
Citation: Laugksch, K.; Rousseau, P.;

Laubscher, R. A PINN Surrogate

Modeling Methodology for

Steady-State Integrated Thermofluid

Systems Modeling. Math. Comput.

Appl. 2023, 28, 52. https://doi.org/

10.3390/mca28020052

Academic Editors: Hans Beushausen

and Sebastian Skatulla

Received: 15 February 2023

Revised: 14 March 2023

Accepted: 22 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical

and Computational

Applications

Article

A PINN Surrogate Modeling Methodology for Steady-State
Integrated Thermofluid Systems Modeling
Kristina Laugksch 1,* , Pieter Rousseau 1 and Ryno Laubscher 2

1 Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch,
Cape Town 7701, South Africa

2 Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Private Bag X1, Matieland,
Stellenbosch 7602, South Africa

* Correspondence: lgkkri001@myuct.ac.za

Abstract: Physics-informed neural networks (PINNs) were developed to overcome the limitations
associated with the acquisition of large training data sets that are commonly encountered when using
purely data-driven machine learning methods. This paper proposes a PINN surrogate modeling
methodology for steady-state integrated thermofluid systems modeling based on the mass, energy,
and momentum balance equations, combined with the relevant component characteristics and fluid
property relationships. The methodology is applied to two thermofluid systems that encapsulate
the important phenomena typically encountered, namely: (i) a heat exchanger network with two
different fluid streams and components linked in series and parallel; and (ii) a recuperated closed
Brayton cycle with various turbomachines and heat exchangers. The results generated with the
PINN models were compared to benchmark solutions generated via conventional, physics-based
thermofluid process models. The largest average relative errors are 0.17% and 0.93% for the heat
exchanger network and Brayton cycle, respectively. It was shown that the use of a hybrid Adam-TNC
optimizer requires between 180 and 690 fewer iterations during the training process, thus providing
a significant computational advantage over a pure Adam optimization approach. The resulting
PINN models can make predictions 75 to 88 times faster than their respective conventional process
models. This highlights the potential for PINN surrogate models as a valuable engineering tool
in component and system design and optimization, as well as in real-time simulation for anomaly
detection, diagnosis, and forecasting.

Keywords: deep learning; physics-informed neural networks; thermofluid process modeling

1. Introduction

Machine learning methods, such as neural networks, are typically employed in sci-
entific fields to develop computationally efficient regression models with the capacity
to fit high-dimensional, highly non-linear relationships accurately. Neural networks are
emerging as valuable engineering tools for component and system design and optimization,
as well as for real-time simulation for anomaly detection, diagnosis, and forecasting [1].
Conventional neural network models are developed using large datasets of training data.
The data used to train such models are obtained from either experimental measurements
or simulation results. However, the prohibitive cost and low fidelity of experimental data
in industry-scale thermofluid systems, as well as the computational resources required
in conventional simulation, limit the usefulness of purely data-driven machine learning
methods for thermofluid process modeling [1,2]. Furthermore, purely data-driven neural
network models are not useful for making predictions for scenarios that fall outside of
the training range (i.e., extrapolating), therefore limiting their usefulness for thermofluid
process modeling.

Physics-informed neural networks (PINNs) were developed to overcome the limita-
tions of purely data-driven methods by embedding the physics equations directly into the

Math. Comput. Appl. 2023, 28, 52. https://doi.org/10.3390/mca28020052 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca28020052
https://doi.org/10.3390/mca28020052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-3832-1382
https://orcid.org/0000-0001-9039-3204
https://doi.org/10.3390/mca28020052
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca28020052?type=check_update&version=1

Math. Comput. Appl. 2023, 28, 52 2 of 17

neural network loss function, thus circumventing the need for large databases of training
data due to the physics-based regularization. The integration of prior knowledge, such as
the governing physics equations, into the training process of the neural network model
changes the training process from being supervised to being unsupervised. Thus far, PINNs
have largely been applied to problems in the field of multi-dimensional computational
fluid mechanics, but not to integrated thermofluid network modeling applications.

In the present work, the viability of applying a PINN surrogate modeling methodology
to integrated thermofluid networks is explored using PINN models developed for two
simple case studies. The scope of this work is limited to fully connected neural networks
only. The purpose of this work is to investigate the performance of the PINN surrogate mod-
els compared to conventional, physics-based thermofluid process models. The solutions
generated via the PINN models are therefore compared to benchmark solutions generated
via conventional, physics-based thermofluid process models. A comparison will be made
regarding the accuracy and computational speed of the two modeling methodologies.

Traditional thermofluid process models consist of physics-based methods that apply
relevant first principle equations to develop numerical solvers. There are a variety of widely
available industrial tools that apply such methods. For example, Ortega et al. [3] developed
a thermofluid process model to evaluate the performance of a directly heated tubular solar
receiver for an sCO2 Brayton cycle. The authors performed the required computational
fluid dynamics (CFD) modeling using the Ansys Fluent® [4] fluid simulation software.
This software applies numerical finite volume methods to solve the applicable partial
differential equations (PDEs). Rauch et al. [5] employed a process model for a combined
Brayton–Rankine cycle to determine the maximum thermal efficiency of the combined cycle.
The process model consisted of a complete mathematical model and was developed using
the Matlab® [6] programming platform, which is typically used for iterative analysis and
design processes. The work of Zhang et al. [7] provides another example of a physics-based
solver applied to thermofluid applications. The authors applied compartment models to
analyze the reheat steam temperatures in a double reheat coal-fired boiler. This involved
modeling the transfer of heat across different compartments, or control volumes within
the boiler system. Although these traditional physics-based numerical solvers are accurate,
they can be computationally expensive and time-consuming due to their complexity.

Recently, machine learning and deep learning techniques have been increasingly
applied to develop computationally efficient models of complex processes. One commonly
used technique is that of artificial neural networks (ANNs) in which many processing nodes,
known as neurons, are organized into a network of interconnected layers. Conventionally,
these ANNs are trained using large training datasets, and can thus be categorized as
an example of a data-driven machine learning technique. Several authors have applied
data-driven ANNs to a variety of thermofluid simulations. For example, Hosoz and
Ertunc [8] developed an ANN to predict the performance of an automotive air conditioning
(AAC) system. Haffejee and Laubscher [9] used a neural network to develop a data-driven
surrogate model for an air-cooled condenser system at a power plant. Fast and Palmé [10]
employed ANNs to develop a model for the online condition monitoring and diagnosis of
a combined heat and power plant. In these examples, the trained ANNs were able to model
the relevant systems with a high degree of accuracy while offering a significant increase in
computational speed in comparison to conventional thermofluid process models.

Despite the benefits of using artificial neural networks over traditional thermofluid
process models, several authors identified significant limitations of applying them to
thermofluid problems. Pacheco-Vega et al. [11] developed feedforward neural networks
to predict the performance of fin-tube heat exchangers used for refrigeration applications.
They demonstrated that the predictive performance of the trained networks was directly
linked to the size and distribution of the training data, with models built on undersized
data performing poorly. This work, therefore, showed that the usefulness of data-driven
surrogate modeling techniques is limited in applications where experimental or simulation
data are not readily available, which is typical of industry-scale thermofluid systems.

Math. Comput. Appl. 2023, 28, 52 3 of 17

Additionally, Willard et al. [12] note that ANNs can only provide reliable predictions for
instances that are within the bounds of the training space. ANNs are thus not effective for
scenarios where extrapolation beyond the training data is required.

PINNs were developed to overcome the challenges of traditional data-driven surrogate
modeling approaches. Raissi et al. [2] first proposed the concept of PINNs in 2019 as a
deep learning framework for solving complex physical systems. The authors used PINNs
to construct accurate and computationally efficient surrogate models for complex partial
differential equations across a variety of fields, such as the Schrödinger equation in quantum
mechanics and the Navier–Stokes equations in fluid mechanics.

Since their introduction, PINNs have largely been applied to problems in the field of
1D, 2D, and 3D fluid mechanics. For example, Sun et al. [13] used PINNs to approximate
the solutions to the Navier–Stokes equations to develop surrogate models of incompressible
fluid flows for cardiovascular applications. The authors demonstrated that the application
of a PINN methodology enabled the development of accurate surrogate models without the
use of any labeled training data (i.e., CFD simulation data). Ang and Ng [14] applied PINNs
to develop surrogate models for fluid flows around aerofoils at different angles of attack.
The surrogate models were used to make predictions for the pressure and velocity fields.
Once trained, the PINN surrogate models were able to generate results with comparable
accuracy up to 4.5 times faster than conventional CFD solvers, thus demonstrating the
significant reduction in computational cost that can be achieved with PINNs.

Zhu et al. [15] employed a physics-constrained learning approach to develop surro-
gate models for PDEs describing steady-state Darcy flow without labeled training data.
The authors demonstrated that, given out-of-distribution test inputs, the generalization
performance of the physics-constrained surrogate model was consistently better than that
of the data-driven alternative. Cai et al. [16] reviewed the application of PINNs to problems
in the field of fluid mechanics with reference to case studies that covered 3D incompress-
ible flow, compressible flow, and biomedical flow. The authors demonstrated that PINNs
are emerging as useful tools to simulate fluid flow for both forward problems, where
the solutions to the governing equations are approximated, and inverse problems, where
parameters characterizing the governing equation are extracted from the training data.
Solving ill-posed inverse problems is beyond the reach of both traditional computational
methods and purely data-driven machine learning methodologies.

Research into PINNs has gained significant momentum since their initial introduction,
resulting in numerous recent advances in the methodology. Jagtap et al. [17] investigated
the effect of using adaptive activation functions on the performance of PINNs used to
model the Klein-Gordon, Helmholtz, and Burgers’ equations. By introducing a scalable
hyperparameter into the activation functions, the authors were able to adjust the gradient
of the activation functions during training. In this way, the authors were able to increase
the rate of convergence in comparison to the constant activation functions conventionally
applied to neural networks. Wang et al. [18] applied the PINN methodology to a variety of
applications, including the Helmholtz equation and flow in a lid-driven cavity. The authors
proposed the use of a learning rate annealing algorithm to apply dynamic weights to the
various terms constituting a given PINN loss function. These weights were used to balance
the interplay between the different terms found in the neural network loss function. This
approach improved both the trainability and predictive accuracy of the PINNs.

Despite the recent momentum of research into PINNs, they have yet to be applied
to thermofluid process modeling applications (i.e., integrated 1D network modeling). No
examples of PINNs applied to thermofluid process modeling applications have thus been
observed in the literature.

In the present work, PINN models were developed for two integrated thermofluid
systems, namely, a heat exchanger network and a simple recuperated supercritical carbon
dioxide (sCO2) closed Brayton cycle. These models were created and trained on several
singular samples using the Python 3.10.6 and TensorFlow 2.0 libraries to demonstrate the
application of the proposed methodology.

Math. Comput. Appl. 2023, 28, 52 4 of 17

2. Theoretical Background and Methodology
2.1. Multilayer Perceptron Neural Networks

Multilayer perceptron (MLP) networks are the most used category of artificial neural
networks [19]. These networks can be trained to fit non-linear relationships between input
and output variables accurately through exposure to known examples of corresponding
data points. MLP networks consist of systems of interconnected signal processing nodes,
known as neurons, that are divided into three sections, namely the input layer, hidden lay-
ers, and output layer, as shown in Figure 1. In a fully connected MLP network, each neuron
in a given layer is connected to every other neuron in both the previous and subsequent
layers. The number of neurons per hidden layer, as well as the number of hidden layers,
are architecture hyperparameters that require tuning during the training process.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 4 of 18

examples of PINNs applied to thermofluid process modeling applications have thus been
observed in the literature.

In the present work, PINN models were developed for two integrated thermofluid
systems, namely, a heat exchanger network and a simple recuperated supercritical carbon
dioxide (sCO2) closed Brayton cycle. These models were created and trained on several
singular samples using the Python 3.10.6 and TensorFlow 2.0 libraries to demonstrate the
application of the proposed methodology.

2. Theoretical Background and Methodology
2.1. Multilayer Perceptron Neural Networks

Multilayer perceptron (MLP) networks are the most used category of artificial neural
networks [19]. These networks can be trained to fit non-linear relationships between input
and output variables accurately through exposure to known examples of corresponding
data points. MLP networks consist of systems of interconnected signal processing nodes,
known as neurons, that are divided into three sections, namely the input layer, hidden
layers, and output layer, as shown in Figure 1. In a fully connected MLP network, each
neuron in a given layer is connected to every other neuron in both the previous and sub-
sequent layers. The number of neurons per hidden layer, as well as the number of hidden
layers, are architecture hyperparameters that require tuning during the training process.

Figure 1. Typical architecture of a multilayer perceptron neural network.

To make a prediction, MLP networks feed the output from a neuron to each neuron
in the downstream layer of the network. This output signal is multiplied by a weight and
summed with the other incoming weighted signals. A bias value is added to this summed
signal. To calculate the output signal of a given layer 𝒂 , the summed weighted incoming
signal is then passed into a non-linear activation function. This process starts at the input
layer and is repeated until the signal reaches the output layer. The output signal from the
final layer is the predicted value of the MLP network. This process is known as forward
propagation and is given in vector form as follows: 𝒂 = 𝜎 𝒙 ∙ 𝒘 + 𝒃 (1)

In Equation (1), 𝒙 is the output vector from the previous layer, 𝑙 − 1, 𝒘 is a ma-
trix containing all the connecting weights for the layer, 𝒃 is a vector containing the layer
biases, and 𝜎 represents the activation function for the layer.

The network weights and biases constitute the trainable network parameters. These
parameters are optimized to produce accurate predictions by minimizing a selected loss
function. Typically, the mean squared error (MSE) between the predicted values 𝒚 and
the target values from the training dataset 𝒀 is used as the loss function for MLP net-
works. The MSE loss function is given as:

Figure 1. Typical architecture of a multilayer perceptron neural network.

To make a prediction, MLP networks feed the output from a neuron to each neuron
in the downstream layer of the network. This output signal is multiplied by a weight and
summed with the other incoming weighted signals. A bias value is added to this summed

signal. To calculate the output signal of a given layer
−
al , the summed weighted incoming

signal is then passed into a non-linear activation function. This process starts at the input
layer and is repeated until the signal reaches the output layer. The output signal from the
final layer is the predicted value of the MLP network. This process is known as forward
propagation and is given in vector form as follows:

−
al = σl

(
−
x l−1·

−
wl +

−
bl

)
(1)

In Equation (1),
−
x l−1 is the output vector from the previous layer, l − 1,

−
wl is a matrix

containing all the connecting weights for the layer,
−
bl is a vector containing the layer biases,

and σl represents the activation function for the layer.
The network weights and biases constitute the trainable network parameters. These

parameters are optimized to produce accurate predictions by minimizing a selected loss
function. Typically, the mean squared error (MSE) between the predicted values ŷ and the
target values from the training dataset Y is used as the loss function for MLP networks. The
MSE loss function is given as:

MSE(ŷ, Y) =
1
n∑n

i=1(ŷi −Yi)
2 (2)

The loss function is minimized using a gradient-based optimization process which
requires the gradient of the loss function with respect to the trainable network parameters.
With these gradients known, the trainable network parameters are updated iteratively to

Math. Comput. Appl. 2023, 28, 52 5 of 17

minimize the loss function. The use of the given target values implies that MLP neural
networks rely on supervised learning, as opposed to unsupervised learning.

2.2. PINN Methodology for Thermofluid Process Modeling

In the thermofluid network process modeling methodology, the system layout is
described in terms of nodes and elements, as shown schematically in Figure 2.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 5 of 18

𝑀𝑆𝐸(𝒚, 𝒀) = ∑ (𝑦 − 𝑌) (2)

The loss function is minimized using a gradient-based optimization process which
requires the gradient of the loss function with respect to the trainable network parameters.
With these gradients known, the trainable network parameters are updated iteratively to
minimize the loss function. The use of the given target values implies that MLP neural
networks rely on supervised learning, as opposed to unsupervised learning.

2.2. PINN Methodology for Thermofluid Process Modeling
In the thermofluid network process modeling methodology, the system layout is de-

scribed in terms of nodes and elements, as shown schematically in Figure 2.

Figure 2. Thermofluid network represented by nodes and elements.

An element is a control volume that represents a physical component such as a pipe,
valve, heat exchanger, boiler, or turbine. Each element has one inlet and one outlet and
the fluid properties within the element are assumed to be represented by a single
weighted average value between the inlet and the outlet. An element may also represent
a single subdivision or increment of a physical component, such as a heat exchanger, that
is discretized into several control volumes. A node represents the connection point be-
tween elements, which may also be a physical reservoir or tank. Nodes may therefore
have multiple inlets and outlets with the fluid properties within a node assumed to be
homogeneous and represented by a single averaged value.

MLPs form the foundation for PINNs, however, the loss functions for PINNs are con-
structed differently from those for MLPs. Instead of considering the difference between
the predicted and target values, the governing physics equations for the system being
modeled are embedded directly into the PINN loss function. For thermofluid process
modeling applications, the governing physics equations are the mass, energy, and mo-
mentum balance equations. The mass flow rate (𝑚 [kg/s]), total enthalpy (ℎ [J/kg]), and
total pressure (𝑝 [Pa]) are the fundamentally conserved quantities in the respective bal-
ance equations. These quantities are therefore the target parameters for which the PINN
models generate predictions. The mass and energy balance equations are written for each
node, while the momentum balance equation is written between the inlet and outlet of
each element.

The generic forms of the balance equations are derived under the assumption of one-
dimensional, steady-state flow through the network elements and are given by:

Mass balance (written for each node): Σ𝑚 = Σ𝑚 (3)

Energy balance (written for each node): Σ𝑚 ℎ = Σ𝑚 ℎ + 𝑄 − 𝑊 (4)

Figure 2. Thermofluid network represented by nodes and elements.

An element is a control volume that represents a physical component such as a
pipe, valve, heat exchanger, boiler, or turbine. Each element has one inlet and one outlet
and the fluid properties within the element are assumed to be represented by a single
weighted average value between the inlet and the outlet. An element may also represent
a single subdivision or increment of a physical component, such as a heat exchanger,
that is discretized into several control volumes. A node represents the connection point
between elements, which may also be a physical reservoir or tank. Nodes may therefore
have multiple inlets and outlets with the fluid properties within a node assumed to be
homogeneous and represented by a single averaged value.

MLPs form the foundation for PINNs, however, the loss functions for PINNs are con-
structed differently from those for MLPs. Instead of considering the difference between the
predicted and target values, the governing physics equations for the system being modeled
are embedded directly into the PINN loss function. For thermofluid process modeling
applications, the governing physics equations are the mass, energy, and momentum bal-
ance equations. The mass flow rate (

.
m[kg/s]), total enthalpy (h0[J/kg]), and total pressure

(p0[Pa]) are the fundamentally conserved quantities in the respective balance equations.
These quantities are therefore the target parameters for which the PINN models generate
predictions. The mass and energy balance equations are written for each node, while the
momentum balance equation is written between the inlet and outlet of each element.

The generic forms of the balance equations are derived under the assumption of
one-dimensional, steady-state flow through the network elements and are given by:

Mass balance (written for each node):

Σ
.

me = Σ
.

mi (3)

Energy balance (written for each node):

Σ
.

meh0e = Σ
.

mih0i +
.

Q−
.

W (4)

Momentum balance (written for each element):

p0e = p0i + ∆p0M − ∆p0L (5)

.
Q[W] is the rate of heat transfer to the fluid,

.
W[W] is the rate of work done by the

fluid, ∆p0M[Pa] is the total pressure rise due to work done on the fluid, and ∆p0L[Pa] is

Math. Comput. Appl. 2023, 28, 52 6 of 17

the total pressure loss. For the purposes of the high-level integrated analysis that is the
focus here, it will be assumed that the differences in the kinetic and potential energy terms
between the inlets and outlets that form part of the total enthalpy and total pressure are
negligible. This means that the total property values may be approximated with the static
property values, and therefore h0 ≈ h and p0 ≈ p in Equations (4) and (5), respectively.

The values of the terms in the different balance equations are typically of different
orders of magnitude and dependent on the specific application. For instance, one could find
that

.
m ≈ 102 kg/s,

.
mh ≈ 107 W, and p ≈ 106 Pa. These large differences will result in the

energy balance equations providing larger contributions to the overall PINN loss function
than the mass or momentum balance equations. As a result, the optimizer will be biased
towards minimizing the disproportionately large energy balance losses during the training
of the PINN, while neglecting the smaller mass and momentum losses [1]. This biased
optimization process is highly undesirable as it ultimately leads to prolonged training times
and inaccurate results. To prevent this, the conserved variables are normalized, and the
balance equations are implemented in their non-dimensional (i.e., normalized) form. The
normalized variables are defined as:

.
m∗ =

.
m
.

m∞
, p∗ =

p
p∞

, h∗ =
h

h∞
(6)

In Equation (6), * denotes a non-dimensional variable. The variables are normalized
using reference quantities (i.e.,

.
m∞, p∞, h∞). The magnitudes of these reference quantities

are selected such that they represented the maximum physically realistic values of the
relevant variables for the specific thermofluid system.

The balance equations are applied throughout the thermofluid system to generate a
set of residual functions. This entails writing the normalized balance equations with all
quantities on one side of the equal sign. Using this approach, the generic residual loss
functions for thermofluid systems are given as:

fmass = Σ
.

me
∗ − Σ

.
mi
∗ (7)

fenergy = Σ
.

m∗e h∗e − Σ
.

m∗i h∗i −
.

Q
.

m∞h∞
+

.
W

.
m∞h∞

(8)

fmom = p∗e − p∗i −
∆p0M

p∞
+

∆p0L
p∞

(9)

The different residual functions for the balance equations are then collected to form
combined residual loss functions. The combined mass balance residual (Jmass), energy
balance residual (Jenergy

)
, and momentum balance residual (Jmom) are calculated as mean

squared losses and are given by:

Jmass =
1

Nmass
∑Nmass

i=1 (fmass)
2 (10)

Jenergy =
1

Nenergy
∑Nenergy

i=1

(
fenergy

)2 (11)

Jmom =
1

Nmom
∑Nmom

i=1 (fmom)
2 (12)

The residual loss functions are then added together to obtain the overall PINN loss
function as follows:

Jloss = β1 Jmass + β2 Jenergy + β3 Jmom (13)

In Equation (13), β1, β2, and β3 are user-defined weighting coefficients for the different
residual loss functions.

Math. Comput. Appl. 2023, 28, 52 7 of 17

The residual loss functions require the calculation of fluid properties and component
characteristics for various thermofluid network components, such as specific work, specific
heat, and pressure change, as inputs. The generic forms of the component characteristic
equations are given as follows:

Total pressure rise due to work done on the fluid:

∆p0M = p0i(PR− 1) (14)

with PR = p0e
p0i

the total pressure ratio over the machine.
Total pressure loss:

∆p0L =
K
ρ

∣∣ .
m
∣∣ .
m (15)

with ρ the average fluid density and K a non-dimensional total pressure loss factor.
Rate of work done by the fluid:

.
W = η

.
m(hi − hes) (16)

with η the isentropic efficiency of the machine and hes the isentropic outlet enthalpy.
Rate of heat transfer to the fluid:

.
Qh =

.
Qmax,h∣∣∣ .
Qmax,h

∣∣∣ εHX
.

QmaxHX (17)

.
Qc =

.
Qmax,c∣∣∣ .
Qmax,c

∣∣∣ εHX
.

QmaxHX (18)

with εHX the heat exchanger’s effectiveness,
.

QmaxHX the maximum possible rate of heat
transfer, and the subscripts h and c referring to the hot and cold fluid streams, respectively.

In Equations (17) and (18), the maximum possible rate of heat transfer across the heat
exchanger (

.
QmaxHX) is given by:

.
QmaxHX = min

(∣∣∣ .
Qmax,h

∣∣∣, ∣∣∣ .
Qmax,c

∣∣∣) (19)

with the maximum possible rates of heat transfer for the hot and cold fluid streams,
respectively, defined as:

.
Qmax,h =

.
m
(
hh|Tci − hh|Thi

)
(20)

.
Qmax,c =

.
m
(
hc|Thi − hc|Tci

)
(21)

In Equation (20), hh|Tci and hh|Thi are the enthalpy of the hot fluid at the inlet tem-
perature of the cold fluid and the hot fluid, respectively, and in Equation (21) hc|Thi and
hc|Tci are the enthalpy of the cold fluid at the inlet temperature of the hot fluid and the cold
fluid, respectively.

In this work, the component characteristics are calculated within the PINN loss func-
tion. However, the required fluid properties are updated outside the loss function and then
fed into the loss function for each evaluation. The fluid property calculations introduce
additional non-linearities for which the PINN models need to account, over and above the
set of non-linear balance and component characteristic equations. In this work, a bicubic
interpolation scheme was applied to produce a set of non-linear interpolation functions
capable of accurately approximating any required fluid properties given an input set of
pressure and enthalpy values. The actual fluid properties used to generate these functions
were obtained from the CoolProp fluid property library [20]. Figure 3 provides two ex-

Math. Comput. Appl. 2023, 28, 52 8 of 17

amples of non-linear fluid property relationships that were captured using the bicubic
interpolation scheme.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 8 of 18

two examples of non-linear fluid property relationships that were captured using the
bicubic interpolation scheme.

(a) (b)

Figure 3. (a) Viscosity of carbon dioxide as a function of enthalpy and pressure; (b) Thermal con-
ductivity of air as a function of enthalpy and pressure.

Besides the conserved variables (𝑚, ℎ, 𝑝), there may also be other fluid properties
(such as temperature 𝑇 [𝐾]) and/or component characteristic variables (such as a pressure
loss coefficient 𝐾) that form part of the input features of the neural network. It is also
important to normalize these parameters to obtain a normalized input feature vector in
order to minimize the training time [21].

Two different optimization approaches were used to train the PINN model. One set
of PINN models was trained using only the first-order Adam optimization algorithm [22]
to update the network parameters. Adam was selected as the optimization algorithm for
this work as it has been shown to outperform other optimization algorithms when train-
ing PINNs [23]. A second set of PINN models was trained using a hybrid optimizer in
which the Adam optimizer was initially used to prime the parameters before a second-
order optimizer was applied in conjunction with the Adam optimizer to train the network
to convergence [24]. The truncated Newton method (TNC) was used as the second-order
optimizer and implemented by coupling the SciPy minimize function with the neural net-
work built in TensorFlow. When applying both a first- and second-order optimizer, the
PINN model must first be trained using only the first-order optimizer for a set number of
iterations before being refined using the second-order optimizer. This prevents the model
from converging to a local minimum too quickly, as would be the case if the second-order
optimizer was implemented on its own [24]. In this work, the first 400 iterations of the
optimization process were completed using Adam before the TNC optimizer was applied.

In this work, the optimization process was primarily terminated based on a tolerance
value for the total model loss. This ensured that the PINN models achieved a certain level
of accuracy in their predictions. The value of 1 × 10−6 was selected as the desired tolerance
for the total model loss. A second restriction of a maximum number of iterations was
placed on the optimization process of the PINN models to prevent the process from run-
ning indefinitely, should the models not be able to reach the desired tolerance specified
above.

3. Case Studies
3.1. Heat Exchanger Network

In the present work, a simple heat exchanger network was modeled using the PINN
methodology. Heat is transferred via various heat exchangers between two different fluid
streams, namely air and supercritical carbon dioxide (sCO2). Despite its simplicity, the heat
exchanger network encapsulates the important phenomena and complexities associated
with thermofluid process modeling, as it requires the application of mass, energy, and

Figure 3. (a) Viscosity of carbon dioxide as a function of enthalpy and pressure; (b) Thermal conduc-
tivity of air as a function of enthalpy and pressure.

Besides the conserved variables (
.

m, h, p), there may also be other fluid properties (such
as temperature T[K]) and/or component characteristic variables (such as a pressure loss
coefficient K) that form part of the input features of the neural network. It is also important
to normalize these parameters to obtain a normalized input feature vector in order to
minimize the training time [21].

Two different optimization approaches were used to train the PINN model. One set
of PINN models was trained using only the first-order Adam optimization algorithm [22]
to update the network parameters. Adam was selected as the optimization algorithm for
this work as it has been shown to outperform other optimization algorithms when training
PINNs [23]. A second set of PINN models was trained using a hybrid optimizer in which
the Adam optimizer was initially used to prime the parameters before a second-order
optimizer was applied in conjunction with the Adam optimizer to train the network to
convergence [24]. The truncated Newton method (TNC) was used as the second-order
optimizer and implemented by coupling the SciPy minimize function with the neural
network built in TensorFlow. When applying both a first- and second-order optimizer, the
PINN model must first be trained using only the first-order optimizer for a set number of
iterations before being refined using the second-order optimizer. This prevents the model
from converging to a local minimum too quickly, as would be the case if the second-order
optimizer was implemented on its own [24]. In this work, the first 400 iterations of the
optimization process were completed using Adam before the TNC optimizer was applied.

In this work, the optimization process was primarily terminated based on a tolerance
value for the total model loss. This ensured that the PINN models achieved a certain level of
accuracy in their predictions. The value of 1× 10−6 was selected as the desired tolerance for
the total model loss. A second restriction of a maximum number of iterations was placed
on the optimization process of the PINN models to prevent the process from running
indefinitely, should the models not be able to reach the desired tolerance specified above.

3. Case Studies
3.1. Heat Exchanger Network

In the present work, a simple heat exchanger network was modeled using the PINN
methodology. Heat is transferred via various heat exchangers between two different fluid
streams, namely air and supercritical carbon dioxide (sCO2). Despite its simplicity, the heat
exchanger network encapsulates the important phenomena and complexities associated
with thermofluid process modeling, as it requires the application of mass, energy, and
momentum balances, two different fluids with heat transfer, and components configured
in parallel and series. The layout of the heat exchanger network is shown in Figure 4.

Math. Comput. Appl. 2023, 28, 52 9 of 17

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 9 of 18

momentum balances, two different fluids with heat transfer, and components configured in
parallel and series. The layout of the heat exchanger network is shown in Figure 4.

Figure 4. Thermofluid network model superimposed onto the physical layout of the heat exchanger
system. Heat exchanger—HX.

The PINN model for the heat exchanger network predicts the enthalpies and pres-
sures at each of the nodes, as well as the mass flow rates through each of the elements for
both the gas and sCO2 flow networks. The input parameters for the network are given in
Table 1. These parameters were varied to generate different sample points, thus simulat-
ing a variety of operating conditions.

Table 1. Input feature parameters for the heat exchanger network.

Parameter Symbol
Outlet pressures 𝑝 , , 𝑝 ,

Inlet mass flow rates 𝑚 , , 𝑚 ,
Inlet temperatures 𝑇 , , 𝑇 ,

Heat exchanger lumped loss coefficients 𝐾 , 𝐾 , 𝐾
Heat exchanger effectiveness values 𝜀 , 𝜀 , 𝜀

The generic residual loss functions given in Equations (7)–(9) were applied to the heat
exchanger network. For this case study, both the rate of work done by the fluid (𝑊) and
the total pressure rise due to work done on the fluid (Δ𝑝) are set to zero for all heat
exchangers. Overall, 22 equations are solved simultaneously by minimizing the total com-
bined residual loss.

The PINN model for the heat exchanger network uses the sigmoid activation function
for the hidden layers and the linear activation function for the output layer. The definition
of the sigmoid and linear activation functions are given in Equations (22) and (23), respec-
tively. 𝜎 (𝑥) = (22)𝜎 (𝑥) = 𝑥 (23)

The conventional process model for the heat exchanger network uses the set of gov-
erning equations for the system (i.e., the steady-state mass, momentum, and energy bal-
ance equations) written in a linearized form. The linearized equations were then used to
construct two matrices, namely, one for the mass and momentum balance equations and
another for the energy balance equations. [𝑿][𝒀] = [𝒁] (24)

In Equation (24), [𝑿] represents a matrix of coefficients, [𝒀] represents a vector of
unknown quantities (e.g., unknown pressures), and [𝒁] represents the source term

Figure 4. Thermofluid network model superimposed onto the physical layout of the heat exchanger
system. Heat exchanger—HX.

The PINN model for the heat exchanger network predicts the enthalpies and pressures
at each of the nodes, as well as the mass flow rates through each of the elements for both
the gas and sCO2 flow networks. The input parameters for the network are given in Table 1.
These parameters were varied to generate different sample points, thus simulating a variety
of operating conditions.

Table 1. Input feature parameters for the heat exchanger network.

Parameter Symbol

Outlet pressures pout,g, pout,CO2
Inlet mass flow rates

.
min,g,

.
min,CO2

Inlet temperatures Tin,g, Tin,CO2
Heat exchanger lumped loss coefficients K1, K2, K3

Heat exchanger effectiveness values ε1, ε2, ε3

The generic residual loss functions given in Equations (7)–(9) were applied to the
heat exchanger network. For this case study, both the rate of work done by the fluid (

.
W)

and the total pressure rise due to work done on the fluid (∆p0M) are set to zero for all
heat exchangers. Overall, 22 equations are solved simultaneously by minimizing the total
combined residual loss.

The PINN model for the heat exchanger network uses the sigmoid activation function
for the hidden layers and the linear activation function for the output layer. The definition of
the sigmoid and linear activation functions are given in Equations (22) and (23), respectively.

σLinear(x) =
1

1 + e−x (22)

σLinear(x) = x (23)

The conventional process model for the heat exchanger network uses the set of govern-
ing equations for the system (i.e., the steady-state mass, momentum, and energy balance
equations) written in a linearized form. The linearized equations were then used to con-
struct two matrices, namely, one for the mass and momentum balance equations and
another for the energy balance equations.

[X][Y] = [Z] (24)

In Equation (24), [X] represents a matrix of coefficients, [Y] represents a vector of
unknown quantities (e.g., unknown pressures), and [Z] represents the source term vector.
The set of linearized equations is then solved directly by inverting the coefficient matrices
for the mass and momentum balance matrix as well as that for the energy balance matrix.

Math. Comput. Appl. 2023, 28, 52 10 of 17

3.2. Recuperated Closed Brayton Cycle

In the present work, a simple recuperated supercritical carbon dioxide Brayton cycle
was modeled using the PINN methodology. The simple sCO2 Brayton cycle was selected
as an additional case study as it requires the consideration of different turbomachine
components with associated non-linear performance characteristics, in addition to heat
transfer processes. The process flow diagram for this cycle is shown in Figure 5.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 10 of 18

vector. The set of linearized equations is then solved directly by inverting the coefficient
matrices for the mass and momentum balance matrix as well as that for the energy balance
matrix.

3.2. Recuperated Closed Brayton Cycle
In the present work, a simple recuperated supercritical carbon dioxide Brayton cycle

was modeled using the PINN methodology. The simple sCO2 Brayton cycle was selected
as an additional case study as it requires the consideration of different turbomachine com-
ponents with associated non-linear performance characteristics, in addition to heat trans-
fer processes. The process flow diagram for this cycle is shown in Figure 5.

Figure 5. Process flow diagram for the recuperated Brayton cycle. Compressor—C, recuperator heat
exchanger—RX, heater—H, turbine—T, pre-cooler—PC.

The PINN model for the recuperated Brayton cycle predicts the enthalpies and pres-
sures at each of the nodes, as well as the total mass flow rates through the cycle. The input
parameters for the recuperated Brayton cycle are given in Table 2. These parameters were
varied to generate different sample points, thus simulating a variety of operating condi-
tions.

Table 2. Input feature parameters for the recuperated Brayton cycle.

Parameter Symbol
Heat exchanger lumped loss coefficients 𝐾

Heat exchanger effectiveness values 𝜀 , 𝜀 , 𝜀
Minimum cycle temperature 𝑇
Maximum cycle temperature 𝑇

Minimum cycle pressure 𝑝

The generic residual loss functions given in Equations (7)–(9) were applied to the
recuperated Brayton cycle. For this case study, both the rate of work done by the fluid (𝑊)
and the total pressure rise due to work done on the fluid (Δ𝑝) are set to zero for all heat
exchangers, and the rate of heat transfer to the fluid (𝑄) is set to zero for all turbomachin-
ery. A set of 12 simultaneous equations is solved by minimizing the total combined resid-
ual loss.

The pressure ratio and efficiency versus mass flow rate characteristics of the turbo
machines are represented via second-order polynomial curves. For the purposes of the
present work, these curves were not obtained from actual performance data, but simply
mimic the typical trends observed in real-world turbomachines. The coefficients for these
polynomials are given in Table 3. The resulting component characteristic performance
graphs for the compressor and turbine are shown in Figures 6 and 7, respectively. These
polynomial curve fits introduce additional non-linearities which need to be accounted for
by the PINN model. The PINN model for the recuperated sCO2 Brayton cycle uses the

Figure 5. Process flow diagram for the recuperated Brayton cycle. Compressor—C, recuperator heat
exchanger—RX, heater—H, turbine—T, pre-cooler—PC.

The PINN model for the recuperated Brayton cycle predicts the enthalpies and pres-
sures at each of the nodes, as well as the total mass flow rates through the cycle. The
input parameters for the recuperated Brayton cycle are given in Table 2. These pa-
rameters were varied to generate different sample points, thus simulating a variety of
operating conditions.

Table 2. Input feature parameters for the recuperated Brayton cycle.

Parameter Symbol

Heat exchanger lumped loss coefficients K
Heat exchanger effectiveness values εRX , εH , εPC

Minimum cycle temperature TL
Maximum cycle temperature TH

Minimum cycle pressure pL

The generic residual loss functions given in Equations (7)–(9) were applied to the
recuperated Brayton cycle. For this case study, both the rate of work done by the fluid
(

.
W) and the total pressure rise due to work done on the fluid (∆p0M) are set to zero

for all heat exchangers, and the rate of heat transfer to the fluid (
.

Q) is set to zero for all
turbomachinery. A set of 12 simultaneous equations is solved by minimizing the total
combined residual loss.

The pressure ratio and efficiency versus mass flow rate characteristics of the turbo
machines are represented via second-order polynomial curves. For the purposes of the
present work, these curves were not obtained from actual performance data, but simply
mimic the typical trends observed in real-world turbomachines. The coefficients for these
polynomials are given in Table 3. The resulting component characteristic performance
graphs for the compressor and turbine are shown in Figures 6 and 7, respectively. These
polynomial curve fits introduce additional non-linearities which need to be accounted
for by the PINN model. The PINN model for the recuperated sCO2 Brayton cycle uses
the hyperbolic tangent activation function for the hidden layers and the linear activation

Math. Comput. Appl. 2023, 28, 52 11 of 17

function for the output layer. The definition of the hyperbolic tangent and linear activation
functions are given in Equations (25) and (23), respectively.

σtanh(x) =
1− e−2x

1 + e−2x (25)

Table 3. Coefficients for the second-order polynomial machine performance curves.

Compressor Turbine

a0C 3.947422 a0T −8.437242 × 10−23

a1C 5.373162 × 102 a1T 3.313531 × 10−9

a2C −8.776627 × 105 a2T 9.730980 × 106

b0C −1.942890 × 10−16 b0T 1.054712 × 10−15

b1C 1.453743 × 103 b1T 3.199740 × 103

b2C −5.936429 × 105 b2T −2.752242 × 106

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 11 of 18

hyperbolic tangent activation function for the hidden layers and the linear activation func-
tion for the output layer. The definition of the hyperbolic tangent and linear activation
functions are given in Equations (25) and (23), respectively. 𝜎 (𝑥) = (25)

The conventional process model for the heat exchanger network uses the set of gov-
erning equations for the system (i.e., the steady-state mass, momentum, and energy bal-
ance equations). This set of non-linear equations is solved simultaneously by iteratively
applying a root-finding function until sufficient accuracy is obtained.

(a) (b)

Figure 6. (a) Pressure ratio vs. corrected mass flow rate for the compressor; (b) Isentropic efficiency
vs. corrected mass flow rate for the compressor.

(a) (b)

Figure 7. (a) Pressure ratio vs. corrected mass flow rate for the turbine; (b) Isentropic efficiency vs.
corrected mass flow rate for the turbine.

Table 3. Coefficients for the second-order polynomial machine performance curves.

Compressor Turbine
a0C 3.947422 a0T −8.437242 × 10−23
a1C 5.373162 × 102 a1T 3.313531 × 10−9
a2C −8.776627 × 105 a2T 9.730980 × 106
b0C −1.942890 × 10−16 b0T 1.054712 × 10−15
b1C 1.453743 × 103 b1T 3.199740 × 103
b2C −5.936429 × 105 b2T −2.752242 × 106

Figure 6. (a) Pressure ratio vs. corrected mass flow rate for the compressor; (b) Isentropic efficiency
vs. corrected mass flow rate for the compressor.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 11 of 18

hyperbolic tangent activation function for the hidden layers and the linear activation func-
tion for the output layer. The definition of the hyperbolic tangent and linear activation
functions are given in Equations (25) and (23), respectively. 𝜎 (𝑥) = (25)

The conventional process model for the heat exchanger network uses the set of gov-
erning equations for the system (i.e., the steady-state mass, momentum, and energy bal-
ance equations). This set of non-linear equations is solved simultaneously by iteratively
applying a root-finding function until sufficient accuracy is obtained.

(a) (b)

Figure 6. (a) Pressure ratio vs. corrected mass flow rate for the compressor; (b) Isentropic efficiency
vs. corrected mass flow rate for the compressor.

(a) (b)

Figure 7. (a) Pressure ratio vs. corrected mass flow rate for the turbine; (b) Isentropic efficiency vs.
corrected mass flow rate for the turbine.

Table 3. Coefficients for the second-order polynomial machine performance curves.

Compressor Turbine
a0C 3.947422 a0T −8.437242 × 10−23
a1C 5.373162 × 102 a1T 3.313531 × 10−9
a2C −8.776627 × 105 a2T 9.730980 × 106
b0C −1.942890 × 10−16 b0T 1.054712 × 10−15
b1C 1.453743 × 103 b1T 3.199740 × 103
b2C −5.936429 × 105 b2T −2.752242 × 106

Figure 7. (a) Pressure ratio vs. corrected mass flow rate for the turbine; (b) Isentropic efficiency vs.
corrected mass flow rate for the turbine.

The conventional process model for the heat exchanger network uses the set of govern-
ing equations for the system (i.e., the steady-state mass, momentum, and energy balance
equations). This set of non-linear equations is solved simultaneously by iteratively applying
a root-finding function until sufficient accuracy is obtained.

Math. Comput. Appl. 2023, 28, 52 12 of 17

4. Results and Discussion
4.1. PINN Training Process

Initially, the weights for the two PINN models were randomly initialized using the
Xavier procedure, while the network biases were all set to zero [25]. The heat exchanger
PINN was trained from this randomly initialized state using only the balance equation loss
function. Although this approach did result in convergence on some occasions, the majority
of the predictions made during training were completely unrealistic, and the models failed
to converge. For example, some predictions included negative values for both pressure
and enthalpy. This can be attributed to the fact that the random initialization of network
parameters resulted in the PINN model sometimes searching for a solution outside of the
physically realistic domain.

To combat this, the trainable network parameters were preconditioned to predict
physically realistic results by predicting prescribed values for all the mass flow rates,
enthalpies, and pressures. This was achieved with a supervised pre-training step whereby
the desired output values at all the nodes and elements throughout the thermofluid system
were set equal to prescribed boundary values, and then training the PINN to predict these
values. In effect, the PINN is pre-trained in a supervised mode to predict a trivial result
in order to obtain realistic initial values for the trainable parameters. Using this two-step
training approach, the PINN models consistently produced realistic results.

In the case of the heat exchanger network, the boundary values were the inlet mass
flow rate and temperature, as well as the outlet pressures. In the case of the recuperated
Brayton cycle, the boundary values were the minimum cycle temperature, as well as
guessed values for the cycle mass flow rate and pressure.

4.2. Hyperparameter Search Results

A coarse grid search was implemented to find the best-performing fully connected
PINN configurations for each of the two thermofluid networks. The hyperparameter search
was implemented on the models which made use of the supervised pre-training step and
used only the Adam optimizer during training, for which the learning rate was fixed at
1 × 10−4 and 5 × 10−5 for the heat exchanger network and the Brayton cycle, respectively.

The effects of the number of hidden layers and the number of neurons per hidden layer
on the total model loss were investigated. For the heat exchanger network, the number of
hidden layers was 1, 2, and 3. For each of these model depths, the number of neurons per
hidden layer was 1, 8, 16, and 32. Similarly for the recuperated Brayton cycle, the number
of hidden layers was 1, 2, and 3. However, for each of these model depths, the number of
neurons per hidden layer was 1, 8, and 16. The results of the architecture hyperparameter
search for the heat exchanger network and the recuperated Brayton cycle are shown in
Tables 4 and 5, respectively.

The results in Tables 4 and 5 show that the total model loss can be reduced by increasing
either the depth of the neural network or the number of neurons per hidden layer. However,
the number of neurons per hidden layer had a more prominent effect on the total model
loss than the depth of the neural network.

Table 4. Total model losses for different architectures for the heat exchanger network.

Number of Neurons per Layer
Number of Hidden Layers

1 2 3

1 1.7 × 10−1 1.2 × 10−1 1.1 × 10−1

8 2.6 × 10−2 1.6 × 10−2 1.2 × 10−2

16 1.3 × 10−3 1.0 × 10−3 1.8 × 10−4

32 6.5 × 10−5 1.5 × 10−5 5.7 × 10−6

Math. Comput. Appl. 2023, 28, 52 13 of 17

Table 5. Total model losses for different architectures for the recuperated Brayton cycle.

Number of Neurons per Layer
Number of Hidden Layers

1 2 3

1 1.8 × 10−1 1.1 × 10−1 8.7 × 10−2

8 3.2 × 10−2 5.1 × 10−3 2.3 × 10−3

16 4.5 × 10−5 4.7 × 10−6 1.0 × 10−6

In this work, the architecture configurations with the smallest total model loss values
were selected. The final PINN model for the heat exchanger network, therefore, consists of
three hidden layers with 32 neurons each, whereas the PINN for the recuperated Brayton
cycle consists of three hidden layers with 16 neurons per layer.

4.3. PINN Results: Accuracy

In this work, two PINN models with different optimization approaches were devel-
oped for each case study as outlined in Section 2.2. A total of four PINN models were
therefore developed. The PINN models for each of the case studies were trained and
tested on 10 different samples which covered a range of operating conditions for the two
thermofluid systems, such as different temperatures, pressures, and mass flow rates. The
PINN models were trained and tested on each of these samples to demonstrate the range
of validity of the PINN methodology. The statistical method known as Latin hypercube
sampling was employed to ensure that the selected sample points sufficiently cover the
full range of values possible within the design space [26]. The solutions generated by
the trained PINN models for the different samples were compared against benchmark
solutions that were generated using the conventional, physics-based thermofluid process
models of the systems. The results of this comparison for the heat exchanger network are
shown in Tables 6 and 7, and the results for the recuperated Brayton cycle are shown in
Tables 8 and 9.

Table 6. Performance (absolute and relative errors) per output parameter for the PINN model of the
heat exchanger network that used only Adam for optimization.

.
mCO2
[kg/s]

hCO2
[kJ/kg]

pCO2
[kPa]

.
mair

[kg/s]
hair

[kJ/kg]
pair

[kPa]

Maximum 0.0052 2.3697 4.1911 0.0169 2.6047 0.1615
Minimum 2.98 × 10−4 1.77 × 10−1 3.51 × 10−3 1.67 × 10−3 9.78 × 10−2 4.19 × 10−3

Average 0.0030 1.4519 0.4699 0.0061 1.1724 0.0809
Max (%) 0.1227 0.2743 0.0182 0.3211 0.3124 0.1440
Min (%) 5.70 × 10−3 2.21 × 10−2 2.39 × 10−5 3.03 × 10−2 1.25 × 10−2 3.84 × 10−3

Avg (%) 0.0611 0.1745 0.0020 0.1165 0.1421 0.0738

Table 7. Performance (absolute and relative errors) per output parameter for the PINN model of the
heat exchanger network that used the hybrid Adam-TNC optimizer.

.
mCO2
[kg/s]

hCO2
[kJ/kg]

pCO2
[kPa]

.
mair

[kg/s]
hair

[kJ/kg]
pair

[kPa]

Maximum 0.0057 1.9053 2.8155 0.0117 1.6225 0.1079
Minimum 8.97 × 10−5 6.34 × 10−1 7.16 × 10−3 5.19 × 10−4 7.24 × 10−1 1.19 × 10−2

Average 0.0031 1.3730 0.3685 0.0055 1.1017 0.0681
Max (%) 0.1442 0.2683 0.0133 0.2700 0.1946 0.0966
Min (%) 1.71 × 10−3 7.95 × 10−2 4.88 × 10−5 9.02 × 10−3 9.22 × 10−2 1.15 × 10−2

Avg (%) 0.0648 0.1662 0.0018 0.1109 0.1351 0.0618

Math. Comput. Appl. 2023, 28, 52 14 of 17

Table 8. Performance (absolute and relative errors) per output parameter for the PINN model of the
recuperated Brayton cycle that used only Adam for optimization.

.
m [kg/s] h [kJ/kg] p [kPa]

Maximum 7.046 22.389 171.208
Minimum 0.420 0.417 19.630
Average 3.162 6.379 85.745
Max (%) 1.127 3.128 0.803
Min (%) 0.0813 0.0609 0.1062
Avg (%) 0.5353 0.9266 0.4545

Table 9. Performance (absolute and relative errors) per output parameter for the PINN model of the
recuperated Brayton cycle that used the hybrid Adam-TNC optimizer.

.
m [kg/s] h [kJ/kg] p [kPa]

Maximum 6.753 22.133 145.228
Minimum 1.013 0.448 19.887
Average 2.920 6.155 80.600
Max (%) 1.080 3.092 0.767
Min (%) 0.171 0.065 0.108
Avg (%) 0.499 0.893 0.429

The results shown in Tables 6 and 7 illustrate that both the PINN models for the
heat exchanger network were able to produce results for the mass flow rates, pressures,
and enthalpies that are within 0.17% of the benchmark solutions. There is no significant
difference in the accuracy of the two optimization approaches. Similarly, the results shown
in Tables 8 and 9 illustrate that both the PINN models were able to make predictions for
the recuperated Brayton cycle that are in close agreement with the benchmark solutions.
The two PINN models produced average relative errors that are less than 0.93% for the
mass flow rates, pressures, and enthalpies. Once again, there is no significant difference in
accuracy between the two optimization approaches.

These results illustrate that the PINN modeling methodology can be applied to model
thermofluid systems to generate accurate predictions. Interestingly, the PINN models
of the heat exchanger network produced predictions with lower relative errors than the
models of the recuperated Brayton cycle. This can likely be attributed to the additional
non-linearities present in the Brayton cycle as a result of the inclusion of the turbomachine
performance characteristics.

4.4. PINN Results: Computational Expense

Figures 8 and 9 provide training histories for the unsupervised training processes of
the four different PINN models. The training histories show that, on average, the PINN
models that used the hybrid Adam-TNC optimizer converged to an acceptable tolerance in
fewer iterations than the models that used only the Adam optimizer. This is true for both the
heat exchanger network and the recuperated Brayton cycle. This finding is corroborated by
the results shown in Table 10 which provide a summary of the number of training iterations
each PINN model required to reach convergence. The use of the second-order optimizer
reduced the average number of iterations by approximately 180 in the case of the heat
exchanger and 690 in the case of the Brayton cycle. This demonstrates that, in general, the
use of the hybrid Adam-TNC optimization approach reduces the computational expense of
training PINNs.

Furthermore, the PINN model for the Brayton cycle that used the hybrid Adam-TNC
optimizer was able to reach the required tolerance for all samples within the maximum
number of iterations, whereas the model that only used the Adam optimizer was un-
able to do so for one of the samples. The hybrid Adam-TNC optimization approach is
therefore the more desirable approach for training PINN models for the two integrated
thermofluid systems.

Math. Comput. Appl. 2023, 28, 52 15 of 17Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 15 of 18

(a) (b)

Figure 8. (a) Training history for the unsupervised training of the PINN model of the heat exchanger
network using only the Adam optimizer; (b) Training history for the unsupervised training of the
PINN model of the heat exchanger network using a combination of the Adam optimizer and the
truncated Newton method. The various colors each represent a different sample of the same simu-
lation.

(a) (b)

Figure 9. (a) Training history for the unsupervised training of the PINN model of the recuperated
Brayton cycle using only the Adam optimizer; (b) Training history for the unsupervised training of
the PINN model of the recuperated Brayton cycle using a combination of the Adam optimizer and
the truncated Newton method. The various colors each represent a different sample of the same
simulation.

Table 10. Number of iterations for the various PINN models.

 Heat Exchanger Network Brayton Cycle
 Adam Only Adam and TNC Adam Only Adam and TNC

Max 1582 1203 1600 922
Min 724 566 874 431
Avg 1044 866.1 1268.7 577.6

Furthermore, the PINN model for the Brayton cycle that used the hybrid Adam-TNC
optimizer was able to reach the required tolerance for all samples within the maximum
number of iterations, whereas the model that only used the Adam optimizer was unable
to do so for one of the samples. The hybrid Adam-TNC optimization approach is therefore
the more desirable approach for training PINN models for the two integrated thermofluid
systems.

Figure 8. (a) Training history for the unsupervised training of the PINN model of the heat exchanger
network using only the Adam optimizer; (b) Training history for the unsupervised training of the
PINN model of the heat exchanger network using a combination of the Adam optimizer and the trun-
cated Newton method. The various colors each represent a different sample of the same simulation.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 15 of 18

(a) (b)

Figure 8. (a) Training history for the unsupervised training of the PINN model of the heat exchanger
network using only the Adam optimizer; (b) Training history for the unsupervised training of the
PINN model of the heat exchanger network using a combination of the Adam optimizer and the
truncated Newton method. The various colors each represent a different sample of the same simu-
lation.

(a) (b)

Figure 9. (a) Training history for the unsupervised training of the PINN model of the recuperated
Brayton cycle using only the Adam optimizer; (b) Training history for the unsupervised training of
the PINN model of the recuperated Brayton cycle using a combination of the Adam optimizer and
the truncated Newton method. The various colors each represent a different sample of the same
simulation.

Table 10. Number of iterations for the various PINN models.

 Heat Exchanger Network Brayton Cycle
 Adam Only Adam and TNC Adam Only Adam and TNC

Max 1582 1203 1600 922
Min 724 566 874 431
Avg 1044 866.1 1268.7 577.6

Furthermore, the PINN model for the Brayton cycle that used the hybrid Adam-TNC
optimizer was able to reach the required tolerance for all samples within the maximum
number of iterations, whereas the model that only used the Adam optimizer was unable
to do so for one of the samples. The hybrid Adam-TNC optimization approach is therefore
the more desirable approach for training PINN models for the two integrated thermofluid
systems.

Figure 9. (a) Training history for the unsupervised training of the PINN model of the recuperated
Brayton cycle using only the Adam optimizer; (b) Training history for the unsupervised training
of the PINN model of the recuperated Brayton cycle using a combination of the Adam optimizer
and the truncated Newton method. The various colors each represent a different sample of the
same simulation.

Table 10. Number of iterations for the various PINN models.

Heat Exchanger Network Brayton Cycle
Adam Only Adam and TNC Adam Only Adam and TNC

Max 1582 1203 1600 922
Min 724 566 874 431
Avg 1044 866.1 1268.7 577.6

Once trained, the PINN models were able to make predictions for the two thermofluid
systems in a fraction of the time taken by the conventional process models, as is shown in
Table 11. On average, the PINN model of the heat exchanger made predictions 75 times
faster than the conventional process model for the same system, whereas the PINN model
of the Brayton cycle made predictions 88 times faster than the conventional process model
for the same system. These results demonstrate that the PINN modeling methodology
enables significant reductions in computational time in comparison to conventional process

Math. Comput. Appl. 2023, 28, 52 16 of 17

modeling methods. It is therefore likely that PINNs will offer significant reductions in
computational expense when the problem is scaled up to include large data samples for
surrogate modeling. Furthermore, it is likely that PINNs will successfully be applied to
thermofluid problems that require real-time simulation.

Table 11. Time taken to generate a solution.

Heat Exchanger Network Brayton Cycle
Trained PINN Conventional Process Model Trained PINN Conventional Process Model

Max (s) 0.0156 0.5369 0.0092 0.5690
Min (s) 0.0018 0.2890 0.0010 0.1396
Avg (s) 0.0053 0.3976 0.0033 0.2904

5. Conclusions

It was shown that a PINN modeling methodology can be applied successfully to
model integrated thermofluid systems using the non-dimensionalized forms of the mass,
energy, and momentum balance equations in the loss function. The trainable network
parameters must first be trained using a supervised pre-training step before the PINN
loss function is implemented to ensure consistent performance and accurate predictions
from the PINN models. Furthermore, it was shown that the use of a hybrid Adam-TNC
optimizer provided a significant computational advantage over a pure Adam optimization
approach, as PINN models trained with this approach required significantly fewer training
iterations to reach convergence.

It was shown that the time taken for the trained PINN models to make a prediction is
in the order of 1 × 10−3 s. This is a significant improvement over the conventional process
models which required 1× 10−1 s to generate a solution. If these modeling approaches are
to be applied to a more complex thermofluid network, the time taken for the conventional
model to generate a solution will scale non-linearly and it is likely that it would require
approximately 1 × 101 s to generate a solution. By contrast, the inference speed of PINNs
remains constant, regardless of the complexity of the network, provided that the GPU
RAM is not exceeded [27]. This means that for a problem that requires 10 model calls it
would take 1 × 102 s to generate a solution using a conventional process model, but only
1 × 10−2 s using a PINN model. This highlights the potential for PINN surrogate models
as a valuable engineering tool in component and system design and optimization, as well
as in real-time simulation for anomaly detection, diagnosis, and forecasting.

Further work will entail the expansion of the PINN modeling methodology to multiple
simultaneous samples to investigate the capacity of PINNs to be used for interpolation
and extrapolation as well as surrogate modeling. Furthermore, future work could also
investigate the effect of different network structures, such as graph convolutional neural
networks and convolutional structures, on the PINN loss function.

Author Contributions: Conceptualization, K.L., P.R. and R.L.; methodology, K.L., P.R. and R.L.;
software, K.L.; formal analysis, K.L.; writing—original draft preparation, K.L.; writing—review and
editing, P.R. and R.L.; visualization, K.L.; supervision, P.R. and R.L.; funding acquisition, K.L. and
P.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work is based on research supported by the National Research Foundation of South
Africa (Grant Numbers 138618 and 148757) and the University of Cape Town.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Math. Comput. Appl. 2023, 28, 52 17 of 17

References
1. Laubscher, R.; Rousseau, P. Application of mixed-variable physics-informed neural networks to solve normalised momentum

and energy transport equations for 2D internal convective flow. arXiv 2021. [CrossRef]
2. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
3. Ortega, J.; Khivsara, S.; Christian, J.; Ho, C.; Yellowhair, J.; Dutta, P. Coupled modeling of a directly heated tubular solar receiver

for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation. Appl. Therm. Eng. 2016, 109, 970–978.
[CrossRef]

4. Ansys. Ansys Fluent Fluid Simulation Software. Available online: https://www.ansys.com/products/fluids/ansys-fluent
(accessed on 28 June 2022).

5. Rauch, M.; Galović, A.; Virag, Z. Optimization of Combined Brayton-Rankine Cycle with Respect to the Total Thermal Efficiency.
Trans. Famena 2016, 40, 1–10.

6. MathsWorks. MatLab. Available online: https://www.mathworks.com/products/matlab.html (accessed on 28 June 2022).
7. Zhang, J.; Xu, W.; Zhang, Z.; Fan, H.; Wu, X.; Dong, J. Application of Response Surface Methodology for Analysis of Reheat Steam

Temperatures in a Double Reheat Coal-Fired Boiler. J. Therm. Sci. 2022, 31, 2203–2215. [CrossRef]
8. Hosoz, M.; Ertunc, H.M. Artificial neural network analysis of an automobile air conditioning system. Energy Convers. Manag.

2006, 47, 1574–1587. [CrossRef]
9. Haffejee, R.A.; Laubscher, R. Application of machine learning to develop a real-time air-cooled condenser monitoring platform

using thermofluid simulation data. Energy AI 2021, 3, 100048. [CrossRef]
10. Fast, M.; Palmé, T. Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and

power plant. Energy 2010, 35, 1114–1120. [CrossRef]
11. Pacheco-Vega, A.; Sen, M.; Yang, K.T.; McClain, R.L. Neural network analysis of fin-tube refrigerating heat exchanger with limited

experimental data. Int. J. Heat Mass Transf. 2001, 44, 763–770. [CrossRef]
12. Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating Scientific Knowledge with Machine Learning for Engineering and

Environmental Systems. arXiv 2022. [CrossRef]
13. Sun, L.; Gao, H.; Pan, S.; Wang, J.-X. Surrogate modeling for fluid flows based on physics-constrained deep learning without

simulation data. Comput. Methods Appl. Mech. Eng. 2020, 361, 112732. [CrossRef]
14. Ang, E.; Ng, B.F. Physics-Informed Neural Networks for Flow Around Airfoil. In Proceedings of the AIAA SCITECH 2022 Forum,

San Diego, CA, USA, 3–7 January 2022.
15. Zhu, Y.; Zabaras, N.; Koutsourelakis, P.-S.; Perdikaris, P. Physics-constrained deep learning for high-dimensional surrogate

modeling and uncertainty quantification without labeled data. J. Comput. Phys. 2019, 394, 56–81. [CrossRef]
16. Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review.

Acta Mech. Sin. 2021, 37, 1727–1738. [CrossRef]
17. Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-

informed neural networks. J. Comput. Phys. 2020, 404, 109136. [CrossRef]
18. Wang, S.; Teng, Y.; Perdikaris, P. Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv

2020. [CrossRef]
19. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; MIT Press: Cambridge, MA, USA, 2016.
20. CoolProp. Welcome to CoolProp. Available online: http://www.coolprop.org/# (accessed on 8 August 2022).
21. Rawlins, B.T.; Laubscher, R.; Rousseau, P. An integrated data-driven surrogate model and thermofluid network-based model of a

620 MWe utility-scale boiler. Proc. Inst. Mech. Eng. Part A J. Power Energy 2022. [CrossRef]
22. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations (ICLR), San Diego, CA, USA; 2015.
23. Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R. A physics-informed deep learning framework for inversion and

surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Eng. 2021, 379, 113741. [CrossRef]
24. Markidis, S. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Front. Big Data

2021, 4, 669097. [CrossRef] [PubMed]
25. Kumar, S.K. On weight initialization in deep neural networks. arXiv 2017. [CrossRef]
26. Thombrea, M.N.; Preisiga, H.A.; Addisa, M.B. Developing Surrogate Models via Computer Based Experiments. Comput. Aided

Chem. Eng. 2015, 37, 641–646.
27. Laubscher, R. Utilization of Artificial Neural Networks to Resolve Chemical Kinetics in Turbulent Fine Structures of an Advanced

CFD Combustion Model. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.48550/arXiv.2105.10889
http://doi.org/10.1016/j.jcp.2018.10.045
http://doi.org/10.1016/j.applthermaleng.2016.05.178
https://www.ansys.com/products/fluids/ansys-fluent
https://www.mathworks.com/products/matlab.html
http://doi.org/10.1007/s11630-022-1464-5
http://doi.org/10.1016/j.enconman.2005.08.008
http://doi.org/10.1016/j.egyai.2021.100048
http://doi.org/10.1016/j.energy.2009.06.005
http://doi.org/10.1016/S0017-9310(00)00139-3
http://doi.org/10.1145/3514228
http://doi.org/10.1016/j.cma.2019.112732
http://doi.org/10.1016/j.jcp.2019.05.024
http://doi.org/10.1007/s10409-021-01148-1
http://doi.org/10.1016/j.jcp.2019.109136
http://doi.org/10.1137/20M1318043
http://www.coolprop.org/#
http://doi.org/10.1177/09576509221148231
http://doi.org/10.1016/j.cma.2021.113741
http://doi.org/10.3389/fdata.2021.669097
http://www.ncbi.nlm.nih.gov/pubmed/34870188
http://doi.org/10.48550/arXiv.1704.08863

	Introduction
	Theoretical Background and Methodology
	Multilayer Perceptron Neural Networks
	PINN Methodology for Thermofluid Process Modeling

	Case Studies
	Heat Exchanger Network
	Recuperated Closed Brayton Cycle

	Results and Discussion
	PINN Training Process
	Hyperparameter Search Results
	PINN Results: Accuracy
	PINN Results: Computational Expense

	Conclusions
	References

