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Abstract: The conventional methods of parameter estimation in transformers, such as the open-
circuit and short-circuit tests, are not always available, especially when the transformer is already in
operation and its disconnection is impossible. Therefore, alternative (non-interruptive) methods of
parameter estimation have become of great importance. In this work, no-interruption, transformer
equivalent circuit parameter estimation is presented using the following metaheuristic optimization
methods: the genetic algorithm (GA), particle swarm optimization (PSO) and the gravitational search
algorithm (GSA). These algorithms provide a maximum average error of 12%, which is twice as better
as results found in the literature for estimation of the equivalent circuit parameters in transformers
at a frequency of 50 Hz. This demonstrates that the proposed GA, PSO and GSA metaheuristic
optimization methods can be applied to estimate the equivalent circuit parameters of single-phase
distribution and power transformers with a reasonable degree of accuracy.

Keywords: transformer parameters; equivalent circuit; metaheuristic optimization methods; genetic
algorithm; particle swarm optimization; gravitational search algorithm

1. Introduction

A transformer is an essential part of an electric power system, which makes it the
objective of a great number of studies focused on obtaining the most complete information
about its performance. Single-phase transformer equivalent circuit parameters (SPTECPs)
provide necessary information of transformer performance under different operating con-
ditions. Recently, some research works have focused on obtaining SPTECPs. Some of
them used different computational algorithms, black box models and transfer function
methods [1,2]. The least squares method has also been used to estimate the equivalent
circuit parameters of an n-winding transformer in operation [3]. Within this methodology,
in [3], SPTECPs were obtained in two steps: first, the parameters of windings and then
those of the core were obtained. Another method of SPTECP estimation in real time consists
of measuring voltages and currents on windings and using the LabVIEW platform for col-
lecting and processing data. In [2], the results calculated via LabVIEW were compared with
those obtained in the open-circuit and short-circuit tests. The GA and PSO metaheuristic
algorithms for the estimation of SPTECPs were not very efficient and were inaccurate in
the work of [4] compared to the conventional open-circuit and short-circuit tests, which
showed a maximum average error of 24%. In turn, the GSA and imperialist competitive
algorithms (ICA) were more accurate in [5]. The bacterial foraging algorithm (BFA) for
SPTECP estimation uses the objective function, which depends on voltage and active power.
In [6], the estimates were compared with the results of the load, voltage regulation and

Math. Comput. Appl. 2023, 28, 36. https://doi.org/10.3390/mca28020036 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca28020036
https://doi.org/10.3390/mca28020036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-6324-8711
https://orcid.org/0000-0002-2144-9208
https://orcid.org/0000-0002-1565-5267
https://orcid.org/0000-0002-1935-2669
https://orcid.org/0000-0001-7525-1910
https://orcid.org/0000-0001-7415-3059
https://doi.org/10.3390/mca28020036
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca28020036?type=check_update&version=2


Math. Comput. Appl. 2023, 28, 36 2 of 15

efficiency tests. The chaotic optimization approach (COA) is another method for SPTECP
estimation. The comparison of the COA with the results of the GA, PSO, the GSA, the ICA
and the BFA can be found in [4–6]. In [7], a variety of objective functions within the COA
method was used.

However, single-phase power transformers have not been the focus of the aforemen-
tioned works, and the respective optimization methods and algorithms have not yet been
tested on this class of power transformers. At the same time, SPTECP values are not always
available for modeling and simulating single-phase power transformers, which makes the
analysis of their performance under different operating conditions difficult, especially for
failure prevention. This is why SPTECP estimation of single-phase power transformers is
of great importance. In this paper, the GA, PSO and the GSA optimization methods are
effectively applied to a single-phase power transformer of a 4 kVA up to 33 MVA capac-
ity with 50 and 60 Hz of frequencies for the estimation of SPTECPs. These were chosen
as representative approaches of evolutionary algorithms (the GA), swarm intelligence
(PSO) and physics-based algorithms (the GSA). The implementation of these optimization
technics prevent the necessity of a power system interruption once the transformer has
been installed and put in operation.The advantage of using metaheuristic optimization
methods, such as the GA, PSO and the GSA, to estimate SPTECPs is that they only require
knowledge of the rated capacity of the transformer and the voltages and currents measured
in its primary and secondary windings, given that the transformer is operating at full load
(unitary power factor). This allows one to evaluate SPTECPs without having to refer to
the equipment manual (e.g., if it is not available) and without stopping the equipment.
In addition, our algorithms show a higher accuracy for the analyzed case studies. The
reader can consult the corresponding computer programs of this research by referring
to the following Computer programs (accessed on 24 January 2023). The use of the free
Python 3.9 software library was allowed in order to avoid additional expenses.

The organization of this paper is as follows: Section 2 describes the parameters of the
single-phase transformer equivalent circuit and objective function; Section 3 presents the
metaheuristic optimization methods used to solve our case of study; briefly, we explain
the simulation and results that we obtained for our three case studies of the single-phase
transformer in Section 4; in Section 5 our conclusions and future work are presented.

2. The Single-Phase Transformer Equivalent Circuit

An equivalent circuit is a powerful tool in electrical engineering that retains all of the
electrical characteristics of a given electric system. Figure 1 shows the equivalent circuit
of the single-phase transformer with respect to the primary winding, where we have the
following.

R1: primary winding resistance;
jX1: primary winding reactance;
R′2’: secondary winding resistance with respect to the primary side;
jX′2: secondary leakage reactance with respect to the primary side;
Rc: core resistance;
jXm: magnetizing reactance.

https://drive.google.com/drive/folders/1YKFW711U40cWSxKx42pzxysaScWJ7cQO?usp=sharing
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Figure 1. Single-phase transformer equivalent circuit.

To calculate the RMS alternating current and voltage, the grid equations are derived
from Kirchhoff’s law of voltages,

−Ṽ1 + Z1 Ĩ1 + Z0( Ĩ1 − Ĩ′2) = 0 (1)

Z2 Ĩ′2 + Z′l Ĩ′2 + Z0( Ĩ′2 − Ĩ1) = 0 (2)

where the impedances are as follows:

Z1 = R1 + jX1, Z2 = R′2 + jX′2 and Z0 =
jRcXm

Rc + jXm
.

Solving the system of equations we obtain I1est, I
′
2est and V

′
2est, which are the estimated

RMS values to be substituted into the objective function

Ĩ1 =
Ṽ1(Z0 + Z2 + Z′l)

4 (3)

Ĩ′2 =
Ṽ1Z0

4 (4)

Ṽ′2 = Ĩ′2Z′l (5)

where,

4 =
(
(Z1 + Z0)(Z0 + Z2 + Z′l)

)
− Z2

0 .

Therefore,

I1est = | Ĩ1| I
′
2est = | Ĩ

′
2| and V

′
2est = |Ṽ

′
2|.

In the case of the core losses represented by Rc which are minimal, we use the ap-
proximate equivalent circuit of the transformer shown in Figure 2 to obtain the losses and
efficiency. The winding losses can be obtained from

Pcu = Req(I
′
2est)

2, (6)

where

Req = R1 + R
′
2 and Xeq = X1 + X

′
2;

and the core losses can be obtained from

Pn =
|Ṽ2

1 |
Rc

, (7)
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where

Ṽ1 = Ṽ ′2 + Req Ĩ ′2 + Xeq Ĩ ′2 (8)

and the power out is given by

Pout = Z
′
l(I
′
2est)

2, (9)

the power input is given by

Pin = Pout + Pcu + Pn, (10)

and the efficiency is given by

η =
Pout

Pint
× 100. (11)

The objective function for SPTECP estimation is the following sum of squared errors:

OF = min
{
(I1 − I1est)

2 + (I′2 − I′2est)
2 + (V′2 −V′2est)

2} (12)

where I1, I′2 are the measured RMS values of the primary and secondary currents, respec-
tively, with respect to the primary side; V′2 is the measured RMS value of the secondary
voltage with respect to the primary side of the single-phase transformer; I1est, I′2est are the
estimated values of the primary and secondary currents, respectively, with respect to the
primary side; and V′2est is the estimated value of the secondary voltage with respect to the
primary side obtained from optimization.

Figure 2. Single-phase aproximate transformer equivalent circuit.

3. Optimization Algorithms
3.1. The Genetic Algorithm

The genetic Algorithm is a metaheuristic method proposed by John H. Holland in
the early 1960s based on the “survival of the fittest” [8]. This method consists of creating
a random initial population of NP individuals with dimension of D elements (we used
a real-coded GA). In the case of SPTECP estimation, the individuum X is composed of
six elements, R1, X1, R′2, X′2, Rc and Xm, and is a potential solution of the SPTECP. The
fitness of each X is calculated using (12) so that the individuals with the best fitness are
selected and the worst are rejected. The best individuals, known as parents, are mated
with a certain probability, generating, thereby, a new population. Subsequently, the new
individuals (known as children) mutate with respective probabilities and they are then
submitted to a selection procedure, which consists of keeping the best individual X at
each generation (elitism). Thus, a new population with better characteristics is created
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to guarantee optimal convergence. This procedure is repeated until a certain number of
generations NG is reached or any other stopping criterion is accomplished.

Algorithm 1 shows the steps to be followed in order to find the solution for the
equivalent circuit parameters of a single-phase transformer.

Algorithm 1 GA

Require: I1, I′2 and V′2;
1: for i = 1 to NP do
2: Create Xi = [R1, X1, R′2, X′2, Rc, Xm];
3: end for
4: for i = 1 to NP do
5: Evaluate (12);
6: end for
7: for gen = 1 to NG do
8: Select NP individuals based on fitness from X;
9: Apply crossover operator to individuals selected to generate NP children;

10: Apply mutation operator to the NP children;
11: Keep the NP children and discard the NP individuals in X, just keeping the best

solution to replace the worst child;
12: end for
Ensure: Xsol = [R1, X1, R′2, X′2, Rc, Xm].

3.2. Particle Swarm Optimization

The particle swarm optimization algorithm was proposed by Kennedy and Eberhart in
1995 and emulates the social behavior of birds [9]. Swarm members communicate as a group
when moving or hunting. The method consists of creating a certain number NP of particles
placed in the domain of the objective function (12) where the solution is to be sought. Each
particle is a potential solution to the problem. Particles move, remembering their best
solution so far (pbest) and are able to identify the best solution in the swarm (gbest). At
each iteration, the position and velocity are updated according to the following equations:

vg
i,j = K(vg−1

i,j + C1r1(pbestg−1
i,j − Particleg−1

i,j ) + C2r2(gbestg−1
i,j − Particleg−1

i,j )), (13)

Particleg
i,j = Particleg−1

i,j + vg
i,j. (14)

Equation (13), which is known as constriction factor PSO [10] is composed of three ele-
ments: the first is the previous velocity value, the second is the linear attraction towards
the best position recorded by the particle so far (pbest) and the third is the linear attraction
towards the best global position (gbest). The values C1 and C2 are positive constants that
control the influence of gbest and pbest, respectively: the closer the constants are to zero,
the narrower the search, whereas the closer the constants are to one another, the broader
the search [11]. Equation (14) is used to update the position of particles. The PSO algorithm
is described in Algorithm 2.
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Algorithm 2 PSO

Require: I1, I′2 and V′2;
1: for i = 1 to NP do
2: Create Particlei = [R1, X1, R′2, X′2, Rc, Xm] ;
3: end for
4: for i = 1 to NP do
5: Evaluate (12);
6: end for
7: while g < NGs do
8: for i = 1 to NP do
9: for j = 1 to D = (6) do

10: r1, r2 = rand[0, 1];
11: Update velocity (13);
12: Update position (14);
13: end for
14: if f (Particleg

i ) ≤ f (pbestg−1
i ) then

15: pbestg
i = Particleg

i ;
16: end if
17: end for
18: if f (Particleg

i ) ≤ f (gbestg−1
i ) then

19: gbestg
i = Particleg

i ;
20: end if
21: end while
Ensure: Particlesol = [R1, X1, R′2, X′2, Rc, Xm].

3.3. The Gravitational Search Algorithm

The gravitational search algorithm is based on the gravitational interaction between
masses [12]. The algorithm consists of masses that are attracted to each other, and the lighter
weight moves towards the heavier due to the gravitational force [13]. This optimization
procedure creates NP random masses that are potential solutions, i.e., the parameters of
the transformer, which are evaluated with the objective function (12). The gravitational
constant G is calculated starting from an initial point, reducing at each iteration. The
values best and worst are obtained from the evaluation of (12), assuming that the inertial,
gravitational active and gravitational passive masses are equal and the inertial mass is
normalized. The gravitational force Fij is directed from mass i to mass j. In order to obtain
the total force acting on a mass, it is necessary to use a function known as kbest that starts at
the total number of masses and decreases to one. Therefore, the acceleration of each mass
is calculated by updating the velocity and position of the mass until the maximum number
NG of iterations is reached. The GSA algorithm is described in Algorithm 3.
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Algorithm 3 GSA

Require: I1, I′2 and V′2;
1: for i = 1 to NP do
2: Create massi = [R1, X1, R′2, X′2, Rc, Xm];
3: end for
4: for i = 1 to NP do
5: Evaluate (12);
6: end for
7: for t = 1 to NGs do
8: G(t) = Goexp

(
−α t

NGs
)
;

9: best(t) = minj∈[1,...,NP] f itj(t);
10: worst(t) = maxj∈[1,...,NP] f itj(t);
11: Mi = Mii = Mai = Mpi;

12: mi(t) =
f iti(t)−worst(t)
best(t)−worst(t) ;

13: Mi =
mi(t)

∑NP
j=1 mj(t)

;

14: for i = 1 to NP do
15: for j = 1 to Kbest do
16: if i 6= j then
17: Fij(t) = G(t) Mi(t)

Rij(t)R+ε
(massj(t)−massi(t));

18: end if
19: end for
20: end for
21: for i = 1 to NP do
22: for j = 1 to d = 6 do

23: ad
i =

Fd
i

Mii(t) ;

24: vd
i (t + 1) = rand[0, 1]vd

i (t) + ad
i ;

25: massd
i (t + 1) = massd

i (t) + vd
i (t + 1);

26: end for
27: end for
28: end for
Ensure: masssol = [R1, X1, R′2, X′2, Rc, Xm].

4. Simulation and Results

In order to assess the performance of the above-mentioned optimization methods, the
equivalent circuit parameters of three single-phase transformers were estimated: 4 kVA
and 15 kVA from [4,5], and 33 MVA from a Mexican manufacturer. The dash (-) is used to
separate voltages of different windings. In the case of the 33 MVA transformer, the short-
circuit and open-circuit test values were provided by IEM-Condumex, and the electrical
variables were obtained by simulating the transformer at full load using the parameters
obtained from the tests in the Micro-Cap 12 software. For each optimization method, the
GA, PSO and the GSA, 30 runs were carried out with a population of 100 individuals and
100 iterations. Regarding the GA, the mating and mutation probability were 0.6 and 0.2,
respectively. For PSO, the constants C1, C2 and K were 1.0, 1.0 and 0.3, respectively. Finally,
for the GSA, the initial parameters G0 and α were 100 and 20, respectively. All parameters
were obtained after preliminary experiments. Tables 1, 4 and 7 show the statistical values of
the objective function (12) and the average error (AE (%)) of the SPTECPs. Tables 2, 3, 5, 6,
8 and 9 compare the SPTECPs and rated electrical variables at full load that were obtained
for each method.

4.1. The Single-Phase Transformer: 4 kVA, 50 Hz, 250–125 V

Table 1 shows the statistical values and the Wilcoxon rank-sum test, where PSO was
proposed as the reference method to be compared with the other methods. In this case, the
sign “+” indicates that PSO is statistically better than the GA and the GSA. Table 2 shows
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the results obtained from SPTECP estimation with different optimization methods. In
general, the three methods presented an average error lower than those presented in [4,5].
Table 3 shows the electrical variables in the single-phase transformer that were estimated
with the optimization methods. The reference values of SPTECPs and electrical variables
were obtained from [4].

Figure 3 shows the convergence curves obtained by the GA, PSO and the GSA opti-
mization methods. Figure 4 presents the voltage regulation as a function of load, comparing
the GA, PSO and the GSA, where the estimated SPTECPs were used to calculate the volt-
age, with that obtained in [4]. It could be observed that there was a slight difference
between them.

Table 1. Statistical values of the SPTECPs using the optimization methods for the single-phase
transformer, 4 kVA, 250–125 V at 50 Hz.

Stats
Methods PSO GA GSA

Fitness AE (%) Fitness AE (%) Fitness AE (%)
Best 6.4729 × 10−5 18.16 7.4670 × 10−5 10.93 7.9168 × 10−5 12.26
Mean 7.1537 × 10−5 4.73 7.6007 × 10−5 10.00 8.8683 × 10−5 5.72
Medium 7.1537 × 10−5 9.41 7.5987 × 10−5 10.91 8.8683 × 10−5 3.78
Worst 7.9736 × 10−5 24.28 7.7175 × 10−5 7.43 9.6510 × 10−5 8.45
St. dev. 3.2688 × 10−6 - 6.7636 × 10−7 - 4.7937 × 10−6 -
Wilcoxon rank-sum test

+ +
with 95% confidence

Table 2. Parameters obtained with the optimization methods for the single-phase transformer 4 kVA,
250–125 V at 50 Hz.

Methods
Parameters

R1(Ω) X1(Ω) R′
2(Ω) X′

2(Ω) Rc(Ω) Xm(Ω) AE (%)

Ref. [4] 0.4 0.2 0.4 2 1500 750 -
GA 0.3413 0.1879 0.4183 2.4543 1405 707.6 -
GA error (%) 14.6783 6.0567 4.5633 22.7133 6.3222 5.6458 10.00
PSO 0.3763 0.2150 0.4023 2.0256 1327 738.26 -
PSO error (%) 5.9125 7.5183 0.5742 1.2815 11.5444 1.5653 4.7327
GSA 0.3751 0.1904 0.3904 2.3839 1482.4333 745.9333 -
GSA error (%) 6.225 4.785 2.3883 19.1983 1.1711 0.5422 5.7183

Table 3. Electrical variables at full load of a single-phase transformer 4 kVA, 250–125 V at 50 Hz.

Methods
Variables

I1 (A) I′2 (A) V ′
2 (V) Efficiency (%) AE (%)

Ref. [4] 14.0813 13.6893 235.8759 83.9990 -
GA 13.9666 13.7435 236.7835 93.1954 -
GA error (%) 0.8145 0.3958 0.3848 10.9483 3.1358
PSO 13.9698 13.7410 236.7577 93.1524 -
PSO error (%) 0.7921 0.3778 0.3738 10.8971 3.1102
GSA 13.9558 13.7451 236.8283 93.3009 -
GSA error (%) 0.8909 0.4077 0.4038 11.0738 3.1941
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Figure 3. Convergence curves of the 4 kVA single-phase transformer using the GA, PSO and the
GSA methods.
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Figure 4. Voltage regulation by varying the load on the 4 kVA single-phase transformer.

4.2. The Single-Phase Transformer: 15 kVA, 50 Hz, 2400–240 V

Table 4 shows the statistical values and the rank-sum Wilcoxon test results. The sign
“+” indicates that the GA is statistically better than PSO and the GSA. Table 5 presents
SPTECPs estimated with the optimization methods (the GA, PSO and the GSA). The
error obtained by PSO was lower than that obtained in [4]. In case of the GA, there was
no difference. Finally, the GSA obtained an error of 4% higher than that in [5]. Table 6
shows the electrical variables in the single-phase transformer that were estimated with
the optimization methods. The reference values of SPTECPs and electrical variables were
obtained from [4].
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Table 4. Statistical values of the SPTECPs using the optimization methods for the single-phase
transformer 15 kVA, 2400–240 V at 50 Hz.

Stats
Methods GA PSO GSA

Fitness AE (%) Fitness AE (%) Fitness AE (%)
Best 1.8178 × 10−5 12.3039 1.92 × 10−5 11.8855 1.8542 × 10−5 11.7523
Mean 1.8299 × 10−5 11.8772 2.0875 × 10−5 7.8132 1.8936 × 10−5 9.8612
Medium 1.8305 × 10−5 12.0800 2.0849 × 10−5 8.0294 1.8911 × 10−5 10.9429
Worst 1.8500 × 10−5 11.7215 2.2897 × 10−5 8.8045 1.9326 × 10−5 9.6136
St. dev. 7.4936 × 10−8 - 8.7936 × 10−7 - 1.8433 × 10−7 -
Wilcoxon rank-sum test

+ +
with 95% confidence

Table 5. Parameters obtained with the optimization methods for the single-phase transformer 15
kVA, 2400–240 V at 50 Hz.

Methods

Parameters
R1(Ω) X1(Ω) R′

2(Ω) X′
2(Ω) Rc(Ω) Xm(Ω) AE (%)

Ref. [4] 2.45 3.14 2 2.2294 105,000 9106 -

GA 2.0038 2.5440 1.5060 2.0531 105,730 9176 -

GA error (%) 18.2121 18.9820 24.6983 7.9095 0.6952 0.7662 11.8772

PSO 2.0568 2.9236 1.5504 2.2139 104,473 9130 -

PSO error (%) 16.0503 6.8928 22.48 0.6953 0.5016 0.2595 7.8132

GSA 2.0075 2.7198 1.5103 2.1694 104,453 9103 -

GSA error (%) 18.0612 13.3811 24.4833 2.6913 0.5206 0.0297 9.8612

Table 6. Electrical variables at full load of a single-phase transformer 15 kVA, 2400–240 V, at 50 Hz.

Methods

Variables
I1 (A) I′2 (A) V ′

2 (V) Efficiency (%) AE (%)

Ref. [4] 6.2 6.2 2383.8 98.5 -

GA 6.2128 6.1834 2377.4751 98.5928 -

GA error (%) 0.2072 0.2673 0.2674 0.0920 0.2085

PSO 6.2113 6.1815 2376.6855 98.5528 -

PSO error (%) 0.1829 0.2983 0.2985 0.0536 0.2083

GSA 6.2130 6.1864 2377.3001 98.5783 -

GSA error (%) 0.2091 0.2187 0.2727 0.0795 0.1950

Figure 5 depicts the convergence curves obtained by the GA, PSO and the GSA
optimization methods. It is clear that the GA was able to obtain better results in less
iterations than the other two methods. The voltage regulation, which was obtained by
varying the load, is shown in Figure 6, where the GA, PSO and the GSA results are compared
with those obtained in [4]. The GA, PSO and the GSA used the estimated SPTECPs to
calculate the voltage. One can observe a considerable difference between the curves at full
load, which reduced when the load decreased.
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Figure 5. Convergence curves of the 15 kVA single-phase transformer using the GA, PSO and the
GSA methods.
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Figure 6. Voltage regulation by varying the load on the 15 kVA single-phase transformer.

4.3. The Single-Phase Transformer: 33 MVA, 60 Hz, 230,000/
√

3–34,500 V

Table 7 presents the statistical values and the Wilcoxon rank-sum test results for this
study case. The sign “+” indicates that the GA is statistically better than PSO and the GSA.
Table 8 shows SPTECPs estimated with the three optimization methods, where the average
error was small. Table 9 shows the electrical variables in the single-phase transformer
that were estimated with the optimization methods. The reference values of SPTECPs and
electrical variables were obtained from IEM-Condumex.
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Table 7. Statistical values of the SPTECPs using the optimization methods for the single-phase
transforme 33 MVA, 230,000/

√
3–34,500 V at 60 Hz.

Stats
Methods GA PSO GSA

Fitness AE (%) Fitness AE (%) Fitness AE (%)
Best 4.1138 × 10−9 8.3152 4.0597 × 10−9 4.5892 4.1520 × 10−9 4.5154
Mean 4.2171 × 10−9 2.6105 4.3105 × 10−9 1.3703 4.3586 × 10−9 1.3415
Medium 4.2202 × 10−9 2.5620 4.3196 × 10−9 3.3515 4.3646 × 10−9 3.0648
Worst 4.3153 × 10−9 3.6331 4.5475 × 10−9 4.6009 4.5626 × 10−9 5.4431
St. dev. 5.0994× 10−11 - 1.0156× 10−10 - 1.1556× 10−10 -
Wilcoxon rank-sum test

+ +with 95% confidence

Table 8. Parameters obtained with the optimization methods for the single-phase transformer 33 MVA,
230,000/

√
3–34,500 V at 60 Hz.

Methods

Parameters
R1(Ω) X1(Ω) R′

2(Ω) X′
2(Ω) Rc(Ω) Xm(Ω)

AE
(%)

IEM-Condumex 0.835 37.5 0.835 37.5 728,504 513,610 -

GA 0.8724 38.99 0.8540 35.81 729,277 515,267 -

GA error (%) 4.4790 3.9645 2.2754 4.5155 0.1061 0.3226 2.6105

PSO 0.8105 37.15 0.8074 37.16 727,823 514,097 -

PSO error (%) 2.9341 0.9184 3.2814 0.8995 0.0934 0.0948 1.3703

GSA 0.8408 38.25 0.8002 37.13 727,743 514,170 -

GSA error (%) 0.6946 1.992 4.1677 0.9741 0.1044 0.1090 1.3415

Table 9. Electrical variables at full load of a single-phase transformer 33 MVA, 230,000/
√

3–34,500 V
at 60 Hz.

Methods

Variables
I1 (A) I′2 (A) V ′

2 (V) Efficiency
(%) AE (%)

IEM-Condumex 247.926 247.728 131,060 99.46 -

GA 247.9332 247.7348 131,053.0316 99.4567 -

GA error (%) 0.0025 0.0027 0.0053 0.0033 0.0035

PSO 247.9329 247.7345 131,052.887 99.4765 -

PSO error (%) 0.0028 0.0026 0.0054 0.0166 0.0069

GSA 247.9347 247.7364 131,053.8826 99.4722 -

GSA error (%) 0.0035 0.0034 0.0047 0.0123 0.0060

Figure 7 shows the convergence curves of the GA, PSO and the GSA optimization
methods. The results are shown only up to the 25th iteration because after that value there
was no significant change. In this case, the convergence behavior of the three methods was
very similar. The voltage regulation, obtained by varying the load, is shown in Figure 8.
The curves obtained using SPTECPs for each optimization method, the GA, PSO and the
GSA, are compared in Table 8. In the case of the real single-phase transformer curve,
SPTECPs obtained from the open- and short-circuit tests were used.
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Figure 7. Convergence curves of the 33 MVA single-phase transformer using the GA, PSO and the
GSA methods.
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Figure 8. Voltage regulation by varying the load on the 33 MVA single-phase transformer.

It can be observed that the error of the results obtained by the evolutionary algorithms,
the GA, PSO and the GSA, to estimate the parameters of distribution transformers were
larger for distribution transformers than those for power transformers. The reason for this
fact lies in the possible error in [4]. Indeed, after substituting the parameters estimated
with the algorithms used in [4] and performing an equivalent circuit analysis to obtain the
regulation current and voltage, results that differed from those of [4] were obtained.

5. Conclusions

In this work, the efficiency of equivalent circuit parameter estimation, using the GA,
PSO and the GSA optimization methods for single-phase power transformers from 4 kVA
to 33 MVA, was evaluated. These optimization methods are suitable when the transformer
equivalent circuit parameters are not available or when the transformer is in service and
cannot be disconnected for open-circuit and short-circuit testing. The three methods
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compared require only the full-load current and voltage measurements on the windings, as
well as the transformer rated capacity. The results obtained for the test systems showed that
the average error in the estimation of the equivalent circuit parameters of the single-phase
transformer were less than 12%. This accuracy was achieved due to the fact that the fitness
values were taken close to zero. In addition, the mean value could serve as a criterion to
obtain the best estimate. It was also observed that the SPTECP estimate resulted in a larger
error for the distribution transformer than for the power transformer. This was due to
some inconsistencies that arose in the calculations in [4], where distribution transformers
were analyzed.

As part of our future work, we will apply the differential evolution method to this case
study and we will use the metaheuristic optimization methods for estimating parameters of
rotating electric machine equivalent circuits (DC electric machines, synchronous machines,
induction motors).
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