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Abstract: Corrugated paperboard is a sandwich structure composed of wavy paper (fluting) bonded
between two flat paper sheets (liners). The analysis of an entire package using three-dimensional
numerical finite element models is computationally expensive due to the waved geometry of the
board that requires the use of a relatively large number of elements in a simulation. Because
of this, homogenisation approaches are used to evaluate equivalent homogenous models with
similar material properties. These techniques have been successfully implemented by various
researchers to evaluate the strength of corrugated paperboard. However, studies analysing the
various homogenisation techniques and their ranges of applicability are limited. This study analyses
the application of three homogenisation techniques: classical laminate plate theory, first-order shear
deformation theory and deformation energy equivalence method in the evaluation of effective
elastic material properties. In addition, inverse analysis has been applied to determine the effective
properties of the board. Finite element models have been used to evaluate the accuracy of the three
homogenisation techniques in comparison to the inverse method in modelling four-point bending
tests and the results reported.

Keywords: homogenisation; corrugated paperboard; finite element analysis

1. Introduction

Paperboard is an anisotropic structure consisting of two in-plane directions, namely,
the machine direction (MD) and the cross direction (CD) which is perpendicular to the MD
and the out-of-plane direction (ZD) [1]. Paperboard exhibits different properties in the MD,
CD and ZD directions due to the fact that the fibers are aligned more in the flow direction
(MD) during the manufacturing process [2–4].

Due to its light weight, affordability and high stiffness per unit weight, corrugated
paperboard is the preferred material being widely used in the packaging industry for
manufacturing packages [5–7]. FE (Finite Element) modelling is increasingly being used in
the analysis of corrugated board packaging because it enables engineers to evaluate the
performance of new package designs while eliminating the need for physical prototyping
and experimental testing [6–13].

FE modelling has been employed by several researchers to evaluate the mechanical
properties of corrugated paperboard, which include failure and collapse, creasing, stability
and buckling [6,8–16]. The analysis of a complete package using three-dimensional(3D)
models is computationally expensive and time-consuming due to the complex waved
geometry of corrugated paperboard that necessitates the use of a high number of elements
in the analysis. Due to these constraints, corrugated paperboard must be homogenised to a
simple equivalent orthotropic laminate by replacing the waved geometry of the corrugated
board with a two-dimensional (2D) laminate structure that represents the behaviour of the
board [17].

Current homogenisation techniques applied for corrugated paperboard include clas-
sical laminate plate theory (CLPT), first-order shear deformation theory (FSDT) and the
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deformation energy equivalence method (DEEM). In these methods the properties of the
individual kraft paper are used to analytically calculate the “homogenised” equivalent
material properties for a laminate or single-layered board, which are then directly applied
in the FE model [6,9,12,18,19].

Inverse analysis can also be applied in the homogenisation of corrugated paperboard.
It has been applied by various researchers for model calibration [20–22], and involves
evaluation of the optimal material model properties by using an FE model that duplicates
the conditions of the physical test. It then calibrates the results by decreasing the difference
between the numerical and experimental results. Studies highlighting the application of
inverse analysis in the homogenisation of corrugated paperboard are limited. This study
proposes the application of inverse analysis as a homogenisation technique for corrugated
paperboard and seeks to evaluate the effectiveness of the homogenisation approaches
highlighted above in finite element modelling of corrugated paperboard while comparing
them to inverse analysis.

In this study, three homogenisation techniques, CLPT, FSDT and DEEM have been
used to calculate the equivalent material properties of corrugated paperboard using ma-
terial properties obtained from [7]. For CLPT and FSDT only the corrugated core was
homogenised, and the board was modelled as a three-layered composite with two liners
and a homogenised core. Using DEEM, the entire corrugated board was homogenised
and modelled as a single-layered board. Inverse analysis has also been applied as a ho-
mogenisation method using structural and homogenised FE models of three-point bending
(3PB) tests, and the objective function to be optimised was constructed from the differ-
ence between structural and homogenised tests force–displacement results. FE models
and experimental tests have been used to analyse the accuracy of the above-mentioned
homogenisation techniques in modelling the four-point bending (4PB) test.

2. Materials and Methods
2.1. Homogenisation of Corrugated Paperboard

This section discusses in detail the homogenisation approaches that were followed
to determine the equivalent elastic properties of corrugated paperboard as a laminate
structure and a single-layered board. The material properties were determined from tensile
tests conducted on individual paper sheet samples of the C-flute board combination of
250KL/150SC/250KL and are presented in Table 1 [7]. The designations 250KL and 150SC
refer to the paper grammages and types: 250 gsm (grams per square metre) virgin kraft
liner and 150 gsm semi-chemical fluting paper. The out-of-plane elastic modulus, E3, was
determined using Equation (1) [23]:

E3 =
E1

190
(1)

The shear moduli were determined using Equation (2) by [24]:

G13 =
E1

55
, G12 = 0.387

√
E1E2, G23 =

E2

35
(2)

Table 1. Measured elastic properties of individual paper sheets

Paper Type Thickness (mm) E1 (MPa) E2 (MPa) ν12

150SC 0.25 4709 2918 0.39
250KL 0.35 6695 2310 0.50
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2.1.1. Classical Laminate Plate Theory

A method similar to those described by [6,7,25] was used to determine the equivalent
material properties of the corrugated core. Strains and stresses of the corrugated core
(fluting) were transformed using Equations (3) and (4) [6,7].

{ε}xyz = [Tε]{ε}123 (3)

{σ}123 = [Tσ]{σ}xyz (4)

where Tε and Tσ are strain and stress transformation matrices defined as Equations (5) and
(6), respectively:

Tε =



c2 0 s2 0 −sc 0
0 1 0 0 0 0
s2 0 c2 0 sc 0
0 0 0 c 0 −s

2cs 0 −2cs 0 (c2 − s2) 0
0 0 0 −s 0 c

 (5)

Tσ =



c2 0 s2 0 2sc 0
0 1 0 0 0 0
s2 0 c2 0 −2sc 0
0 0 0 c 0 −s
−cs 0 cs 0 (c2 − s2) 0

0 0 0 −s 0 c

 (6)

where c = cos(θ) and s = sin(θ) [6].
Because of the fluting’s waved geometry, the material properties for each section, dx,

differ in the global coordinate system since the local system is constantly rotating. Therefore,
the material properties, which were measured in the local coordinate system (123) have to
be transformed to the global coordinate system (xyz). The fluting’s position can therefore
be described as follows:

h(x) =
h f

2
sin
(

2πx
P

)
(7)

where h(x) is the distance from the centre line to the fluting, h f is the height of the fluting
and P is the fluting’s wavelength (Figure 1). The rotation angle is calculated as follows:

θ(x) = arctan
(

dh(x)
dx

)
(8)

The material compliance matrix, C, is built as a 3D matrix (Equation (9)) and rotated and
reduced to a 2D matrix.

C123 =



1/E1 −ν12/E1 −ν13/E1 0 0 0
−ν12/E1 1/E2 −ν23/E2 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G23

 (9)

where C123 is the material compliance matrix, E is Young’s modulus, ν is Poisson’s ratio
and G is the shear modulus of the material, xyz and 123 are the global and local coordinate
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systems of the material. The fluting is transformed from the local coordinate system to the
global coordinate system using the transformation matrices in Equation (10).

{ε}xyz = [Tε]{ε}123 = [Tε][C]123]{σ}123 = [Tε][C]123[Tσ]{σ}xyz, [C]xyz] = [Tε][C]123[Tσ] (10)

The transformed matrices are given by Equation (11):

{σ} =

 σx
σy
τxy

 = [Q(θ)]


εx
εy

γxy

 =


Ex

(1−νxyνyx)

νxyEy
(1−νxyνyx)

0
νxyEx

(1−νxyνyx)

Ey
(1−νxyνyx)

0

0 0 Gxy




εx
εy

γxy

 (11)

where Q is the plane stress material stiffness matrix. Using Kirchhoff–Love plate theory,
in-plane strains can be disassembled into mid-plane strains and curvature (Equations (12)
and (13)) since they vary linearly over the thickness of the element. Therefore, the strains at
any distance z from the mid-plane is calculated as follows [25]:

{ε} = {ε0}+ z{k} (12)

while the laminar stresses are expressed using Hooke’s Law as

{σ} = [Q(θ)]({ε0}+ z{k}) (13)

Integrating Equations (12) and (13) provides the in-plane normal, N, and bending moments,
M, as shown in Equations (14) and (15):

N =
∫ H/2

−H/2
{σ}dz =

∫ H/2

−H/2
[Q(θ)]({ε0}) + z{k}dz (14)

M =
∫ H/2

−H/2
{σ}zdz =

∫ H/2

−H/2
[Q(θ)]({ε0}) + z{k}zdz (15)

where H is the board thickness. Equations (14) and (15) can be written alternatively:{
N
M

}
=

[
A B
B D

]{
ε
k

}
(16)

where A is the extensional stiffness matrix, B is the bending-coupling stiffness matrix and
D is the bending stiffness matrix obtained through integrating the thickness as shown in
Equations (17)–(19) [7,25]:

[A(x)] =
∫ H/2

−H/2
[Q]dz = [Q]tvc (17)

[B(x)] =
∫ H/2

−H/2
[Q]zdz = [Q]zctvc (18)

[D(x)] =
∫ H/2

−H/2
[Q]z2dz = [Q]z2

c tvc +
t3
vc

12
(19)

where tvc is the vertical thickness of the corrugated core calculated as follows:

tvc =
t f

cos(θ)
(20)
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and t f represents the thickness of the fluting (Figure 1). The stiffness of the board was then
determined by integrating the section’s stiffness over an interval of the fluting’s period, P:

(A, B, D)global =
1
P

∫ P

0
A(x), B(x), D(x)dx (21)

The above algorithm was applied in MATLAB and the resultant material properties ob-
tained from homogenisation of the corrugated core are presented in Table 2.

Figure 1. Paperboard cross-section showing the front view of the top and bottom liners and the
fluting. Here the subscripts ls, li and f denote the top and bottom liner and fluting, respectively,
while t is the thickness of each layer (Figure 1), Z represents the thickness direction coordinate of the
liners and fluting with its origin on the centre line (mid-plane) [25].

Table 2. Equivalent material properties of corrugated paperboard obtained from homogenisation.

Technique Effective Thickness (mm) E1 (MPa) E2 (MPa) ν12 G12 (MPa)

CLPT 4.4 26.66 235.03 0.02 20.64
FSDT 4.6 73.13 218.47 0.07 15.72
DEEM 6.0 797.19 442.51 0.41 182.15

2.1.2. First-Order Shear Deformation Theory

An approach similar to the method presented by [26] was used to determine the
equivalent elastic properties of the corrugated core (fluting). The equation for a layer, k, in
the laminate is expressed as Equations (22)–(25) [27]: σxx

σyy
σxy


k

=

 Q11 Q12 0
Q12 Q22 0

0 0 Q66


k


εxx
εyy
γxy


k

(22)

[
σyz
σxz

]
k
=

[
Q44 0

0 Q55

]
k

[
εyz
γxz

]
k

(23)

εm =

 εxx
εyy
γxy

 =

 ε0
xx

ε0
yy

γ0
xy

+ Z

 Kx
Ky
Kxy

 (24)

γs =

[
γyz
γxz

]
=

[
γ0

yz
γ0

xz

]
(25)
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where ε0
ij are the mid-plane strains, Kx and Ky the bending curvatures, Kxy the twisting

curvature and z the thickness-direction coordinate [26]. By differentiating in-plane stresses
σxx, σyy, σxy from transverse shear stresses σyz, σxz and the strains described as mid-plane,
flexural and transverse shear strains, the stress–strain relations can be written as shown in
Equation (26) [6,19,27,28].

Qk =

Q11 Q12 0
Q12 Q22 0

0 0 Q66


k

=

 1/Ex −νxy/Ex 0
−νxy/Ex 1/Ex 0

0 0 1/Gxy

−1

k

(26)

Q∗k =

[
Q44 0

0 Q55

]
k
=

[
1/Gyz 0

0 1/Gxz

]−1

k
(27)

The resultant forces N, T and bending moments, M, are calculated by integrating the
stresses through the thickness of each layer, and summing up the n, layers thus reducing
the laminate from 3D to 2D [26,27]:

Nx
Ny
Nxy

 =
n

∑
K=1

∫ zk

zk−1


σxx
σyy
σxy


k

dz (28)


Mx
My
Mxy

 =
n

∑
K=1

∫ zk

zk−1


σxx
σyy
σxy


k

zdz (29)

{
Ty
Tx

}
=

n

∑
K=1

∫ zk

zk−1

{
σyz
σxz

}
k
zdz (30)

Consider the bending and twisting curvature and mid-plane and transverse shear strains
are independent of z:

N =
n

∑
k=1

[Q]kεm

∫ zk

zk−1
dz +

N

∑
k=1

[Q]kk
∫ zk

zk−1
zdz (31)

M =
n

∑
k=1

[Q]kεm

∫ zk

zk−1
zdz +

N

∑
k=1

[Q]kk
∫ zk

zk−1
z2dz (32)

T =
n

∑
k=1

Q∗k γs

∫ zk

zk−1
dz (33)

The stiffness matrices (Table A2) of the laminate are defined by Equations (34)–(37) [26]:

A =
n

∑
k=1

Qk(Zk − Zk−1) =
n

∑
k=1

Qktk (34)
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B =
1
2

n

∑
k=1

Qk(Z2
k − Z2

k−1) =
n

∑
k=1

QktkZk (35)

D =
1
3

n

∑
k=1

Qk(Z3
k − Z3

k−1) =
n

∑
k=1

QktkZ2
k +

t3
k

12
(36)

H =
n

∑
k=1

Q∗k (Zk − Zk−1) =
n

∑
k=1

Q∗k tk (37)

Here, tk represents the thickness of each layer and Zk is the thickness direction coordinate
of each layer. Considering Equations (34) to (37) the resultant forces and bending moments,
they can be written in matrix form as follows:

N
M
T

 =

 A B 0
B D 0
0 0 H


εm
k
σ

 (38)

The above algorithm was used to determine the equivalent elastic properties of the corru-
gated fluting using the measured material properties in Table 1. The material properties
obtained from homogenisation of the corrugated core are presented in Table 2.

2.1.3. Deformation Energy-Equivalence Method

This is a numerical homogenisation method that is used to calculate the equivalent
material properties of corrugated paperboard as a single layer as opposed to a laminate as
described in CLPT and FSDT. It involves using an FE model of a representative volume
element (RVE) to obtain the effective elastic properties of corrugated paperboard as pro-
posed by [12,25,29]. For corrugated paperboard, RVE is an element whose total length is
equal to the fluting’s wavelength and is modelled using shell elements to obtain the board’s
stiffness [25]. The proposed method utilises the energy equivalence of the shell and the full
RVE model to obtain the [ABD] matrix of the board.

For this study the geometry of the RVE was created in Inventor Professional (Autodesk
US, San Francisco, CA, USA, 2023), and the 0.5 mm square mesh of shell elements consisting
of 1944 nodes (Figure 2) was generated using MSC Apex (MSC Software Corporation,
Newport Beach, CA, USA, 2021). The geometry of a single wall corrugated paperboard
with C flutes was developed by connecting three layers consisting of two liners and a
fluting medium together. The connection between the liner and corrugated fluting was
modelled by connecting the extreme positions of the fluting directly to the liners by sharing
the same nodes. If none of the internal nodes are loaded, then Equation (39) is fulfilled:

Kue = Fe (39)

where K is the stiffness matrix of external (boundary) degrees of freedom (DOFs) obtained
using static condensation.
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External  nodes

Figure 2. RVE used in the energy-equivalence homogenisation technique showing the 248 external
nodes used for evaluation of the global stiffness matrix.

The stiffness matrix was condensed to the outer edges of the RVE which consisted of
248 nodes with 5 degrees of freedom per node; x, y and z translation and rotation about the
x and y axes. The overall stiffness matrix is expressed as follows [25]:[

Kee Kei
Kie Kii

][
ue
ui

]
=

[
Fe
0

]
(40)

where subscripts e and i correspond to the external and internal degrees of freedom,
respectively. Substituting into Equation (39) gives

K = Kee − KeiK−1
ii Kie (41)

The system’s total energy is given by Equation (42) [25]:

E =
1
2

uT
e Fe =

1
2

uT
e Kue (42)

According to Kirchhoff–Love plate theory, if there is a constant strain distribution over an
element, the relationship between the displacement of the node and strain of that node can
be represented as shown in Equation (43) [25]:




ux
uy
uz
φx
φy


j


T

= [
[
Ae
]

j ]





εx
εy
εz
Kx
Ky
Kxy


j


(43)

where Kx and Ky the bending curvatures, Kxy the twisting curvature. Equation (43) can
also be represented as:

uT
e = [Ae]jKj (44)
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where [Ae]j represents the displacement distribution over an element given the strains
represented as Equation (45) for shell elements:

[Ae]j =


xj 0 yj/2 xjzj 0 (zjyj)/2
0 yj xj/2 0 zjyj (zjxj)/2
0 0 0 −(xjxj)/2 −(yjyj)/2 −(xjyj)/2
0 0 0 0 −yj −xj/2
0 0 0 0 0 yj/2

 (45)

where xj,yj,zj are the coordinates of the jth node of the FE model. Substituting Equations
(42) and (44) gives Equation (46).

E =
1
2

uT
e Kue =

1
2

AT
e kTKAek (46)

The internal energy of the shell subjected to bending is given by

E =
1
2

kT [ABD]k{AREA} (47)

Equating Equations (46) and (47) gives the [ABD] matrix used to calculate the equivalent
elastic parameters of the board:

[ABD] =
AT

e kTKAe

{AREA} (48)

Msc Marc was used to extract the global stiffness matrix and the coordinates of the external
nodes from the RVE mesh applied in MATLAB to assemble the global stiffness matrix
to a 1240 by 1240 matrix, which was used to calculate the general stiffness matrix [ABD]
(Table A3) of the corrugated board.

Structural and homogenised boards have different cross-sections, therefore the stress
distribution along the thickness is altered in the process of homogenisation [17]. This
implies that for a homogenised symmetric panel of thickness, t, only one of either the
extensional, A, or bending matrices, D, will be represented correctly. To ensure that both
matrices are recovered correctly, the effective thickness, thom, of the homogenised board is
calculated as follows [17]:

thom =

√
D11 + D22 + D33

A11 + A22 + A33
(49)

2.2. Inverse Analysis

Inverse analysis makes use of a finite element model to duplicate the conditions of
the experimental test first, and then optimises the material properties of the FE model by
reducing the error between the experiments and the FE analysis [20].

In this study, structural and homogenised FE models of 3PB tests were set up to repre-
sent the physical and numerical tests, respectively. The objective function to be optimised
was constructed from the differences between the 3PB structural and 3PB homogenised
tests’ force–displacement results as shown in Equations (50) and (51).

Msc Marc was used for the FE analysis. Design Optimization Tools (DOT) [30], a
gradient-based optimisation library for engineering applications was used for the optimisa-
tion. A python script that communicates with both DOT and Msc Marc was developed, and
DOT was provided with the material properties of the FE model as variables to optimise. A
Sequential Quadratic Programming (SQP) optimisation algorithm in DOT was employed
to perform the optimisation. Figure 3 shows the numerical architecture that was used for
the optimisation.
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The 3D geometry of the corrugated board used to model the 3PB structural tests was
created using Inventor Professional and the mesh generated using Msc Apex by joining the
three layers, consisting of two liner-boards and a fluting medium. The adhesive between
the liner and corrugated fluting was modelled by connecting the extreme positions of the
fluting directly to the liners by sharing the same nodes. Figure 4 illustrates the developed
mesh for the three-point bending models incorporating symmetry.

Yes

Constraints

g = 1

Latin Hypercube Function
(starting points)

Create  Msc Marc 
procedure file

Extract force–
displacement data from

numerical and experimental
models

Print violated
constraints 
variables

g = -1

Save force–
displacement dataObjective function

DOT  converges to
an optimum objective

function value.

Msc Marc 
(Run procedure

file)

Proceed to next
starting point 

Python

Msc Marc 

DOT

No

DOT (design optimisation
tools)

Latin hypercube function
(starting points)

Figure 3. Flow chart highlighting the optimisation process.

Figure 4. Three-point MD bending test FE model with quarter symmetry.

Structural and homogenised finite element models were developed to simulate the 3PB
tests (Figure 4), using Msc Marc. A linear elastic orthotropic material model was specified
for the paperboard material and the material properties specified for the structural model
obtained from Table 1. For the homogenised model, the equivalent material properties
obtained from Table 2 were used. A four-node, shell element with six degrees of freedom
per node x, y and z translation and rotation around the x, y and z axes was utilised for
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both models. The mesh convergence analysis converged to a 0.5 mm square mesh for the
structural and a 2 mm square mesh for the homogenised models.

Symmetry conditions were applied using symmetry surfaces to model one-quarter
of the experimental samples. The symmetry surfaces accounted for all the six rigid body
motions, therefore no other boundary conditions were required. Two rigid bodies (cylin-
ders) were used to represent the top-loading anvil and the bottom-fixed anvil similar to
the experimental set-up (Figure 4). Load was applied using a downward position control
on the top cylinder ramped up using a linear timetable and a static position control on the
bottom cylinder. Load was applied incrementally using a multi-criteria adaptive stepping
procedure to a total of 50 increments for each model. A full Newton–Raphson iterative
procedure in which the model’s stiffness matrix is updated in each iteration was used to
perform static analysis.

The root mean square error (RMSE) was used to estimate the error between the struc-
tural and homogenised FE model’s force–displacement results. The load extracted from
the MD and CD structural FE models at each increment was denoted as FSMD and FSCD,
respectively, while FHMD and FHCD represent the load extracted from the homogenised MD
and CD FE models at each increment. Three RMSE values were calculated for each material
direction, MD, CD and combined MD and CD, which can be seen in Equations (50), (51)
and (53)

RMSEMD =

√
∑n

i=1(FSMD(i)− FHMD(i))2

n
(50)

RMSECD =

√
∑n

i=1(FSCD(i)− FHCD(i))2

n
(51)

where i represents the current increment number and n is the total number of increments.
The RMSE was not normalised for each material orientation (MD and CD) since the
simulation terminated at a displacement of the same magnitude as shown in Figure 7 for
each individual direction. The defined objective function, Equation (52) was subjected to
two constraints, which were that the elastic moduli (E1, E2, G12) in the FE models remain
positive, and the FE analysis is valid by confirming an exit code of 3004 from Msc Marc. An
exit code of 3004 implies that the simulation has been completed successfully.

Minimise: RMSE

Such that : E1, E2, G12 > 0

Msc Marc Exit Codes = 3004

(52)

Three different optimisation algorithms were used on three samples: individual MD
and CD samples and combined MD and CD samples. This was performed so as to establish
which numerical test was best for identification of certain parameters, for instance if E2 is
accurately determined in the CD test and E1 in the MD test.

Homogenised material properties obtained from DEEM were used as the reference
parameters from which 10 random starting points were generated using the latin hypercube
function with the upper and lower limits chosen to be 20% above and below the reference
points. Each of the starting points was first run through the FE analysis to ensure the
constraints were satisfied before being submitted to DOT. The purpose of this was to
determine if randomly generated starting points will converge to similar material properties
(Tables A4 and A5). All 10 optimisations were run simultaneously with the SQP algorithm
in DOT. The optimal material properties were determined from the material model with
the lowest objective function.



Math. Comput. Appl. 2023, 28, 46 12 of 19

For the combined MD and CD optimisation, one RMSE value which represents the
overall fit in both the MD and CD and the optimal solution was created by summing up
the root mean square errors in both directions as shown in Equation (53):

RMSEcombined = RMSECD + RMSEMD (53)

2.3. Four Point Bending Experiment and FE Modelling

Structural and homogenised finite element models were developed to simulate four-
point bending tests using Msc Marc (Figures 5 and 6). An orthotropic material model was
specified for the corrugated board and the properties in Tables 1–3 specified for structural
and homogenised models, respectively. A four-node, shell element with six degrees of
freedom per node (x, y and z translation and rotation around the x, y and z axes) was
utilised. Bi-linear interpolation was used for coordinates, displacements and rotations
during analysis, and strains and curvatures were calculated from the displacement and
rotation fields, respectively. Transverse shear strains were computed near the edges and
interpolated to the integration points. The mesh convergence analysis converged to a
0.5 mm square mesh for the structural model and 2 mm for the homogenised models
(Figures 5 and 6).

Figure 5. Four-point MD bending test of structural FE model with quarter symmetry.

Figure 6. Four-point MD bending test of homogenised FE model with quarter symmetry.

Symmetry conditions were applied using symmetry surfaces to model one-quarter
of the experimental samples. Two rigid bodies (cylinders) were used to represent the
top-loading anvil and the bottom-fixed anvil similar to the experimental set-up (Figure 5).
Load was applied using a downward velocity control on the top cylinder and a static
position control on the bottom cylinder. Static analysis was performed using the full
Newton–Raphson iterative procedure. The results from the analysis are summarised in
Table 4.
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For validation of the FE models, four-point bending stiffness experimental tests were
conducted to determine the bending stiffness of board samples in the MD and CD ac-
cording to ISO 5628 (1990) standard. Fourteen samples were tested on an Instron 5982
testing machine together with a HBM S2M (200 N) loadcell, HBM WA100 (100 mm) lin-
ear variable differential transducer (LVDT). The bending stiffness was calculated using
Equation (54) [31] and the results are summarised in Table 4.

Sb =
1
16

(P
Y

)( L3

b

)( a
L

)
(54)

where P is the applied load, Y is the deflection at the centre of the specimen, L is the
distance between supports, a is the distance between a support and loading point and b is
the sample width.

Table 3. Equivalent material properties of corrugated paperboard obtained from inverse analysis.

Technique E1 (MPa) Standard Deviation E2 (MPa) Standard Deviation G12 (MPa) Standard Deviation

MD 940.24 1.15 490.30 34.59 193.10 22.43
CD 796.83 57.49 439.76 1.34 183.23 21.15

Combined MD & CD 938.29 8.68 442.01 0.21 183.49 21.05

Table 4. Bending stiffness (N/m) comparison for four-point experimental and homogenised FE
models.

Type Experiment CLT FSDT DEEM Inverse Analysis

MD 20.44 22.52 22.32 18.40 21.73
Error (%) - 10 9 10 6

R2 - 0.90 0.90 0.99 0.99

CD 7.22 8.08 8.07 7.49 7.72
Error (%) - 12 12 4 7

R2 - 0.98 0.97 0.97 0.98

3. Results and Discussion

This section provides a summary of the results obtained from homogenisation of
corrugated paperboard, FE simulations of bending tests using the material properties
obtained from standard homogenisation techniques and inverse analysis. A comparative
analysis is done to determine the accuracy of standard homogenisation techniques and
inverse analysis in predicting the strength of corrugated paperboard.

3.1. Homogenised Material Properties

Table 2 shows the equivalent material properties obtained using the three homogenisa-
tion techniques. The results show a good correlation to the values reported by [25,32] who
applied both CLPT and DEEM homogenisation techniques on a similar C flute combination
corrugated board.

From Table 2, the material properties obtained by DEEM indicate a much higher
stiffness when compared to CLPT and FSDT because the entire sandwich structure of the
corrugated board is homogenised to an equivalent single-layered board, while using CLPT
and FSDT only the fluting is homogenised creating a three-layered laminate structure. The
three homogenisation techniques applied cannot be used to obtain the equivalent plastic
parameters of the board; however, they provide great starting points for application of
optimisation algorithms. Table 3 shows the equivalent material properties obtained using
inverse analysis.

From Table 3 it can be seen that the results obtained from using either the CD or
MD models individually are not consistent. In the case of the MD model, the optimiser is
not sensitive to E2, which is Young’s modulus in the cross direction, since the material is
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oriented in the direction of E1, this is the reason for the high standard deviation. Similarly,
for the CD model, the value of E1 has a high standard deviation showing that the optimiser
is only sensitive to the values of E2. This implies that when running separate optimisations
to obtain all three material properties, the optimiser is biased towards the principle material
orientation of the specific model. In the case of the combined test, the obtained material
properties have a much better consistency with acceptable standard deviations for the
values of E1 and E2, respectively. For all three cases, the optimiser is not sensitive to the
value of G12 due to the fact that the bending test does not initiate in-plane shear on the
corrugated board.

3.2. Bending Tests

The material properties obtained using inverse analysis were verified by using them
to model the 3PB test and comparing the homogenised models with experimental results
as shown in Figure 7. From the results it can be seen that the inverse method accurately
captured the linear deformation of the board when compared to the experimental results.
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Figure 7. Three-point bending force-displacement curves. (a) Comparison of MD force–displacement
curves between FE models and experimental data. (b) Comparison of CD force–displacement curves
between FE models and experimental data.

The results obtained from the inverse method were validated using four-point bending
tests on the FE homogenised models and compared with the experimental results as
presented in Figure 8. From Figure 8 it is quite clear that the material properties obtained
from combined MD and CD algorithm provide an accurate prediction of the bending
stiffness of the board when compared to the individual MD and CD algorithms.

The results obtained from the four homogenised models were compared to 4PB
experimental results to evaluate the accuracy of each technique in modelling the 4PB test
when compared to experimental results. The R-Squared, (R2), (Equation (55)) was used
to determine the percentage variation between the experimental results and the results
predicted by the homogenised models. An R2 value of 1 means that the predicted results
perfectly fit the experimental results.
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R2 = 1−

√
∑n

i=1(Fexp − Fhom)2

∑n
i=1(Fexp − Fmean)2 (55)

where Fexp is the experimental force, Fhom is the force predicted by the homogenised
models and Fmean is the overall average force value obtained from the experimental results.
Figure 9 and Table 4 show the correlation between the force–displacement curves of the
homogenised FE models and experimental results.
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Figure 8. Four-point bending force–displacement curves. (a) Comparison of MD force–displacement
curves between FE models using parameters obtained from inverse analysis and experimental data.
(b) Comparison of CD force–displacement curves between FE models using parameters obtained
from inverse analysis and experimental data.
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Figure 9. Four-point bending force–displacement curves. (a) Comparison of MD force–displacement
curves between FE models and experimental data. (b) Comparison of CD force–displacement curves
between FE models and experimental data.
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For all the homogenised models, the predicted bending stiffness was higher in the MD
as compared to the CD for the four-point bending tests. From the results highlighted in
Table 4 there was a good correlation between the bending stiffness values predicted by the
homogenised models and experimental results for the four-point bending test with a differ-
ence of between 6% and 10% in the MD and 4% and 12% in the CD when compared with
the experimental data. From the results in Figure 9, the four-point bending homogenised
models can be used to predict the bending stiffness of the board with reasonable accuracy.
Comparing the accuracy of the homogenisation methods in predicting the bending stiffness
of the board from Table 4 and Figure 9, the inverse method was the most accurate in
predicting the bending stiffness of the board.

4. Conclusions

In this study, four standard homogenisation techniques were presented, namely, CLPT,
FSDT, DEEM and inverse analysis. The four techniques were applied in the elastic regime
to determine the equivalent material properties of single-walled corrugated paperboard.
CLPT and FSDT were implemented using a numerical integration script in MATLAB, while
inverse analysis was applied using an optimisation algorithm. DEEM utilised an FE model
of an RVE to evaluate the stiffness matrix of the board which allowed for inclusion of
geometrical non-linearity in the computation of the matrix to a limited extent.

The four techniques were validated using experimental results of simple four-point
bending tests. The bending stiffness values obtained from all the four methods were
in agreement with the experimental results for the four-point bending tests with errors
ranging between 4% and 12% for both the MD and CD directions.

The application of these homogenisation techniques is, however, limited to the elas-
tic regime. In order to capture the plastic behaviour of the board other homogenisation
techniques such as asymptotic homogenisation and multi-scale homogenisation need to
be considered; however, they are computationally expensive. For this reason standard
homogenisation techniques such as CLPT, FSDT, DEEM and inverse analysis are recom-
mended since they are simple and do not require high computational power and the
accuracy of the models is still within ±10%. From the four techniques that were anal-
ysed, inverse analysis provided the most accurate result when compared to CLPT, FSDT
and DEEM and is therefore recommended as a homogenisation technique for corrugated
paperboard.
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Appendix A. Stiffness Matrices Obtained from Homogenisation

Table A1. Stiffness matrix for single-wall corrugated paperboard obtained from using CLPT [7].

A & B B & D

1 2 3 1 2 3

1 1.18 × 105 2.43× 104 0 0 0 0
A & B 2 2.43 × 104 1.43× 106 0 0 0 0

3 0 0 9.12 × 104 0 0 0
1 0 0 0 0.34 0.07 0

B & D 2 0 0 0 0.07 1.49 0
3 0 0 0 0 0 0.20

Table A2. Stiffness matrix for single-wall corrugated paperboard obtained from using FSDT.

A & B B & D H

1 2 3 1 2 3 4 5

1 3.44× 105 7.94× 104 0 0 0 0 0 0
A & B 2 7.94× 104 1.03× 106 0 0 0 0 0 0

3 0 0 7.26× 104 0 0 0 0 0
1 0 0 0 1.01 0.23 0 0 0

B & D 2 0 0 0 0.07 1.48 0 0 0
3 0 0 0 0 0 0.07 0 0

H 4 0 0 0 0 0 0 2.97× 104 0
H 5 0 0 0 0 0 0 0 3.05× 104

Table A3. Stiffness matrix for single-wall corrugated paperboard obtained from using DEEM.

A & B B & D

1 2 3 1 2 3

1 3.19× 109 5.62× 108 3.82× 105 3.47× 109 5.98× 108 4.30× 105

A & B 2 5.62× 108 2.73× 109 4.89× 105 5.99× 108 1.05× 108 3.44× 105

3 3.82× 105 4.89× 105 1.03× 109 2.83× 105 1.18× 106 4.01× 108

1 3.47× 109 5.99× 108 2.83× 105 1.04× 1010 1.80× 109 1.23× 106

B & D 2 5.98× 108 1.05× 108 1.19× 106 1.80× 109 6.98× 109 1.48× 106

3 4.30× 105 3.44× 105 4.00× 108 1.23× 106 1.48× 106 3.07× 109

Appendix B. Material Properties Obtained from Inverse Analysis

Table A4. Equivalent material properties of corrugated paperboard obtained from inverse analysis
conducted separately on MD and CD models.

MD CD

E1 (MPa) E2 (MPa) G12 (MPa) Optimal RMSE E1 (MPa) E2 (MPa) G12 (MPa) Optimal RMSE

Reference properties (DEEM) 797 442 182 - 797 442 182 -

1 939.72 494.76 210.48 0.03 747.33 438.77 163.18 0.03
2 939.58 499.11 215.53 0.03 885.18 441.56 172.86 0.03
3 938.62 527.98 217.79 0.03 735.99 438.10 212.10 0.03
4 941.20 477.57 157.01 0.03 800.63 440.25 178.58 0.03

Starting Points 5 939.50 520.24 197.78 0.03 827.54 440.67 185.60 0.02
6 940.36 497.52 176.98 0.03 869.99 441.09 203.21 0.03
7 941.95 429.07 182.52 0.03 850.88 441.27 157.75 0.03
8 941.75 433.85 207.28 0.03 754.78 438.75 198.07 0.03
9 940.73 499.01 160.38 0.03 750.76 438.28 206.69 0.03
10 938.97 523.90 205.21 0.03 745.12 438.81 154.29 0.03

Average 940.24 490.30 193.10 796.83 439.76 183.23

Standard Deviation 1.15 34.59 22.43 57.49 1.34 21.15
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Table A5. Equivalent material properties of corrugated paperboard obtained from inverse analysis of
combined MD and CD models

Combined MD and CD

E1 (MPa) E2 (MPa) G12 (MPa) Optimal RMSE

Reference Properties (DEEM) 797 442 182 -

1 940.54 441.88 193.06 0.05
2 913.60 441.55 201.67 0.13
3 940.88 442.15 173.63 0.05
4 941.44 442.06 179.17 0.05

Starting Points 5 940.44 442.07 210.35 0.05
6 941.47 442.24 158.87 0.05
7 940.66 441.89 213.76 0.05
8 941.46 442.15 166.30 0.05
9 941.53 442.24 153.32 0.05
10 940.88 441.90 184.79 0.05

Average 938.29 442.01 183.49

Standard Deviation 8.68 0.21 21.05
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