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Abstract: We present a Caputo fractional order mathematical model that describes the cellular
infection of the Hepatitis B virus and the immune response of the body with Holling type II functional
response. We study the existence of unique positive solutions and the local and global stability
of virus-free and endemic equilibria. Finally, we present numerical results using the Adam-type
predictor–corrector iterative scheme.
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1. Introduction

Hepatitis B is a known killer infectious disease caused by the Hepatitis B virus (HBV),
which attacks the liver cells (Hepatocyte), resulting in changes in the antigen structure of
the surface of the liver cells, thus, leading to attack and destruction by a mechanism called
‘self-mediated immune damage’.

Although “recovered” patients have lifetime protective immunity, tiny levels of HBV
DNA can still be discovered occasionally. These traces of HBV DNA are infectious and
stimulate HBV-specific B- and T-cell responses, which control viremia [1]. However, HBV
replication is strongly suppressed by the antiviral effects of inflammatory cytokines gener-
ated by HBV-specific CD8+ T lymphocytes when they detect the antigen in the infected or
transgenic liver, as shown in chimpanzee [2] and transgenic mouse [3].

Hepatitis B infection is in two phases; acute and chronic. The acute stage is the earliest
stage of the infection whereby the body can recover by its immune system within six
(6) months. The acute infection stage might be asymptotic and characterized by viral
replication. Loss of appetite, joint and muscle discomfort, low-grade fever, and potential
stomach aches are all signs of an acute infection. Recovery from acute HBV infection
means that the virus is no longer in the bloodstream, but inactive in the liver. However,
if one uses immune-suppressing drugs, the virus in your liver might be reactivated in the
future. HBV replicates only within the host cell since it lacks the enzymes necessary for
protein and nucleic acid synthesis [4]. Chronic HBV infection occurs when the virus is still
detectable six months after the infection, indicating that the virus has not been fully cleared
by the immune system and is still present in the patient’s blood and liver. The majority of
patients with chronic infections are asymptomatic. HBV is transmitted from an infected
person to an uninfected person through sexual transmission, child-birth relation, misuse
of contaminated needles such as syringes, exchange of infected body fluids such as blood,
saliva, menstrual, seminal, and vaginal fluid [5].
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It is also well-known that infected people do not always show symptoms in the
early stages, although some may experience an acute illness that lasts several weeks,
including Jaundice (yellowing of the skin and eye), dark urine, and extreme fatigue, nausea,
vomiting, and some abdominal pains. Despite the above symptoms mentioned, symptoms
exhibited by patients also depend on the status of the immune system of the patient, the age,
and general health of the patient [4].

Due to the severity of hepatitis B infection, it has intrigued many scientists and
researchers to investigate the dynamics of HBV. In [6], a spatio-temporal dynamics of
a fractional model for HBV infection with cellular immunity was proposed. A time-
fractional diffusion model for HBV infection with capsids and Cytotoxic T lymphocytes
(CTL) immune response and were able to show that the diffusion and the order of fractional
derivatives in the sense of Caputo do not affect the stability of the equilibria, but they
can affect the time to arrive at the equilibria. When the order of the fractional derivative
increases, for example, the model’s solutions converge quickly to the equilibrium points.

In [7], the authors looked at a fractional-order HBV immunological model’s global
analysis and simulation. Using the Lyapunov function to prove the model’s stability, they
derived basic reproduction numbers and presented their relationship with the correspond-
ing equilibria. Studying the hepatitis B virus, the authors in [8] incorporated the immune
response and took into account both cytolytic and noncytolytic effect pathways. The dy-
namics of immune response to hepatitis B, which takes into account contributions from
innate and adaptive immune responses, as well as cytokines, has also been studied, see, [9].

In this article, we consider an HBV model with a Holling type 2 functional response
rate and three (3) compartments, i.e., healthy hepatocytes (H), infected hepatocytes (I),
and the body’s immune response (R). We study the existence and uniqueness of the
solutions and the equilibrium states, i.e., virus-free and endemic equilibrium state. When
the virus present in the liver cells exceeds the cytokines, the virus will overcome the
cytokines and multiply in the body, resulting in an endemic state where the virus comes
to stay in the body. When cytokines outnumber the viruses in the body, the viruses are
cleared from the body, and the person is virus-free.

The rest of the paper is organized as follows; Section 2 presents preliminary results
for fractional calculus. We present the fractional order model and the analysis in Section 3.
In Section 4, we present the local and global stability analysis. The numerical results and
simulations are presented in Section 5. Finally, we present the conclusions in Section 6.

2. Mathematical Preliminary on Fractional Calculus

In this section, we present useful results from the theory of fractional calculus; see, for
example, the monographs [10,11] for further details.

Definition 1 ([11]). The fractional order integral of the function f : [0,+∞) → R) of order
α ∈ (0, 1) is defined in the sense of Riemann–Liouville as where [0, T] ⊂ R+. Then fractional
integral of order v for a function g in the sense of Riemann–Liouville is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0, (1)

where [0, T] ⊂ R+ and Γ(α) =
∫ ∞

0 tα−1e−t dt, α > 0, is the Euler gamma function.

Definition 2 ([11]). For a function f ∈ Cn([0,+∞],R), the Caputo fractional-order derivative of
order α is defined by

cDα f (t) =
1

Γ(n− α)
=
∫ t

0
(t− τ)n−α−1 f (n)(τ)dτ, t > 0, (2)

where n = bαc+ 1 and bαc denotes the smallest integer that is less or equal to α.
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Finally, a relation between 1 and 2 is given by

Lemma 1. Let α ≥ 0 and n = bαc+ 1. Then

Iα(cDα f (t)) = f (t)−
n−1

∑
k=0

f k(0)
k!

tk.

In particular, if 0 < α ≤ 1, then

Iα(cDα f (t)) = f (t)− f (0).

The generalized mean value theorem for the Caputo fractional order is given by

Lemma 2. For α ∈ (0, 1], let f (t) ∈ C([a, b]) and Dα f (t) ∈ (a, b]. Then it holds

f (t) = f (a) +
1

Γ(α)
Dα f (η)(t− a)α, 0 ≤ η ≤ t, t ∈ (a, b]. (3)

3. Fractional Order Model Derivation and Analysis

We consider a liver consisting of Healthy Hepatocyte (H), Infected hepatocytes (I),
and immune response-dependent cytotoxic cells (R). We assume a logistic growth of
healthy hepatocytes, see, e.g., [12,13]. Healthy Hepatocytes of the liver are known to have
half-lives of more than six months; see, [14]. In the presence of the Hepatitis B virus, we
assume that the rate at which hepatocytes become infected is proportional to HI. Given
β as the contact rate and assuming that infected hepatocytes die at a rate µ1, the dynamic
model for the infected hepatocytes and the immune response can be described as

dH
dt

= r1H
(

1− H
K

)
− βHI,

dI
dt

= βHI − c1RI − µ1 I, (4)

dR
dt

= δHI +
r2RI
σ + I

− c2RI − µ2R,

with the initial conditions H(0) = H0 ≥ 0, I(0) = I0 ≥ 0 and R(0) = R0 ≥ 0, where c1
and c2 are the rates of deactivation of virons and cytotoxic cells, respectively. Let δ be
the rate of production of cytotoxic cells, and µ2 be the baseline degradation rate. We note
that the immune response of the cytotoxic cells to the viral invasion was included via a

positive feedback mechanism, with a response term
r2RI
σ + I

which is a saturating function of

the amount of virus present, the full description of the parameters can be seen in Table 1.
Following [15,16], the fractional order model of the mathematical model (4) is given by
Caputo derivativeas follows

CDα
t H = rα

1 H
(

1− H
K

)
− βαHI,

CDα
t I = βαHI − cα

1 RI − µα
1 I, (5)

CDα
t R = δαHI +

rα
2 RI

σα + I
− cα

2 RI − µα
2 R,

subject to the initial conditions H(0) = H0 ≥ 0, I(0) = I0 ≥ 0 and R(0) = R0 ≥ 0, where
CDα denotes Caputo fractional derivative with the order of the derivative α ∈ (0, 1].
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Table 1. The parameters involved in the model equation are described in detail (5).

Parameters Description

β Contact rate (rate of infection of the normal cell)
µ1 Natural death rate of HBV
µ2 Natural death rate of Cytotoxic cell
δ Production rate of Cytotoxic cells
σ Cytotoxic cell simulation half saturation rate
r1 Growth rate of uninfected hepatocytes
r2 Rate simulation of Cytotoxic cells by HBV
c1 Rate of destruction of HBV by Cytotoxic cells
c2 Rate of deactivation of Cytotoxic cells by HBV
K Carrying capacity
R0 Basic reproduction Number
α Fractional order

3.1. Qualitative Properties

Here, we study the well-posedness of the fractional order model. By means of a
Banach contraction mapping, we the existence and uniqueness of the solutions.

Let X(t) = (H, I, R)T and K(t, X(t))T = (φi)
T , i = 1, 2, 3, where,

φ1 = rα
1 H
(

1− H
K

)
− βα HI,

φ2 = βα HI − cα
1 RI − µα

1 I, (6)

φ3 = δα HI +
rα

2 RI
σα + I

− cα
2 RI − µα

2 R.

The dynamical system (5) can be written as,

CDα
t X(t) = K(t, X(t)), with X(0) = X0 ≥ 0 and t ∈ [0, T], 0 < α ≤ 1, (7)

which is equivalent to (6). The fractional model has integral representation,

X(t) = X0 + Lα
0K(t, X(t)),

= X0 +
1

Γ(α)

∫ T

0
(t− τ)α−1K(τ, X(τ))dτ, where n− 1 < α < n. (8)

As a result, we show that the fractional model is bounded and positive as long as
positive initial conditions are provided. By using the integral representation (8), we present
an analysis of the model. We consider a Banach space, E , of all continuous functions from
[0, T] to R, i.e., E = C([0, T];R), endowed with the norm,

||X||E = sup
t∈[0,T]

{|X(t)|} where |X(t)| = |H(t)|+ |I(t)|+ |R(t)|,

Moreover, H, I, R ∈ C([0, T];R). Let us consider a well-defined operator P : E → E
such that

(PX)(t) = X0 +
1

Γ(α)

∫ T

0
(t− τ)α−1K(τ, X(τ))dτ. (9)

3.2. Positivity and Boundedness of Solution

The model (5) will be biologically meaningful given that the solution of the system
with non-negative initial conditions will remain non-negative for any given time t > 0.
This is true for this model, given that the theorem below is satisfied.
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Theorem 1. Let X(t) = (H, I, R)T then for X(0) ≥ 0 the solution X(t) of system is bounded and
remains positive for t ≥ 0.

Proof. Let us consider the trajectory of solution along H-axis where I = R = 0 and
H(0) = H0 ≥ 0. Given,

CDα
t H = rα

1 H
(

1− H
K

)
. (10)

We know from (8) that Equation (10) can be expressed as,

H(t) = H0 +
1

Γ(α)

∫ b

0
(H − τ)α−1K(τ, X(t))dτ

= H0 +
1

Γ(α)

∫ b

0
(H − τ)α−1

[
rα

1 H
(

1− H
K

)]
dτ.

By using τ = Hy and applying the beta-gamma relations, we obtain,

H(t) = H0 + Hα+1Eα1(1− H) ≥ 0, where Eα1 =
rα

1
αΓ(α)

. (11)

Similar arguments as above yields

I(t) = I0 + Iα+1Eα2 > 0 and R(t) = R0 + Rα+1Eα3 > 0 (12)

where Eα2 =
µα

1
αΓ(α)

and Eα3 =
µα

2
αΓ(α)

, yielding non-negative invariance on all axes. Con-

sidering a positive solution in the I − R plane such that for some t∗, we have H(t∗) =
0, I(t∗) > 0 and R(t∗) > 0 and H(t) < H(t∗). In the I − R plane, cDα

t H|t=t∗ > 0. Thus, we
obtain H(t) > H(t∗) by the mean value theorem for the Caputo-fractional order derivative
Lemma 2 which is a contradiction to our earlier statement.

For the boundedness of the solution, we show that the model and solution are contin-
uous and exist within a given closed interval or region Ω.

Theorem 2. The model (5) has solutions bounded within the invariant region given by

Ω :=
{
(H, I, R) ∈ R : 0 ≤ N(t) ≤ γrα

1 , 0 ≤ H(t) ≤ γrα
1

}
.

Proof. Since N(t) is the total Population, it follows from Theorem 1 that N(t) = H(t) +

I(t) + R(t). Using (11) and (12), we obtain, N(t) ≤ N0 +
1

αΓ(α)

[
Hα+1rα

1

]
. By taking limits

of both sides, we have

lim
t→∞

sup N(t) ≤ N0 + γrα
1 , where γ =

Hα+1

αΓ(α)
.

3.3. Existence and Uniqueness of the Solution

We demonstrate that there is a solution to the model (5), i.e., the model is mathemati-
cally and biologically consistent. To prove this, we use the lemma below.

Lemma 3. Let X = (H, I, R)T . The function K = (φi)
T defined above satisfies ||K(t, X(t))−

K(t, X(t))||E ≤ LK||X− X||E for some LK > 0.
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Proof. H, I, and R are all dependent on t and from the first component of K see (6) we
observe that,

∣∣∣(φ1(t, X(t))− φ1(t, X(t)))
∣∣∣ = ∣∣∣rα

1 H −
rα

1 H2

K
− βα HI − rα

1 H +
rα

1 H2

K
+ βα HI

∣∣∣,
≤ rα

1 |H − H|+
rα

1
K

λ|H − H|+ βα|HI − HI|

≤ rα
1 |H − H|+

rα
1

K
λ|H − H|+ βα|H − H|+ βα|I + I|, (13)

where λ(t) = H + H. Grouping constant terms and simplifying (13) we obtain,∣∣∣(φ1(t, X(t))− φ1(t, X(t)))
∣∣∣ = (rα

1 +
rα

1
K

λ + βα
)∣∣∣H − H

∣∣∣+ βα|I − I|

≤ L1

(
|H − H|+ |I − I|

)
.

where L1 = max
t∈[0,T]

{ f1 + g1}, with f1 =
(

rα
1 +

rα
1

K λ + βα
)

and g1 = βα. Similarly, we do same

for second equation in (6) and we get,∣∣∣(φ2(t, X(t))− φ2(t, X(t))
∣∣∣ ≤ L2

(
|H − H + |I − I|+ |R− R|

)
where L2 = max

t∈[0,T]
{P1 + P1 + P3}with P1 = βα, P2 = βα + Cα

1 + µα
1), P3 = Cα

1 and finally, we

can express, ∣∣∣φ3(t, X(t))− φ3(t, X(t))
∣∣∣ ≤ L3

(
|H − H|+ |I − I|+ |R− R|

)
,

where L3 = max
t∈[0,T]

{τα + n1 + n2}, with n1 =
rα

1
σα + 1

+ Cα
2 and n2 =

rα
2

σα + 1
+ µα

2 . Finally,

we obtain,

||K(t, X(t))−K(t, X(t))||E = sup
t∈[0,T]

3

∑
i=1

∣∣∣φi(t, X(t))− φi(t, X(t))
∣∣∣ ≤ LK||X− X||E , (14)

and LK = L1 + L2 + L3.

Next, we show that the solution to the model problem exists and is unique using the
Banach contraction mapping and follows the technique from [17].

Theorem 3. Let the result of Lemma 3 hold and let Ω = Tα

Γ(α+1) . If ΩLK < 1, then there exist a
unique solution of model (5) on [0, T].

Proof. By Banach contraction mapping, we will show that P is both a self-map and a

contraction. By definition, sup
t∈[0,T]

‖K(t, 0)‖ = Q and let κ >
‖X0‖+ ΩQ

1−ΩLK
and a close convex

set BK = {X ∈ E : ‖X‖E ≤ κ}. In the case of the self-map property, it is sufficient to
demonstrate that PBK ⊂ BK, so let X ∈ BK, then

‖(PX)(t)‖E = sup
t∈[0,T]

{∣∣∣X0 +
1

Γ(α)

∫ t

0
(t− τ)α−1K(τ, X(τ))dτ

∣∣∣}
≤ |X0|+

1
Γ(α)

sup
t∈[0,T]

{ ∫ t

0
(t− τ)α−1

(
|K(τ, X(τ))−K(τ, 0)|+ |K(τ, 0)|

)
dτ
}
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≤ |X0|+
1

Γ(α)
sup

t∈[0,T]

{ ∫ t

0
(t− τ)α−1dτ

(
‖K(τ, X(τ))−K(τ, 0)‖E + ‖K(τ, 0)dτ‖E

)}
≤ |X0|+

1
Γ(α)

sup
t∈[0,T]

(
‖K(τ, X(τ))−K(τ, 0)‖E + ‖K(τ, 0)‖E

)
sup

t∈[0,T]

∫ t

0
(t− τ)α−1dτ

= |X0|+
LK‖X‖E +Q

Γ(α)

(
Tα

α

)
= |X0|+ Ω(LKκ +Q) ≤ κ,

where Ω = Tα

Γ(α+1) . Thus PBκ ⊂ Bκ and P is a self-map. Next, we show that P is a
contraction.

‖PX−P X̃‖E = sup
t∈[0,T]

{∣∣∣(PX)(t)− (P X̃)(t)
∣∣∣}

=
1

Γ(α)
sup

t∈[0,T]

{ ∫ t

0
(t− τ)α−1

∣∣∣K(τ, X(τ))−K(τ, X̃(τ))
∣∣∣dτ
}

≤ LK
Γ(α)

sup
t∈[0,T]

{ ∫ t

0
(t− τ)α−1

∣∣∣X(τ)− X̃(τ)
∣∣∣dτ
}

≤ ΩLK‖X− X̃‖E .

If ΩLK < 1, then P is a contraction mapping, and thus, there exists a unique fixed
point on [0, T] via Banach contraction principle.

The existence of the solution follows from Schauder’s fixed point theorem.

Lemma 4. Let β1, β2 ∈ E such that

|K(t, X(t))| ≤ β1(t) + β2|X(t)|, for all X ∈ E , t ∈ [0, T] (15)

such that β∗1 = sup
t∈[0,T]

|β1(t)|, β∗2 = sup
t∈[0,T]

|β2(t)| < 1. Then, the operator P is completely

continuous.

Proof. For all X ∈ Bκ , we obtain

‖(PX)(t)‖E = sup
t∈[0,T]

{∣∣∣X0 +
1

Γ(α)

∫ t

0
(t− τ)α−1K(τ, X(τ))dτ

∣∣∣}
≤ |X0|+

1
Γ(α)

sup
t∈[0,T]

{ ∫ t

0
(t− τ)α−1

∣∣∣K(τ, X(τ))dτ
∣∣∣}

≤ |X0|+ sup
t∈[0,T]

|K(t, X(t))|
Γ(α)

sup
t∈[0,T]

∫ t

0
(t− τ)α−1 dτ

≤ |X0|+
(β∗1 + β∗2‖X(t)‖E )

Γ(α)

(
Tα

α

)
= |X0|+ Ω(β∗1 + β∗2‖X(t)‖E ) < +∞.

Thus, P is uniformly bounded. Next, we show that P is equicontinuous. Let t1, t2 ∈
[0, T] such that t2 ≥ t1, and sup(t,X)∈[0,T]×BK

|K(t, X(t))| = K∗, then

‖(PX)(t2)− (PX)(t1)‖E = sup
t∈[0,T]

{∣∣∣(PX)(t2)− (PX)(t1)
∣∣∣}

=
1

Γ(α)
sup

t∈[0,T]

∣∣∣ ∫ t1

0
[(t2 − τ)α−1 − (t1 − τ)α−1]K(τ, X(τ)) dτ
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+
∫ t2

t1

[(t2 − τ)α−1K(τ, X(τ)) dτ
∣∣∣

≤ K∗
Γ(α)

[2(t2 − t1)
α + (t2 − t1)]→ 0, as t2 → t1.

Thus, P is equicontinuous. It is completely continuous as a result of the Arzelá-Ascoli
theorem.

4. Equilibrium Points and Basic Reproduction Number

The model (5) has a virus-free equilibrium (VFE) obtained by setting the right-hand
side of (5) to zero. Using the next-generation matrix method, the new virus terms and the
remaining transfer terms are given by

F (x) =
(

βα H I
)

and V(x) =
(
cα

1 RI + µα
1 I
)
.

The effective basic reproduction number is given by

R0 = ρ(FV−1) = βαK
( 1

µα
1

)
=

βαK
µα

1
, (16)

where ρ denotes the spectral radius, F = βαK and V−1 = 1/µα
1 . Next, we consider other

equilibrium points, E1 = (H1, I1, R1). Here, we consider the case where there are no healthy
Hepatocytes, i.e., we equate the right-hand side of (5) to zero, and assume H1 = 0 in the
model (5) yielding

H1 = 0

−cα
1 R1 I1 − µα

1 I1 = 0 (17)
rα

2 R1 I1

σα + I1
− cα

2 R1 I1 − µα
2 R1 = 0 (18)

From (17), we have R1 = −µα
1/cα

1 . By substituting and simplifying, we have

I1,2
1 =

rα
2 − cα

2σα − µα
2 ±

√
(cα

2σα + µα
2 − rα

2)
2 − 4cα

2µα
2σα

2cα
2

.

The final equilibrium point is given by E2 = (H2, I2, R2). Again, we set the right-hand
side of (5) to zero yielding,

I2 =
rα

1

(
1− H2

K

)
βα

. (19)

The second equation of (5) yields

I2(βαH2 − cα
1 R2 − µα

1) = 0.

Since I2 is non-zero, we have

R2 =
βαH2 − µα

1
cα

1
, where cα

1 > 0. (20)

Finally, the last equation of (5) yields

H2 =
cα

2 R2

τα
+

µα
2 R2

τα I2
−

rα
2 R2

τα(σα + I2)
. (21)
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4.1. Local Stability Analysis

Here, we present the local stability analysis of the model.

4.1.1. Local Stability of VFE Point

At this stage, we assume there is no viral infection of the Hepatocytes, i.e., the person
is virus free. Following [18], we present the local stability of the virus-free equilibrium in
the following theorem.

Theorem 4. The virus-free equilibrium point E0 = (K, 0, 0) of the fractional model is locally
asymptotically stable (LAS) ifR0 ≤ 1, and unstable ifR0 > 1.

Proof. The local stability analysis of the VFE is determined by using the eigenvalues of the
Jacobian of (5) given by

J =



−rα
1 − βα I −βαH 0

βα I βα H − cα
1 R− µα

1 −cα
1 I

τα I τα H +
rα

2 Rσα

(σα + 1)2 − cα
2 R

rα
2 I

σα + I
− cα

2 I − µα
2

 (22)

Evaluating the Jacobian matrix (J) at the VFE point E0, yields,

J(E0) =


−rα

1 −βαK 0

0 βαK− µα
1 0

0 ταK −µα
2

.

The eigenvalues of the Jacobian matrix determine an equilibrium’s local stability
where the eigenvalues are (λi < 0) and i = 1, 2, 3.

λ1 = −rα
1 < 0, λ2 = βαK− µα

1 < 0, λ3 = −µα
2 < 0. (23)

The virus-free equilibrium is locally stable, given that all the eigenvalues are negative.
Considering Equation (23) we have,

βαK− µα
1 < 0,

βαK
µα

1
<

µα
1

µα
1

,
βαK
µα

1
< 1. (24)

Comparing Equations (24) and (16), we can conclude that R0 < 1 and since the
basic reproductive number (R0 < 1) and λi < 0 for i = 1, 2, 3 implies that E0 is locally
asymptotically stable.

4.1.2. Local Stability of Virus Endemic Point

In this section, we investigate the stability of the Virus Endemic Equilibrium Point(VEE)
to see if a small change around it will cause a drastic change or effect on the model or will
cause it to return to its original state. In this model, we consider two-state endemic points
and investigate their stability. We prove this by showing thatR0 > 1 by the theorem below.

Theorem 5. The VEE E1 = (0, I1, R1) of the system (5) is locally asymptotically stable whenever
R0 ≤ 1 and unstable wheneverR0 > 1.
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Proof. We proceed by substituting E1 into (22), to obtain

J(E1) =

rα
1 − βα I1 0 0

βα I1 −cα
1 R1 − µα

1 −cα
1 I1

τα I1
r2σαR1
(σα+I1)2 − cα

2 R1
rα

2 I1
σα+I1

− cα
2 I1 − µα

2

.

The characteristic equation of matrix J(E1) is λ3 + a1λ2 + a2λ + a3 = 0 where

a1 = βα I1 + cα
1 R1 + cα

2 I1 + µα
1 + µα

2 + rα
1 −

rα
2 I1

σα + I1
, a2 = Γ1 − Γ2, and a3 = Γ3 − Γ4,

with

Γ1 = βαcα
1 I1R1 + βαcα

2 I2
1 + βαµα

1 I1 + cα
2µα

1 I1 + βαµα
2 I1 + cα

1µ2vR1 + µα
1µα

2 +
rα

1rα
2 I1

σα + I1
+

cα
1rα

2 σα I1R1

2σα I1 + σ2α + I2
1

Γ2 = cα
1rα

1 R1 + µα
1rα

1 + µα
2rα

1 + cα
2rα

1 I1 +
βαrα

2 I2
1

σα + I1
+

cα
1rα

2 I1R1

σα + I1
+

µα
1rα

2 I1

σα + I1

Γ3 =
cα

1rα
2 σαβα I2

1 R1

2σα I1 + σ2α + I2
1
+

cα
1rα

1rα
2 I1R1

σα + I1
+

µα
1rα

1rα
2 I1

σα + I1
+ βαcα

2µα
1 I2

1 + βαcα
1µα

2 I1R1 + βαµα
1µα

2 I1

Γ4 =
βαµα

1rα
2 I2

1
σα + I1

+
βαcα

1rα
2 I2

1 R1

σα + I1
+

cα
1rα

1rα
2 σα I1R1

σ2α + 2σα I1 + I2
1
+ µα

1µα
2rα

1 + cα
2µα

1rα
2 I1 + cα

1µα
2rα

1 R1.

If (βα I1 + cα
1 R1 + cα

2 I1 + µα
1 + µα

2 + rα
1) >

rα
2 I1

σα + I1
, Γ1 > Γ2 and Γ3 > Γ4 then a1, a2, a3

and (a1a2 − a3) are all non-negative. By the Routh–Hurwitz criterion [19], we can conclude
that the endemic equilibrium point E1 is locally asymptotically stable.

Theorem 6. If R0 > 1, then E2 is unstable and stable when R0 ≤ 1 and a unique endemic
equilibrium E2 = (H2, I2, R2) exist and are locally asymptotically stable in the interior of Ω with
E2 > 0.

Proof. We also evaluate the Jacobian matrix (22) at the endemic state E2. We have that

J(E2) =


rα

1 −
2rα

1 H2
K − βα I2 βα H2 0
βα I2 βα H2 − cα

1 R2 − µα
1 −cα

1 I2

τα I2 τα H2 +
rα

2 σαR2

(σα + I2)2 − cα
2 R2

r2 I2
σα+I2

− cα
2 I2 − µα

2

.

The characteristic equation of matrix J(E2) is λ3 + b1λ2 + b2λ + b3 where

b1 = E1 − E2, b2 = E3 − E4, and b3 = E5 − E6

with

E1 = βα I2 + cα
1 R2 + cα

2 I2 + µα
1 + µα

2 +
2rα

1 H2

K

E2 = βαH2 + rα
1 +

rα
2 I2

σα + I2
.

E3 = βα I2

(
cα

1 R2 + cα
2 I2 + µα

1 + µα
2 +

rα
2 H2

σα + I2

)
+ H2

(
ταcα

1 I2 + βαrα
1 +

2cα
1rα

1 R2

K
+

2cα
2rα

1 I2

K
+

2rα
1 µα

2
K

)
+ cα

2µα
1 I2 + cα

1µα
2 R2 + µα

1µα
2 +

cα
1rα

2 σα I2R2

σ2α + 2σα I2 + I2
2
+

2µα
1rα

1 H2

K
+

rα
1rα

2 I2

σα + I2

E4 = βαcα
2 H2 I2 + βαµα

2 H2 + cα
1rα

1 R2 + cα
2rα

1 I2 + µα
1rα

1 + µα
2rα

1 +
2βαrα

1 H2

K
+

βαrα
2 I2

2
σα + I2
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+
cα

1rα
2 I2R2

σα + I2
+

µα
1rα

2 I2

σα + I2
+

2rα
1rα

2 H2 I2

(σα + I2)K

E5 = βα I2

(
cα

1rα
2 σαR2

I2
2 + 2σα I2 + σ2α + cα

2µα
1 I2 + cα

1µα
2 R2 + cα

2rα
1 H2 + µα

1µα
2 +

2rα
1rα

2 H2
2

(σα + I2)K

)

+
2cα

1rα
1rα

2 σα H2 I2R2

(I2
2 + 2σα I2 + σ2α)K

+
2cα

1rα
1 τα H2

2 I2

K
+

2cα
2µα

1rα
1 H2 I2

K
+ βαµα

2rα
1 H2 +

2cα
1µα

2r1H2R2

K

+
cα

1rα
1rα

2 I2R2

σα + I2
+

2µα
1µ2rα

1 H2

K
+

µα
1rα

1rα
2 I2

σα + I2

E6 = βα I2

(
2cα

2rα
1 H2

2
K

+
cα

1rα
2 I2R2

σα + I2
+

µα
1rα

2 I2

σα + I2
+

rα
1rα

2 H2

σα + I2

)
+

cα
1rα

1rα
2 σαR2 I2

I2
2 + 2σα I2 + σ2α + cα

1rα
1 µα

2 R2 + cα
2rα

1 µα
1 I2

+ µα
1µα

2rα
1 +

2βαµα
2rα

1 H2
2

K
+ H2 I2

(
cα

1rα
1 τα +

2cα
1rα

1rα
2 R2

(σα + I2)K
+

2µα
1rα

1rα
2

(σα + I2)K

)
.

If E1 > E2, E3 > E4 and E5 > E6 which implies that b1, b2, b3 and (b1b2 − b3) are all
non-negative. Then by Routh–Hurwitz criterion [19], the endemic equilibrium point E2 is
locally asymptotically stable.

4.2. Global Stability Analysis

To obtain the global stability of the equilibrium points, we use the Ulam–Hyers stability
criteria. We show that the fractional model (5) is both stable and generalized stable in the
sense of Ulam–Hyers. We say X ∈ E is a solution of∣∣∣cDα

t X(t)−K(t, X(t))
∣∣∣ ≤ ε, t ∈ [0, T], (25)

if and only if there exists h ∈ E satisfying,

1. |h(t)| ≤ ε,
2. cDα

t = K(t, X(t)) + h(t), t ∈ [0, T].

Note that any function satisfying (2) also satisfies the integral inequality given,∣∣∣X(t)− X(0)− 1
Γ(α)

∫ t

0
(t− τ)α−1K(τ, X(τ))

∣∣∣ ≤ Ωε, t ∈ [0, T]. (26)

Definition 3. The fractional order model see (5) and equivalently (7) is Ulam–Hyers stable if there
exist CK > 0 such that for every ε > 0, and for each X ∈ E satisfying (25), there exist a solution
X ∈ E of the model see (5) with, ∥∥∥X(t)− X(t)

∥∥∥
E
≤ CKε.

Definition 4. The fractional order model (5) and (7) is said to be generalized Ulam–Hyers stability
if there exists a continuous function φK : R+ → R+ with φK(0) = 0, such that, for each solution
X ∈ E of (25), there exist a solution X ∈ E of the model (5) such that ,∥∥∥X(t)− X(t)

∥∥∥
E
≤ φKε

, t ∈ [0, T].

The stability of the fractional-order model is now presented as follows;

Theorem 7. Let the hypothesis and result of Lemma 3 hold see (3), Ω = b
Γ(a) and 1−ΩLK > 1.

Then the fractional order model (5) and (7) is Ulam–Hyers stable and consequently generalized
Ulam–Hyers stable.
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Proof. Let X be a unique solution of (7) guaranteed by theorem(3.3) see (3), X satisfies (25)
and recalling the expression for (8), (26) we have for ε > 0, t ∈ [0, T] we have that,

‖X(t)− X(t)‖E = sup
t∈[0,T]

∣∣∣X(t)− X0 −
1

Γ(α)

∫ t

0
(t− τ)K(τ, X(τ))dτ

∣∣∣
≤ sup

t∈[0,T]

∣∣∣X(t)− X0 −
1

Γ(α)

∫ t

0
(t− τ)α−1K(τ, X(τ))dτ

∣∣∣
+ sup

t∈[0,T]

1
Γ(α)

∫ t

0
(t− τ)α−1

∣∣∣K(τ, X(τ))−K(τ, X(τ))
∣∣∣dτ

≤ Ωε + ΩLK‖X− X‖E . (27)

From the above, we obtain ‖X − X‖E ≤ CK, where CK = Ωε
1−ΩLK

. We conclude that
the proposed problem (5) is both Ulam–Hyers and generalized Ulam–Hyers stable since
ϕK(ε) = CKε such that ϕK(0) = 0.

4.2.1. Global Stability of VFE Point

Using a Lyapunov function, we demonstrate that the virus-free equilibrium point E0

is globally asymptotically stable.

Theorem 8. The virus free equilibrium, E0, is globally asymptotically stable ifR0 > 1.

Proof. Consider the Lyapunov function of the Goh–Volterra type,

L = H0Ψ
( H

H0

)
+ I0Ψ

( I
I0

)
+ R0Ψ

( R
R0

)
,

where Ψ(x) = x − 1− ln x, ∀x > 0. The solution of the system (5) is determined by the
derivative of L as follows

CDα
t L =

(
1− H0

H

)
CDα

t H +
(

1− I0

I

)
CDα

t I +
(

1− R0

R

)
CDα

t R

=
(

1− H0

H

)(
rα

1 H −
rα

1 H2

K
− βα HI

)
+
(

1− I0

I

)(
βα HI − cα

1 RI − µα
1 I
)

+
(

1− R0

R

)(
τα HI +

rα
2 RI

σα + I
− cα

2 RI − µα
2 R
)

.

By evaluating the above expression at the E0, we obtain,

CDα
t L =

(
1− K

H

)(
rα

1 H −
rα

1 H2

K
− βα HI

)
+ βα HI − cα

1 RI − µα
1 I + τα HI +

rα
2 RI

σα + I
− cα

2 RI − µα
2 R

= −rα
1 R + rα

1 K + βαKI − cα
1 RI − µα

1 I + ταKI +
rα

2 RI
σα + I

− cα
2 RI − µα

2 R

≤ rα
1 K + βαKI + ταKI − µα

1 I +
rα

2 RI
σα + I

= µα
1

βαKI
µα

1
− µα

1 I + $ = µα
1 I(R0 − 1) + $, (28)

where we have assumed that H = K at Hmax and $ = rα
1 K + ταKI +

rα
2 RI

σα + I
. Therefore,

CDα
t L ≤ 0 if R0 ≤ 1. Furthermore, by the LaSalle’s invariance principle, the virus-free

equilibrium point (E0) is globally asymptotically stable.
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4.2.2. Global Stability of Virus EE Point

Finally, we investigate the global stability of the endemic equilibrium points.

Theorem 9. The virus EE, E1, is globally asymptotically stable ifR0 > 1.

Proof. We consider a Lyapunov function,

L1 = H1Ψ
( H

H1

)
+ I1Ψ

( I
I1

)
+ R1Ψ

( R
R1

)
,

where Ψ(x) = x− 1− ln x, ∀x > 0. By differentiating and evaluating at E1 = (0, I1, R1),
we obtain

CDα
t L =

(
1− H1

H

)(
rα

1 H1 −
rα

1 H2
1

K
− βαH1 I1

)
+
(

1− I1

I

)(
βαH1 I1 − cα

1 R1 I1 − µα
1 I1

)
+
(

1− R1

R

)(
τα H1 I1 +

rα
2 R1 I1

σα + I1
− cα

2 R1 I1 − µα
2 R1

)
.

= −cα
1 R1 I1 − µα

1 I1 −
cα

1 R1 I2
1

I
−

µα
1 I2

1
I

+
rα

2 R1 I1

σα + I1
− cα

2 R1 I1

− µα
2 R1 −

rα
2 R2

1 I1

R(σα + I1)
−

cα
2 R2

1 I2

R
−

µα
2 R2

1
R

≤ µα
1 I1(1−R0) + Γ1 − Γ2,

where

Γ1 = cα
1 RI1 + τα HI +

rα
2 RI

σα + I
+

τα HIR1

R
+

rα
2 IR1

σα + I
,

and
Γ2 = cα

1 RI + µα
1 I + cα

2 RI + µα
2(R− R1).

If R0 > 1 then CDα
t L1 ≤ 0 provided Γ1 = Γ2. Hence, CDα

t L1 ≤ 0 is negative semi-
definite, and by the LaSalle’s invariance principle [20], the endemic equilibrium point, E1

is globally asymptotically stable.

We prove the global stability of the second endemic equilibrium point.

Theorem 10. The virus EE, E2, is globally asymptotically stable ifR0 > 1.

Proof. Again, we consider the Goh–Volterra type lyapunov function,

L2 = H2Ψ
( H

H2

)
+ I2Ψ

( I
I2

)
+ R2Ψ

( R
R2

)
, (29)

where Ψ(x) = x − 1− ln x, ∀x > 0. It follows that By differentiating and evaluating at
E2 = (H2, I2, R2), we obtain

CDα
t L2 =

(
1− H2

H

)(
rα

1 H2 −
rα

1 H2
2

K
− βαH2 I2

)
+
(

1− I2

I

)(
βαH2 I2 − cα

1 R2 I2 − µα
1 I2

)
+
(

1− R2

R

)(
τα H2 I2 +

rα
2 R2 I2

σα + I2
− cα

2 R2 I2 − µα
2 R2

)
.

= rα
1 H2 −

rα
1 H2

2
K
−

rα
1 H2

2
K
−

rα
1 H3

2
H2K

−
βα H2

2 I2

H2
− cα

1 R2 I2 − µα
1 I2

−
βα H2 I2

2
I2

−
cα

1 R2 I2
2

I2
−

µα
1 I2

2
I2

+ τα H2 I2 +
rα

2 R2 I2

σα + I2
− cα

2 R2 I2 − µα
2 R2

− τα H2 I2R2

R2
−

rα
2 R2

2 I2

R2(σα + I2)
−

cα
2 R2

2 I2

R2
−

µα
2 R2

2
R2

,
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≤ I2µα
1(1−R0) + Γ3 − Γ4,

where

Γ3 = βα H2 I + cα
1 RI2 + cα

2 R2 I + µα
2 R2 + ταKI +

rα
2 RI

σα + I
and

Γ4 = cα
1 RI + µα

1 I + cα
2 RI + µα

2 R +
ταKR2 I

R
+

rα
2 R2 I

σα + I
.

If R0 > 1 then CDα
t L2 ≤ 0 provided Γ3 = Γ4. Then by LaSalle’s invariance princi-

ple [20], the endemic equilibrium point, E2, is globally asymptotically stable.

5. Numerical Results and Simulation

In this section, we present the numerical simulation to explain the dynamics of the Ca-
puto fractional order nonlinear HBV mathematical model using the Adams-type predictor–
corrector iterative scheme, see for example, [21,22] to solve the fractional-order differential
equations. Using an equivalent integral formulation of our fractional model (7), we consider
a uniform time discretization of [0, T] given by tn = nh, n = 0, 1, 2, . . . , N where h = T/n
denote the step size. For any given approximation Xh(tn) ≈ X(tn), the next approximate
Xh(tn+1) is derived via the Adams-type predictor–corrector iterative scheme as follows;

Predictor:

Xp
h (tn+1) =

dαe−1

∑
k=0

tk
n+1
k!

Xk
0 +

1
Γ(α)

n

∑
i=0

bi,n+1K(ti, Xc
h(ti))

Corrector:

Xc
h(tn+1) =

dαe−1

∑
k=0

tk
n+1
k!

Xk
0 +

hα

Γ(α + 2)
K(ti+1, Xp

h (ti+1)) +
hα

Γ(α + 2)

n

∑
i=0

ai,n+1K(ti, Xh(ti))

with

ai,n+1 =


nα+1 − (n− α)(n + 1)α, if i = 0
(n− i + 2)α+1 + (n− i)α+1 − 2(n− i + 1)α+1, if 1 ≤ i ≤ n
1, if i = n + 1

and
bi,n+1 =

hα

α

[
(n− i + 1)α − (n− i)α

]
.

5.1. Example 1

In this example, we assume parameter values as follows β = 4.14704, µ1 = 0.0693,
µ2 = 0.693, τ = 10, σ = 1.35, r1 = 6.2, r2 = 0.02, c1 = 0.2, c2 = 0.037, K = 2 × 1011.
We consider the initial conditions H0 = 0.1, I0 = 0.1, R0 = 0 with a time span of 0 to
20 days and varying values of the fractional order α are reported in Figures 1–3. Finally in
Figures 4 and 5, we present the dynamics of the model for α = 0.7 and α = 0.9. Here, we
obtain a basic reporduction number R0 > 1. This example demonstrates the case where
the healthy hepatocytes are growing slower than the infected hepatocytes, which activates
the growth of more immune response cytotoxic cells, as can be seen in Figures 3 and 4.
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Figure 1. The dynamics of the healthy hepatocytes, H, for varying fractional order α.
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Figure 2. The dynamics of the Infected hepatocytes, I, for varying fractional order α.
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Figure 3. The dynamics of the immune response cytotoxic cells, R, for varying fractional order α.
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Figure 4. For the same fractional order, we plot the dynamics of the Healthy and Infected Hepatocyte
as well as the Immune response cytotoxic cells for α = 0.7.
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Figure 5. For the same fractional order, we plot the dynamics of the Healthy and Infected Hepatocyte
as well as the Immune response cytotoxic cells for α = 0.9.

5.2. Example 2

In this example, we consider the parameters values r1 = 0.2, K = 1, β = 0.3,
c1 = 0.02, µ1 = 0.01, τ = 0.0001, σ = 0.001, r2 = 0.01, c2 = 1, µ2 = 0.02. Here, we
demonstrate the case whereR0 ≤ 1, which means that the virus will die out after a number
of days, see Figures 6–8. Again we see in Figures 9 and 10, the dynamics of the model
for varying parameters α = 0.7 and α = 0.9. This example demonstrates the case where
the healthy hepatocytes are growing faster than the infected hepatocytes. This activates a
minimal growth of immune response cytotoxic cells, as can be seen in Figures 9 and 10.
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Figure 6. The dynamics of the healthy hepatocytes, H, for varying fractional order α.
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Figure 7. The dynamics of the infected hepatocytes, I, for varying fractional order α.
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Figure 8. The dynamics of the immune response cytotoxic cells, R, for varying fractional order α.
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Figure 9. The dynamics of the Healthy (H) and Infected (I) Hepatocyte and the Immune resonse
cytotoxic cells (R) for α = 0.7.
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Figure 10. The dynamics of the Healthy (H) and Infected (I) Hepatocyte and the Immune response
cytotoxic cells (R) for α = 0.9.

5.3. Example 3

Next, we study the parameters β and µ1 to understand the dynamics of the model with
respect to the basic reproduction number,R0. Using the parameter values from Example 2
at a fractional order of α = 0.7, we choose varying values for β. Here, we note that the basic
viral reproduction number R0 < 1, for β = {0.0008, 0.008}. Thus, if the infection rate of
the normal cells is less than the natural death rate of the HB virus; then the HB virus will
finally die out as depicted in Figures 11–13. We also notice that, for β < µ1, the Healthy
Hepatocytes grow whiles the for β > µ1, the Healthy Hepatocytes diminishes.
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Figure 11. The dynamics of the Healthy Hepatocytes (H) for varying values of β.
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Figure 12. The dynamics of the Infected Hepatocytes (I) for varying values of β.
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Figure 13. The dynamics of the Immune Response Cytotoxic cells (R) for varying values of β.
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5.4. Example 4

In this example, we consider all the parameter values in Example 2 except for µ1 for a
fixed fractional order α = 0.7. We used varying values of µ1 = {0.0001, 0.001, 0.1, 10}. We
obtained the basic viral reproduction numberR0 < 1 for all the values except at µ1 = 0.0001,
which means that the virus will be removed whenever the natural death rate of the virus is
less than the rate of infection of healthy hepatocytes, see Figures 14–16. In Figure 17, we
notice that when the Healthy Hepatocytes are high, the infected Hepatocytes are low and
lead to a low amount of the immune response cytotoxic cells.
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Figure 14. The dynamics of the Healthy Hepatocytes (H) for varying values of µ1.
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Figure 15. The dynamics of the Infected Hepatocytes (I) for varying values of µ1.

Analyzing the impact of K in the model, we realize that, in both endemic and disease-
free states, a significant increase in the value of K does not change the state of stability,
for instance, keeping all parameters constant in the case of endemic with µ1 = 0.01, when
K = 10,R0 = 6 > 1,and when K = 1000,R0 = 600 > 1. we also analyzed β, which affects
the rate at which Healthy hepatocytes become infected; thus, an increase in β always causes
the infected hepatocytes to increase, indicating a positive relationship between β and I. An
increase in β in an endemic condition indicates that the virus will eventually affect all the
healthy hepatocytes, and once there are no healthy hepatocytes left to rely on, the virus
will eventually go extinct see (10). Taking α = 1, when µ1 = 0.01 and β = 0.3, R0 = 30.
similarly when β = 0.1, R0 = 10. The maximum value β can take in the endemic case is
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1.2 and a minimum value of 0.1. In the case of disease free when µ1 = 0.5, β takes values
0 < β < 0.5. Thus, when β = 0.3,R0 = 0.6 < 1 and when β = 0.4,R0 = 0.8 < 1.
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Figure 16. The dynamics of the Immune response cytotoxic cells (R) for varying values of µ1.
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Figure 17. The dynamics of the model for µ1 = 0.01 at a fractional order of α = 0.7.

6. Conclusions

We presented the theoretical and numerical simulations for Caputo fractional order
model for Hepatitis B cellular viral infection. We presented the existence and uniqueness
as well as the boundedness of the model. We showed that the virus-free equilibrium (VFE)
is locally asymptotically stable whenR0 ≤ 1 else is unstable, i.e., replicating and becomes
persistent in the liver. By means of Routh–Hurwitz, we established local stability. Using
Ulam–Hyers stability, we showed that the fractional model is globally asymptotically stable.
Subsequently, we presented the global stability results for the virus-free and endemic
equilibrium points. Finally, using a predictor–corrector iterative scheme, several numer-
ical simulations were presented for different fractional orders of the derivative, which
corresponds to the analytical results predicted.
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