s visual and temporal
information, improving the classification performance.

4.2. Learning Paradigms

A second direction relates to the learning paradigms used to train a model, where
supervised learning [42] is the most common; a supervised methodology requires a labeled
dataset, meaning every action sample passes through a human-annotated process [50].



Math. Comput. Appl. 2023, 28, 61 11 of 19

Unfortunately, this labeling process is costly and time-consuming, particularly in high-
dimensional datasets needed for deep learning approaches [50].

Despite the performance of supervised learning, researchers started to explore new
approaches, including semi-supervised learning [121], weakly-supervised learning [122],
and Self-Supervised Learning (SSL) [42,43].

Weakly-supervised learning [122] leverages the related information and metadata
available on social media, such as hashtags, to approximate the action label tag. On the
other hand, the core idea of semi-supervised learning [121] is to extract visual features
relying on a small-scale labeled dataset and a large-scale unlabeled dataset. Finally, Self-
Supervised Learning (SSL) [42,43] extracts the supervisory signal using the unlabeled data
based on the intuition of a child’s capability to learn by exploring and interacting with
the world.

There are two prominent families of SSL approaches: pretext tasks and contrastive
learning. Pretext tasks [123] involve defining an auxiliary function that provides supervised
signals without human annotation. For example, a network may be asked if a sequence of
video frames is in the correct order. On the other hand, contrastive learning for SSL [162]
aims to identify differences between video samples by projecting them onto a shared feature
space where clips from the same distribution are clustered together based on a distance
metric. Pretext tasks and contrastive learning can be used together, as Pretext Contrastive
Learning (PCL) suggests [123]. PCL combines a pretext task function to capture local
information and contrastive learning loss functions to gain a global view.

Another challenge related to training a deep learning model is the high correlation
between the data used in training and the model performance [50]. On the one hand, it is
impractical to construct a novel dataset for each required task. Second, some application
domains require highly specific data, such as medical records, making it difficult to recollect
a high amount of data [45]. Therefore, few-shot action recognition aims to create models
that generalize efficiently in low-data regimes [44].

Its motivation is threefold [124–126]: to enable learning representations for applica-
tions where acquiring even unlabeled data is complex, to reduce the high computational
demand required for processing large datasets, and to generalize novel action classes not
presented in the training dataset. While most few-shot learning research has focused on
image tasks [127–129], its extension to video classification is still an open question and
remains largely unexplored [125,130].

4.3. Pretraining and Knowledge Transfer

Transferring knowledge from one model to another is a standard technique to reduce
computational resources and dependency on labeled data [42]. Traditional methods include
transfer learning [131] and fine-tuning [132], which leverage the multi-level representations
from deep learning architectures. Transfer learning [131] starts with pre-trained network
weights, while fine-tuning [132] adds trainable layers to an existing model. Nevertheless,
both transfer methods are model-agnostics meaning that the transfer depends on the
model architecture and objective tasks [50]. Novel methods have been explored, including
knowledge distillation [50,51,133] that uses a teacher–student framework that enables the
transfer even when the new network does not share the same architectural design.

Additionally, to transfer knowledge between different architectural designs, researchers
suggest that new methods can lead to transfer learning between different input modali-
ties [134–136]. Sharing knowledge between modalities is challenging, and explorations
using disjunct but natural modalities, such as text and visual information, remain a fu-
ture direction [134]. In addition to using different modalities, novel directions focus on
constructing visual models that enable the extraction of visual features that can be represen-
tative across multiple video domains in addition to action recognition to construct unified
pretraining models [137].
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4.4. Video Modalities

Most of the works discussed employ RBG modality; however, incorporating other
modalities can benefit various applications scenarios for video-based human action recog-
nition [25]. Modalities can be divided into visual and non-visual [25].

Among visual modalities are RGB [21,134], Skelethon [138,139], depth [24], infrared [140],
and thermal [141], each with strengths. For example, the depth [24] modality can extract
the objects’ shape and structure from the scene. Conversely, infrared [140] modality can
capture information in low-light or no-light conditions, and thermal [141] information can
detect hidden objects such as humans and temperature monitoring.

One of the most used modalities in video-based human action recognition is skeleton
data [138,139,142], which aims to understand human actions using the sequence of the
subject skeleton. In contrast to traditional RGB, where Convolutional Neural Networks
(CNN) are the standard technique [143], skeleton-based action recognition relies on Graph
Neural Networks (GCN) [144,145]. Ref. [143] compares convolutional neural networks to
Graph Neural Networks (GCN), showing that proper training techniques, augmentations,
and optimizers lead to comparable performance. Ref. [139] presented PYSKL: an open-
source toolbox for skeleton-based action recognition that, in addition, to providing CNN
and GCN implementations, established a set of good practices to ease the comparison of
efficacy and efficiency. Ref. [145] retakes the idea of multiple stream networks and proposes
the GCN-Transformer Network (ConGT), which extracts spatial information using the
Spatial-Temporal Graph Convolution stream (STG) and temporal information using the
Spatial-Temporal Transformer stream (STT).

Regarding non-visual modalities, there are several options, such as audio [146], accel-
eration [147], radar [148], and WiFi [149], and they are mainly used as complementary data
and privacy enhancement. For instance, audio [146] is widely captured along with visual
data by video cameras, and it can provide additional and more representative information
about some actions, including detecting anomaly events. Radar [148] and WiFi [149] signals
3D-map the environment and understand the object’s motion and position in the scene,
even in ambient conditions with high levels of occlusions. Finally, the acceleration [147]
modality leverages our daily devices’ sensors to extract information about motion and
body orientation.

In addition to the modalities presented, some may complement our understanding
of human action. For example, despite the significant variability of our actions, they
have physical limitations, both human and environmental [22]. For this reason, codifying
physical properties could lead to a greater understanding of human actions.

4.5. Multi-Modal and Cross-Modal Learning

Speaking about video modalities, our interaction with the world is multi-modal [13],
meaning we interact using multiple sensorial inputs.

Therefore, there is no reason that current models use a unique modality. Consequently,
leveraging multiple modalities became a new research direction to use the strength of use
modality to improve the performance and robustness.

There are two main approaches for using multi-modal learning: multi-modal [43,150]
and cross-modal [151]. The foundation of multi-modal learning [43,150] is that diverse
modalities can extract different and complementary information that, in conjunction, results
in a complete comprehension of the action sample [24]. There are two primary types of ap-
proaches to multi-modal learning: fusion [152–154] and co-learning [154]. Fusion [152,153]
methods involve merging the classification outputs of models trained separately in different
modalities, which can be challenging. In contrast, co-learning [154] aims to use modalities
in conjunction with training instead of using them independently, which is more natural to
our world perception.

On the other hand, not all modalities are always available simultaneously or are as
easy to extract as others [134]. Therefore, cross-modal action recognition aims to transfer
knowledge from models trained on different modalities [134], leading to some advantages,
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including boosting the performance of a uni-modal model or weaker modality using a
stronger modality. Additionally, cross-modal may improve the performance in low-data
scenarios [134].

4.6. Explainability

Although deep learning models lead the state-of-the-art in video-based human action
recognition, the model outputs are often considered “black boxes” [155], meaning that it is
difficult to understand how they make decisions. Some application domains, including
video surveillance, imply decisions have real-work consequences; being able to explain
the model output is required to be trusted by humans and build transparency in any
ethical concern [22]. Explainability in video-based human action recognition is challenging
in addition to visual information, and it should include the ability to explain temporal
timeframes [22].

It is essential to mention that the current research directions are not standalone paths,
and research that combines them is relevant. For example, self-supervised learning is
complementary to few-shot learning [156]. Furthermore, knowledge distillation can be
used for cross-modal transfer learning [134]. Other relevant directions include studying new
data augmentation techniques [157], neural architecture search [4], and efficient network
training methods [26]. In addition, constructing a novel dataset that supports previous
research directions remains critical to developing novel methods [27].

5. Conclusions

This work provides an overview of the video-based human action recognition field.
We started by defining core concepts of the field, including the definition of what an action
is and the goal of video-based human action recognition. Then, we described the challenges
of action-class variability, sensor capabilities, environment conditions, dataset restrictions,
and computational constraints explaining their implications and possible consequences.
Finally, we introduced some of the most used datasets in the literature, including traditional
RGB-based datasets such as KTH, Weizmann, UCF101, HDMB51, Kinetics, ActivityNet,
and YouTube-8M. In addition, we found some datasets that provide additional modalities
inputs such as NTU RGB+D, Kinectics-Skeleton, and J-HMDB. The information presented
may help future works to have a shared understanding of the fundamental ideas of the field.

Conversely, to provide researchers with a clear intuition of what has been explored and
make complex concepts accessible, we explore the approaches proposed in the literature
and break down their evolution over time, emphasizing the intuitive notions that underpin
the approaches’ advancements. The explorations include traditional handcrafted and deep
learning approaches. We described local and global feature extraction methods and some
standard action classification techniques regarding handcrafted methods. Regarding deep
learning methods, we explored traditional methods, two-stream networks, and 3D CNN.

Finally, we explored current research directions and potential paths to help future
works identify novel opportunities and boost the process of constructing meaningful con-
tributions. We divided the directions into six blocks: implementation of new architectures,
new learning paradigms, new pretraining and transfer methods, exploration of novel
modalities, multi-modal and cross-modal, and finally, the model explainability.
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