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Abstract: Robotics technology has made significant advancements in various fields in industry and
society. It is clear how robotics has transformed manufacturing processes and increased productivity.
Additionally, navigation robotics has also been impacted by these advancements, with investors now
investing in autonomous transportation for both public and private use. This research aims to explore
how training scenarios affect the learning process for autonomous navigation tasks. The primary
objective is to address whether the initial conditions (learning cases) have a positive or negative
impact on the ability to develop general controllers. By examining this research question, the study
seeks to provide insights into how to optimize the training process for autonomous navigation tasks,
ultimately improving the quality of the controllers that are developed. Through this investigation,
the study aims to contribute to the broader goal of advancing the field of autonomous navigation
and developing more sophisticated and effective autonomous systems. Specifically, we conducted
a comprehensive analysis of a particular navigation environment using evolutionary computing
to develop controllers for a robot starting from different locations and aiming to reach a specific
target. The final controller was then tested on a large number of unseen test cases. Experimental
results provide strong evidence that the initial selection of the learning cases plays a role in evolving
general controllers. This work includes a preliminary analysis of a specific set of small learning cases
chosen manually, provides an in-depth analysis of learning cases in a particular navigation task, and
develops a tool that shows the impact of the selected learning cases on the overall behavior of a
robot’s controller.

Keywords: navigation robotics; generalization; grammatical evolution

1. Introduction

Currently, robotics influences our modern life at work and, more recently, also in
our home, as robotics has become a key technology that has created a wide range of
autonomous devices that interact with their environment, transforming our lives and work
practices [1,2]. An important niche for robotics is the industrial sector, where companies
invest a lot in robotics and automation. For example, the [3] report from the International
Federation of Robotics (IFR) shows how China has now overtaken the United States for fifth
place in investment in robotics. However, the Republic of Korea remains the champion, with
more than 1000 industrial robots per 10,000 employees, as reported in 2021. More recently,
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we can notice how autonomous robots, being part of an emerging industry, have changed
transportation as we know it to make way for new technologies such as self-driving cars
and automated guided vehicles (AGVs) with the promise of improving efficiency and
safety, increasing autonomous navigation as an essential issue in the field of robotics [4].

A typical navigation task is to reach a goal from a certain location. This problem has
already been solved using a wide set of different methods to get a navigation controller
that solves this problem [5]. A more interesting task is the design or creation of a controller
that has generalization capacity, that is, the controller allows the robot to find the target
from a wide set of positions. The creation of controllers can be done by an expert in the
area or with methods that do it automatically. We opted for the option of automating the
process and, in this case, evolutionary algorithms have proven to be a great tool. Therefore,
in this work we use grammatical evolution (GE).

GE is a machine learning (ML) tool that typically uses reinforcement learning (RL) to
evolve navigation controllers in robotics. It is important to highlight a well known issue
related to ML models: they highly depend on the training data. The performance of ML
algorithms is strongly influenced by the quality of the data used for training. Poor data
can impede the model’s ability to identify important features and relationships needed to
make accurate predictions. In particular, training data are the most crucial elements in ML
and artificial intelligence. More specifically, we treat the initial conditions used to evolve
controllers as the training set. The conventional initial conditions used in a navigation task
are the initial position and initial orientation of the robot.

In this article, we are interested in studying how the training or learning cases in an
autonomous navigation task influence the learning process to produce controllers that can
solve the same task from a set of unseen (test) cases, that is, controllers with generalization
capabilities. Generalization is a key issue in ML applications where the goal is to develop
solutions that can be generalized to several different scenarios rather than those optimized
for a particular problem instance. An example of a generalization problem is trying to
reach the same goal from a set of new cases in the same navigation environment. This is
not a trivial problem and requires the development of generalization capabilities in the
controller. In this sense, the training cases are the set of cases used to evolve a controller,
and test cases are the set of cases to test the controller.

Our main purpose is to perform a comprehensive analysis of the entire set of cases
of a particular navigation environment, placing a robot at each position considering four
orientations as the learning cases in the environment to get a controller through evolution-
ary computation to reach a given target and then testing the controller with a hundred of
different unseen cases. In this sense, the closest studies are related to route planning for
autonomous mobile robots; for example, Sánchez et al. [5] presents an extensive review,
including evolution-based routing algorithms; however, to the best of our knowledge,
we have not found any previous work that focuses on the in-depth analysis of learning
cases and their impact on generalization. A work in this direction was published by
Berlanga et al. [6], in which their objective was to obtain robust controllers in a set of envi-
ronments. The authors applied evolutionary strategies for learning navigation, observing
how controller generalization decreased due to over-adaptation to training environments.
Although we share the same concerns regarding generalization as Berlanga et al. [6] do,
unlike them, we proposed an exhaustive and systematic analysis of the initial conditions of
the training cases in the navigation environment.

Our research aims to explore how the initial conditions, including coordinates and ori-
entation, impact the quality of controllers evolved to solve a navigation task in a particular
environment. We want to investigate not only how a controller can solve the task from a
specific initial condition but also how it can generalize to solve the task from 100 different,
unseen initial conditions. To achieve this, we used reinforcement learning and treated each
possible initial condition as a single training set, with a set of 100 unseen initial conditions
serving as the test set. We refer to each training case as a “learning case” because it allows
a controller to learn the rules to reach the target from that specific initial condition. We
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then tested the controller on 100 different cases or samples to evaluate its generalization
ability. We used an exhaustive analysis to explore all possible cases or samples in the
navigation task.

The main motivation of this work is to answer the research question of wether the
initial conditions (learning cases) exert by themselves a positive or negative influence on
the quality of creating general controllers. Therefore, the contributions of this work are
(i) proposing a methodology, (ii) performing a systematic analysis, and (iii) creating a tool
to display the influence each learning case available in the navigation environment has
to influence the quality of evolving general controllers. We first perform a preliminary
analysis considering a reduced set of learning cases. From the results of this preliminary
experiment, we hypothesized that controllers evolved from positions far from the target get
more complex rules, which in turn are more robust and increase the probability of hitting
the target from a broader set of initial conditions used as a test set. We then expanded
our research work to perform a comprehensive analysis considering each of the positions
and orientations available in the navigation environment. Experimental results from this
analysis are correlated with the conventional agreement in ML that complex solutions are
in general more robust.

The remainder of this paper is organized as follows: Section 2 presents some key
aspects of generalization that are useful to help understand this work. Section 3 presents
the basic concepts about evolutionary algorithms. Section 4 gives a brief introduction to
GE. The following section, Section 5, introduces the navigation environment used in this
research work, and Section 6 describes the experimental setup for both manually selected
and for the exhaustive analysis, which is shown in Section 8. The main experimental
results are shown and discussed as well. Finally, Section 9 presents the conclusions and
future work.

2. Navigation Robotics

Advances in robotics have made tremendous contributions in many industrial and
social domains. It is easy to note how robotics has changed the production environments
and improved the industrial production. In addition, navigation robotics has been im-
pacted by the new technologies, and currently investors focus on autonomous public and
private transportation [3].

Generally, robots are created to carry out tasks that are either beyond human capability
or may endanger human life. Currently, robots are not only found in industrial settings
but also in homes. Their significance in the industrial environment has led to a digital
transformation referred to as Industry 4.0 [7], which utilizes various technologies to enhance
connectivity, efficiency, flexibility, and security in manufacturing facilities. Autonomous
robots, such as autonomous mobile robots (AMRs) [8], offer benefits such as operating
without human control or intervention. In the industry, AMRs are being used as cobots
(coworker robots), and there is ongoing research to design robots with a smaller profile,
which are less physically intimidating than large vehicles and pose less of a perceived threat.
The objective is to enable human staff members to focus on tasks that only humans can
perform while freeing them from tedious and repetitive activities that robots can perform
better and more efficiently.

An autonomous robot is a freely moving robot that must complete certain tasks while
avoiding collisions and preserving energy as much as possible without continuous human
guidance, and they achieve this using the robotic hardware that is composed of the body,
sensors, actuators, and the control system.

Hereinafter, we will refer to the control system as the navigation controller, or just
controller for short, which provides control to an autonomous robot to process information
and decide upon which actions to take. Furthermore, we limit the wide range of possible
autonomous robots to a mobile robot model based on wheels, where its configuration has
two independently driven wheels and one unpowered omnidirectional wheel in the rear.
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Our robot has two sensors and two actuators, which are necessary to be able to perceive
its environment and to move through the environment. A typical sensor is an infrared (IR)
proximity sensor to compute the distance to a given obstacle. In our experiments we used
three Boolean sensors that have a radius of 1-cell detection, as shown in Figure 1.

On the other hand, our robot has two servomotors as actuators, which allow it to take
action, i.e., to move, turn left, or turn right. The action allowed is to move just 1-cell or turn,
either left or right over the same cell where the robot is located, with the main purpose
of changing its heading. Note that the controller acts over the actuators according to a
set of rules that relates the information captured by the sensors to make a decision on the
available choices of the actuators.

wall-ahead?

wall-left? wall-right?

Sensor logical conditions Actuator options

turn-left turn-rightmove

+ +

Figure 1. Schematic diagram of a navigation robot with two independently driven wheels and one
unpowered omnidirectional wheel in the rear. At the right it shows the three Boolean sensors and at
the left the three choices for the actuators.

Simulations play an important role in research and particularly in the development of
autonomous robots. It is a good practice testing a robot in a simulated environment before
trying the experiment in the actual environment to avoid catastrophic failure in certain
situations in the real world. In addition, through simulations it is possible to test several
solutions, in this case, controllers, before testing in the actual robot. Furthermore, trying
experiments in the real world is very time-consuming, and generally simulations often
require several iterations.

Through the years, a wide range of simulators has been proposed. In this research
work, we use NetLogo [9], which is a multi-agent programmable modeling environment.
The foundation of NetLogo is an agent-based modeling (ABM) paradigm, a key technique
in our study, as it allows us to observe macro patterns that evolve from the interaction of
micro agents (robots) and their environment (the navigation space), known as emergent
phenomena, which are difficult to observe with other modeling techniques. It is also a
handy environment for academic and research work well-known worldwide. Moreover, a
common and successful method to generate controllers using a simulated environment is
through evolutionary algorithms [10–14].

3. Evolutionary Robotics

The use of evolutionary principles in problem solving gave way to the field of evolu-
tionary computing (EC) [15], which has been applied to successfully solve hard problems,
not only in optimization, but also in other fields. For instance, applying EC to evolve robots
created a new field named evolutionary robotics (ER), which helps to automate the process
of designing robots, including morphologies and control systems [16]. Typically, ER uses
Darwinian principles of natural selection to create robotic control systems.

More specifically when evolving a control system, we can typically identify four levels
of organization [17], as shown in Figure 2 and described in detail in [18]: (i) genotype,
(ii) phenotype, (iii) behavior, and (iv) fitness. The genotype is typically represented by a
binary string and is mapped into the rules of a program. The phenotype, in our case, is seen
as a program that, in turn, performs the robot’s controller. The behavior is a wider concept
that can be described in several ways. For our research purposes, we will understand
it as a description of the robot when navigating in the environment. A shorter possible
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description is using only the last or ending position of the robot in the environment after
certain restrictions, for instance, its battery energy level, and this is the behavior description
we use in this work. The fitness is, in our case, the robot’s quality score in solving the
navigation task and, following the conventional approach, it rewards the controller that
gets the robot closer to the target. This, in turn, is used to guide the search through the
selection of the best controllers out of a population of controllers found and understood as
individuals in the artificial evolutionary process.

Figure 2. General representation for an evolutionary robotics process with four levels of organization:
(1) genotype, (2) phenotype, (3) behavior, and (4) fitness.

The fitness function ideally helps to find increasingly better solutions in every iteration;
typically, it is a measure of how close a particular individual, taken from the population,
comes to the target.

It should be noted that prior to starting the evolutionary process, an initial step of
creating the first population must be carried out, that is, the design of their genotype and
phenotype. In an evolutionary algorithm, genotype and phenotype are lower and higher
level descriptions, respectively, of a candidate solution (individual). The genotype is a gene
string encoding a lower level abstraction of an individual, and the phenotype is composed
of the features visible to a given environment.

One of the most successful methods for algorithm optimization that takes advantage
of this difference and relays in a genotype–phenotype mapping process is GE, which is the
method selected for our experimental setup as is explained in the following subsection.

4. Grammatical Evolution

Grammatical evolution [19,20], also known as GE, is a method of genetic programming,
or GP [21], that utilizes a Backus–Naur form grammar, or attribute grammar [22–25], to
explore the space of legal programs. It is capable of evolving computer programs or
other structures that can be defined using these grammars. GE is a popular evolutionary
algorithm applied to a wide range of problem domains [26–32]. The modular design of
GE, shown in Figure 3, allows for the use of any search engine, typically a variable-length
genetic algorithm, to evolve a population of binary strings. The individuals are then
mapped onto programs using GE and evaluated using any program or algorithm.

GE programs are indirectly represented by variable length binary genomes and con-
structed through a developmental process. The linear representation of the genome allows
for the use of genetic operators, such as crossover and mutation, in a similar way to a tradi-
tional genetic algorithm (GA), as opposed to tree-based genetic programming. The genome
of each individual, encoded in codons (usually groups of 8 bits), contains the information
necessary to select and apply grammar production rules, resulting in the formation of the
final program, which starts with the grammar’s start symbol.

The production rules for each non-terminal are assigned an index starting from 0.
When selecting a production rule, beginning with the non-terminal on the left side of the
program in development, the next codon value in the genome is read and interpreted
using the formula p = c % r, where c represents the current codon value, % represents the
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modulus operator, and r is the number of production rules for the left-most non-terminal.
If the algorithm reaches the end of the genome while reading codons, it invokes a wrapping
operator and continues reading from the start of the genome.

GE

SEARCH
engine

LANGUAGE
speci cation

PROBLEM
speci cation

SOLUTION
speci cation

system

Figure 3. The grammatical evolution (GE) system utilizes a search engine (commonly a genetic
algorithm) to generate new solutions for a specific issue by combining genetic material (genotype)
and converting (mapping) it into programs (phenotype) in accordance with a language specification
(interpreter/compiler).

The mapping process is illustrated with an example in Figure 4, where we use a
grammar to describe maze navigation programs written in Netlogo [9].

The process ends when all non-terminal symbols have been replaced and a valid
program is produced. Sometimes a wrapping process is used in which, if a non-terminal
remains after using all the codons, the genome is reused from the beginning. If it does not
replace all non-terminal symbols after a certain number of tries, it is considered invalid
and given the lowest possible fitness. An example of this process is shown in the Figure 4,
which uses a grammar to create programs for navigating mazes in Netlogo [9].

Figure 4. A process of mapping a genotype (binary) to a phenotype (controller/program) using
genetic encoding (GE) is demonstrated. The binary genotype is divided into segments called codons,
which are then transcribed into an integer string. This integer string is then used to choose production
rules from a predefined grammar, which are then translated into a sequence of actions (controller).

5. Case Study

In the field of ML for autonomous agent navigation, most studies do not use fixed train-
ing sets when using evolutionary computation. Instead, general controllers are typically
developed by training on a dynamic set of instances.
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This research aims to investigate initial conditions that a robot can use in a given
navigation task to evolve general controllers through reinforcement learning. Each initial
condition is treated as a single training case, allowing us to identify which positions in
the navigation space are better suited for evolving better general controllers. There is
evidence in [33] that using a single instance helps to balance learning and overfitting. This
study chose each available position and orientation as a training case and a set of 100 cases
for testing.

In this research, we use a rectangular grid of 38 × 22 cells as the navigation envi-
ronment, with 37 × 22 cells if the outer walls are not taken into account. The target is
represented by a red square that is enclosed by a U-shaped wall, as depicted in Figure 5.
This navigation environment is comparable to the one studied previously in [34] to try a
divergent set, which was referred to as the medium maze, and [35] where authors presented
an extensive study of generalization in a GE-based evolutionary learning system.

(a) Training cases (b) Test set

Figure 5. (a) A simple navigation task showing a small set of possible cases that could be used as a
training set to reach the target (the red square at the center). (b) A set of 100 cases as the test set fixed
for all the experiments.

Each training example in this scenario is described by a triple of information,
Ii = (xi, yi, θi), which specifies the starting position of the agent within a grid environment,
given by the row x, column y, and the initial orientation θi, which can be one of four options:
north (N), south (S), west (W), or east (E). Figure 5a illustrates a set of four possible cases,
I1 − I4, around the target.

If the problem requires specific initial conditions then this is not an issue, but deter-
mining how to construct the training and test set for an arbitrarily complex environment
is in no way a trivial task. In this work, we constructed the test set in a similar way as
in [35], following a predefined research line to later use other strategies to guide the search,
such as novelty search [34], and being consistent with this previous work to make further
comparisons. Therefore, we sampled the entire navigation environment to randomly select
100 initial conditions, each with a position and an orientation to come up with the configu-
ration shown in Figure 5b. This test set was held constant for all experiments, including the
preliminary and exhaustive analysis. Additionally, we took care that the training and test
sets have no overlap.

6. Experimental Setup

This section explains the experimental work that we have proposed to examine the
effect of learning cases on enhancing the generalization capability of a system that is based
on GE.

A high level view of our experimental work is depicted in Figure 6, consisting of:
(1) a navigation task; (2) choosing an initial orientation for each case; (3) performing
an exhaustive selection for each cell as a learning case in the navigation environment;
(4) running an evolutionary algorithm 30 times to evolve navigation controllers, in this
case GE; (5) choosing the best controller from each run and testing it over the test set; and,
finally, (6) performing an overfitting measure by computing the difference between the
training and test scores.
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The parameters used in the experiments are summarized in Table 1 and, as our focus
is not to test a set of different parameters, we set them to be as general as possible. We
are following a similar parameter setup from [35] for a further comparison. Furthermore,
we are using the original codon-size parameter from [19] with a minimum size of 15
and a maximum size of 25, and the number of wraps allowed is 10. Because we are
using the GE implementation from [36], we keep its setup for the genetic operations,
where for both crossover and mutation we use the one point type, and the rates are 0.90
and 0.01, correspondingly. For the evolution, we use a generational strategy, and for
the parent selection, we use the roulette. The number of runs is set to 100 instead of a
more conventional number of 30 to reduce as much as possible the uncertainty on the
experimental results, and, finally, the population is set to 250 individuals each run.

Environment

Navigation
Task N, E, W, S

Orientation
Selection

Exhaustive
Cell selection

Evolve 
Controllers

Best 
Controller

(xi , yi)
Run GE 
from (xi , yi) 

Evaluate on
Test Set 

Generalization
Rank

Overfitting
Score

Figure 6. High level description of the proposed experimental work for both manually selected and
exhaustive experiments.

Table 1. Parameters used for the experimental work. Codons-min and Codons-max are the minimal
and maximal number of codons in the initial random population of the GE search.

Parameter Value Parameter Value

Codon-size 8 Codons-min 15
Codons-max 25 Wraps 10
Crossover codon X-over prob. 0.9
Crossover type One Point Mutation type One Point
Mutation prob 0.01 Elitism 10%
Generational YES Selection Roulette
Runs 100 Individuals 250

The function used to evaluate the quality of each controller assigns a quality score to
each agent ψi by computing the inverse of the Euclidean distance taken from the average
of the agent’s final positions to the target t, as follows:

F(ψi) =
1

1 + dist(βi, t)
(1)

where βi is the average from the agent’s final positions αi
1, . . . , αi

m, reached from each of the
learning instances used as training set.

This function used in the learning process with the training set is known as the fitness
function to assign a fitness score to each controller. The fitness function is used to drive the
algorithm in the search space looking for the best controllers. In a 2D space, the standard
metric to use is the Euclidean distance [34,35]; this metric measures how far a robot is from
the target, so, using the inverse of the Euclidean distance, the fitness function rewards
controllers that allow robots get closer to the target. A usual method is to consider the final
position from the robot taking into account the maximum movements allowed, which can
be understood as the maximum energy allowed when using a battery.

7. Preliminary Analysis

The topic of generalization in a GE-based evolutionary learning system was thoroughly
examined in [35]. The main focus of the research was to investigate the impact that the
training set has on the ability of a evolutionary algorithm system to evolve effective
controllers. The study specifically looked at two factors related to the training set, including
its size and the method used to select instances from the overall set of possibilities. The



Math. Comput. Appl. 2023, 28, 35 9 of 15

size of the training set was varied, starting from a single instance and reaching up to
60 instances. Two different methods for selecting instances were also examined, including
random selection and manual selection.

In this initial experiment, we assess the bias that a human designer introduces into
the learning process. To accomplish this, a group of 12 examples shown in Table 2, were
intentionally picked, comprising positions from three different corners, as well as directly
under the target: two close to it and one behind the wall close to the target.

Table 2. List of 12 learning cases manually selected for the preliminary analysis, coordinates are
refered to the origin located at the left bottom of the navigation environment and are depicted in
the Figure 7.

Learning Cases Coordinates Orientation
Ip Horizontal Vertical
I1 5 6 North
I2 5 6 East
I3 1 22 East
I4 1 22 South
I5 17 13 North
I6 17 13 South
I7 16 11 West
I8 16 11 East
I9 19 1 North
I10 19 1 West
I11 31 18 West
I12 31 18 North

The overall locations of this group are illustrated in Figure 7, where the table sorts all
learning cases used for training and the figure shows their location graphically. It must be
noted that we have six different locations with two different orientations each.

Figure 7. Learning cases for the preliminary analysis, manually selected as initial conditions to locate
each robot in the navigation environment, graphically depicted by yellow arrows showing their
location and orientation and in red at the middle is the target.

For this experimental setup, each of the 12 examples, manually selected, was treated as
a separate training set, i.e., each training set contained only that example. This provided a
clear understanding of how that specific training example affected learning. As seen in the
experimental results in [35], it is clear that using just a single example in this manner does
not easily result in a general solution, which was expected, but the study did suggest that
the location in the navigation environment plays a crucial role in guiding the search to find
general solutions, and this is the core idea to perform a comprehensive individual analysis.

Table 3 presents a summary of the average performance of the optimal solution using
each of the 12 manually selected cases Ip.
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Table 3. Experimental results from the preliminary analysis using 12 learning cases manually selected,
which are sorted according to their ‘Test Score’ shown in bold and they are grouped into two sets: in
blue are the cases that get higher scores and, in red, the cases with lower scores.

Learning Cases Training Test Overfiting
Rank Ip Score Score Hit Train-Test

1 I11 1.00 0.665 3% 0.335
2 I2 0.67 0.422 2% 0.248
3 I1 0.64 0.387 6% 0.253
4 I3 0.69 0.328 1% 0.362
5 I12 0.74 0.286 3% 0.454
6 I4 0.95 0.201 2% 0.749
7 I5 0.99 0.125 0% 0.865
8 I6 1.00 0.120 0% 0.880
9 I9 0.95 0.107 2% 0.843
10 I10 1.00 0.096 0% 0.904
11 I7 1.00 0.081 0% 0.919
12 I8 0.98 0.072 0% 0.908

To compare the impact of the bias introduced by each learning case on the ability
of the evolved controllers to generalize to 100 previously unseen cases, they are ranked
(Rank) based on their test score, which is highlighted in bold in the fourth column as Test
Score. The number of times the target was successfully reached is also included as Hit, and
Overfitting is a measure of how much the individuals have been over-trained.

When focusing only on the scores from training, we noticed that most of them were
high scores, but when we sorted the instances according to the test score, then we noticed
some interesting trends, for instance, the positions close to the target allowed to evolve
controllers with a more simple structure in the conditional rules, which struggle to reach
the target from the majority of the set of 100 test cases. Almost all of them could not solve
the task from any of the test cases, whereas the positions far from the target were a better
choice to evolve general controllers.

As a naïve example to explain this behavior, if we choose one of the positions right
below the target and also with its orientation towards the target, the population in the
evolutionary process will converge rapidly to a set of simple rules as a controller to reach
the target from that position. One possible controller could be so simple to contain the
single choice of moving forward (move). This controller will have an excellent score in
training but a poor performance in test, because it does not consider avoiding any walls.
We could say, in this case, that this controller overfit the training set. From this preliminary
experiment, we could hypothesize that controllers evolved from positions far from the
target get more complex rules, which in turn are more robust and increase the probability
of reaching the target from a wider set of of initial conditions.

One interesting observation we can note from Table 3 is that the first half of cases
are located far from the target (in blue), whereas the second half are close to the target
(in red), as illustrated in Figure 8, particularly the learning cases I5 to I8 surrounding it.
This observation gives us a clue about the existence of regions that positively influence
the search algorithm, in this case GE, to evolve general capabilities in the controllers and
similarly to assume there must exist other regions where their impact is negative.

Manual selection undoubtedly introduces a human bias in the analysis that could com-
promise the conclusions drawn from the experimental results. The next step is to perform a
comprehensive analysis on the entire navigation task to the verify the trend found in the
preliminary experiment.
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Figure 8. Learning cases are grouped into two sets according the evaluation to generalise using the
test set, in blue are the cases with higher scores and, in red the cases with lower scores.

8. Exhaustive Analysis

Motivated by the insights from the preliminary experiment using manually selected
learning cases, we performed an exhaustive experimentation taking each cell in the nav-
igation environment as a possible learning case, excluding walls and the target. In this
experiment we are still using the same experimental setup, as shown in the Figure 6; the
same set of test cases, as in the preliminary experiment; and the parameters for GE. Figure 9
illustrates four sets of learning cases, according to the available orientations (north, east,
south, and west). Every cell in the navigation environment is taken as the coordinates to
exhaustively select them as a learning case each, and we run a GE-system 30 times to get
an average out of the scores from the best controllers found in each run.

(a) North (b) East

(c) South (d) West

Figure 9. Representation of all locations in the navigation environment where a GE-system was run
30 times from each of four different orientations.

To the best of our knowledge, previous studies have not performed an exhaustive
analysis of the effects that each initial condition, training instance, or learning case has
on generalization for a navigation problem in ER. Because we are interested in evolving
general controllers, the measure employed to evaluate the generalization capabilities of the
GE-system is the overfitting, understood as the difference between the test and training
scores computed by using the function F(ψ) shown in Equation (1), and the overfitting
output value is in the range of [0, 1]. Using all the overfitting values, we constructed four
heat-maps from each different orientation (north, south, west, and east), as illustrated in
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Figure 10, to graphically observe the results from this exhaustive experimentation. We can
clearly see how two different regions emerge from these heat-maps. Regions tending to
red negatively influence developing general capabilities in the controllers evolved by the
GE-system, whereas regions tending to blue contain learning cases that highly increase the
possibilities to evolve general controllers from their coordinates. The orientations do not
seem to play an important role, although there are certain graphical differences, particularly
at the bottom below the target.

(a) North (b) East

(c) South (d) West

Figure 10. Heat-maps show the overfitting performance of each potential training instance’s starting
point. Blue cells indicate areas where GE tends to produce better general controllers, whereas red
cells indicate areas where GE tends to produce less effective general controllers.

It can be noted that the observation from the preliminary experimentation is repli-
cated on this exhaustive experimentation, and we can conclude that, for the navigation
environment selected, the GE-system prefers locations far from the target to evolve general
controllers. We cannot assume that these observations and conclusions can be overlapped
to different navigation tasks, or even to the performance from other search algorithms; these
are research questions that must be addressed in future work. One possible explanation
about the existence of these regions is that locations close to the target used as training
cases evolve simpler controllers because the agent (robot) quickly find the target in the
learning process; when these controllers are tested from the set of 100 unseen cases, they
really struggle to reach the target. On the other hand, we suppose that GE struggle in the
training process to evolve controllers that can reach the target from locations far away from
the target, meaning that must find more complex controllers, which in turn are more robust
and intrinsically contain more general behaviors to reach the target from most of the test
cases used. This observation gives us another possible venue for future work, where now
we could focus on analysing the controllers to find any pattern that perhaps relates their
behaviors with their generalization capabilities.

9. Conclusions

The aim of this research is to explore how the characteristics of a navigation task
itself affects the evolution of general controllers. In this work, we focused on the position
and orientation as initial conditions for a robot to navigate in the given environment. We
proposed a methodology to perform a comprehensive analysis of the initial conditions as
learning cases to solve a navigation task, where each case is seen as a combination of an
initial position and orientation in the navigation environment.



Math. Comput. Appl. 2023, 28, 35 13 of 15

We first performed a preliminary experiment with a set of small learning cases manu-
ally selected. We choose six initial locations with two different orientations each, having
twelve learning cases in total, using each of them as a single training case and a hundred
unseen initial conditions as the test set. From this preliminary experiment, the main obser-
vation, after sorting out the cases according to the test score, is that the half of the cases
located far from the target showed better performance in test, and the second half close to
the target show not as good performance as the first half. This observation suggests to us
the existence of regions that positively influence the search algorithms to evolve general
capabilities in the controllers.

We then extended our research to perform an exhaustive analysis, considering now
each position and orientation available in the navigation task. The second experiment
consisted of a comprehensive analysis in the same navigation task, taking each of the
available cells as the initial locations using four orientations, each combination of location
and orientation was used as a learning case, where a GE was executed 100 times to evolve
controllers from these initial conditions to compute the training and test scores. From their
difference, we obtained the overfitting score. For each learning case, the average of the
100 overfitting scores was used to construct a heat-map to visualize the influence of each
learning case on GE to evolve general controllers.

From this experiment and analysis, we can note how the learning cases are grouped
into two groups in a similar way as in the preliminary experiment using just 12 learning
cases, where the cases far away from the target positively influence the development of
generalization capabilities in the controllers. This observation is correlated with the con-
ventional agreement in ML that complex solutions are, in general, more robust. Therefore,
from this comprehensive analysis, we learned that for this particular navigation task, the
locations close to the target are not good to use as learning cases to evolve general solutions.
The experimental results do not give us the information to answer the question related to
how far the locations must be to be considered good cases.

Even though performing an exhaustive analysis is expensive, it is worth knowing how
the locations more than the orientations impact the evolution of general controllers. For this
reason, we plan future work to (i) extend our research line to verify other navigation tasks
if there are regions that positively impact the evolution of general controllers, (ii) study
how a combination of initial conditions taken from different regions (close and far) impact
the evolution of general controllers, (iii) focus on the controller structure (set of rules) to
differentiate the simple from the complex and look for relationships with the positions in
the navigation environment.
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