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Abstract: It is increasingly necessary to promote means of production that are less polluting and
less harmful to the environment following the UN 2030 agenda for sustainable development. Using
natural cellular materials in structural applications can be essential for enabling a future in this
direction. Cork is a natural cellular material with an excellent energy absorption capacity. Its use in
engineering applications and products has grown over time, so predicting its mechanical response
through numerical tools is crucial. Classical cork modeling uses a model developed for foam material,
including an adjustment function that does not have a clear physical interpretation. This work
presents a new material model for an agglomerated cork based solely on well-known hypotheses of
continuum mechanics using fewer parameters than the classical model and further a finite element
framework to validate the new model against experimental data.

Keywords: agglomerated cork; material modeling; successive linear approximation; finite element

1. Introduction

The use of cellular materials in engineering applications has been established world-
wide. This kind of material has excellent crashworthiness and insulation properties. Sty-
rofoam (expanded polystyrene), derived from oil, is widely present in packaging and
safety apparel, with excellent cost/performance ratios but with well-known recyclability
and biodegradability issues after usage. Cork, the outer bark of Quercus suber L. tree, is a
natural cellular material by excellence, allying crashworthiness and insulation properties.
Compared with its synthetic counterparts, it is a sustainable and eco-friendly solution.

Dart and Eugene [1] made one of the first attempts to characterize cork mechanical
behavior under compression loading. They found that each stress–time curve for various
compressions can be obtained from each other by scaling. Such scalability was justified by
the shape of the stress–strain compression curve. A highly non-linear stress–strain response
curve characterizes agglomerated cork under compression. This curve is divided into three
parts: a small elastic linear behavior at the beginning, followed by a plateau, and finished
with a highly non-linear densification part.

All types of cork, natural, agglomerated, and expanded, are characterized by this
compression behavior. The material properties vary with density, cellular dimensions,
and porosity, as seen in [2,3]. The Poisson effect in natural cork compression was studied
by [4]. They found that for compression in axial and tangential directions, the Poisson’s
ratio is almost null, while in the radial direction, cork presents a Poisson’s ratio of 0.3.
The cell geometry of the cork explained this effect.

Unlike natural cork, which presents the natural material anisotropy [5], cork agglom-
erates are obtained by compressing together randomly oriented cork grains [6]. This
manufacturing procedure promotes a fairly regular isotropic mechanical behavior in cork
agglomerates.
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The authors performed experimental tests to obtain the Young and shear modulus
in [7,8]. To determine the Young modulus, a tensile test was conducted, and, in the case
of the shear modulus, they performed a torsion test on a cork cylinder. Ref. [8] also
concluded that the amount of strain necessary to fracture in the radial direction is much
larger than in the other directions. More recently, agglomerated cork is being used as
an ideal core material for sandwich components of lightweight structures [9–14]. This
structure is interesting because cork is used as an energy dissipator.

Usually, a material characterized by a mechanical behavior similar to cork’s under
compression is numerically modeled as a foam material model [15]. The Ogden-Hill
hyperelastic model, [16,17], is a well-known numerical model for elastomeric polymer
foams and hence a good model for agglomerated cork. More recently, in [18], an investi-
gation was carried out to determine the influence of the variability related to the material
properties of natural cork based on a numerical homogenization approach to predict the
temperature-dependent equivalent elastic properties. These approaches consider only the
elastic behavior of the material since the plastic period is only reached through substantial
deformation and high strain energies.

This work focuses on the modeling of the mechanical response of cork. We present a
new material model for cork agglomerates based on an extension of the Mooney–Rivlin ma-
terial. The material parameterization will be made through an optimization problem using
uniaxial and equibiaxial experimental results and the analytical solutions for these com-
pression tests. To the authors’ best knowledge, it is also the first time that experimental data
from biaxial compressions of cork has been reported. After the parameterization, a finite
element framework is used to validate this new material model against experimental data.

Due to the non-linear nature of both the material model and the large deformation, we
use the successive linear approximation method for numerical simulation purposes to deal
with the problem. This method calculates the constitutive equations at each state, with the
reference configuration updated for each time step. The new reference configuration is the
current configuration of the body. Assuming that in each time step that occurs, a small
deformation is added, both the constitutive equations and the PDE system are linearized.

In Section 2, we briefly present the Successive Linear Approximation method used
in this work, and in Section 3, the hyperelastic material model is considered. Section 4
presents the parameter fitting for the cork agglomerates model, and finally, in Section 5, we
show the comparison between numerical results, obtained by a finite element code against
analytical and experimental results.

2. Successive Linear Approximation Method

The Successive Linear Approximation (SLA) Method [19], a relative Lagrangian for-
mulation based on the “small-on-large” idea, allows implementing the solution to large
deformation in a successive incremental manner. In other words, at each time step, the con-
stitutive function is calculated at the present state of deformation, which will be regarded
as the reference configuration for the next state. From this point of view, it is considered a
relative motion description; see, for example [20]. Assuming that the deformation to the
next state is small, the constitutive function and the partial differential equation can be
linearized. This procedure for large deformation problems was presented in [21].

This approach has significant fields of application, such as salt tectonics [22]. In [23],
the influence of temperature in salt domes, a thermoviscoelastic material, was studied.

2.1. Relative Motion Description

Let κ0 be the preferred reference configuration of an elastic body B, B0 = κ0(B),
and x = χ(X, t), with X ∈ B0 be the motion of the body, see Figure 1. The configuration
with specific material symmetries, such as isotropy, is usually chosen as the reference con-
figuration. Such material symmetries may be lost in the deformed configuration in general.
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X ∈ κ0(B)

x ∈ κt(B) ξ ∈ κτ(B)
I + Ht(τ)

F(t) F(τ)

ξ = x + ut(τ)
Figure 1. The deformation and deformation gradient diagram.

In this paper, we consider the time t as the present time. Thus, κt is the deformed
configuration at time t, Bt = κt(B). Now, we can calculate the deformation gradient with
respect to configuration κ0 as

F(X, t) = ∇Xχ(X, t). (1)

Now, let κτ be the deformed configuration at time τ. The deformation ξ = χ(X, τ)
from κ0 can be described in the current configuration at the present time t by

ξ = χ(X, τ) := χt(x, τ) for x = χ(X, t), (2)

where χt(·, τ) : Bt −→ Bτ is called relative deformation. With these in mind we can define
the relative displacement vector u as

u = ξ − x = ut(x, τ) = χt(x, τ)− x, x ∈ Bt. (3)

Taking the gradient relative to X and x, respectively, we have

Ht(x, τ)F(X, t) = ∇xut(x, τ)F(X, t) = F(X, τ)− F(X, t),

Ht(x, τ) = ∇xχt(x, τ)− I = Ft(x, τ)− I, (4)

where I, Ht(x, τ) and Ft(x, τ) are the identity tensor, relative displacement gradient and
relative deformation gradient, respectively. We can rewrite the above equations as

Ft(x, τ) = F(X, τ)F(X, t)−1, F(X, τ) = (I−Ht(x, τ))F(X, t). (5)

With all these equations, we can define the motions of a body, and it is called relative
description formulation.

2.2. Linearized Constitutive Equation

Consider τ = t + ∆t. By taking ∆t small enough, we can assume that the gradient of
the displacement is small, and for simplicity, we denote

H(τ) := Ht(x, τ)), with ‖ H(τ) ‖� 1, (6)

moreover, from (4), we have

F(τ)− F(t) = H(τ)F(t), Ft(τ) = I + H(τ). (7)

Without loss of generality, the Cauchy stress tensor of an elastic body in the preferred
reference configuration is given by

T(X, t) = −pI +Fκ0(F(X, t)), (8)

where, for compressible bodies, p = p(F). We shall assume that this dependence is only
through the determinant, or equivalently, from the mass balance, depending only on the
mass density, i.e., p = p(ρ) where ρ = ρ0

detF .
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For time τ = t + ∆t, we have

ρ(τ)− ρ(t) = ρ0(detF(τ)−1 − detF(t)−1) = ρ(t)(det(F(t)F(τ)−1)− 1)

= ρ(t)(det(I + H(τ))−1 − 1) = −ρ(t)trH(τ) + o(2), (9)

where in the passages, (5) and (7) were used. Using Taylor series expansion in (8) and (9), it
follows that

T(τ) = T(t)−
(

∂p
∂ρ

)
t
(ρ(τ)− ρ(t))I +∇FF (F(t))(F(τ)− F(t))

= T(t)− β(trH(τ))I +∇FF (F(t))(H(τ)F(t), (10)

or

T(τ) = T(t) + L(F(t))[H(τ)], (11)

where β = ρ
∂p
∂ρ is a material parameter and

L(F(t))[H(τ)] := −β(trH(τ))I +∇FF (F(t))[H(τ)F(t)] (12)

defines the fourth-order elasticity tensor, relative to the current configuration κt. Further-
more, the first Piola–Kirchhoff stress tensor at time τ relative to the current configuration,
is given by

Tκt(τ) = detFt(τ)T(τ)Ft(τ)
−T = det(I + H)T(τ)(I + H)−T

= det(I + H)(T(t) + L(F)[H] + o(2))(I + H)−T

= (I + trH)(T(t) + L(F)[H])(I−HT) + o(2)

= T(t) + (trH)T(t)− T(t)HT + L(F)[H] + o(2), (13)

and we write the linearized first Piola–Kirchhoff as

Tκt(τ) = T(t) +K(F(t), T(t))[H(τ)], (14)

where

K(F, T)[H] := (trH)T(t)− T(t)HT + L(F)[H] (15)

is the fourth-order elasticity tensor for the first Piola–Kirchhoff stress tensor.
To define the fourth-order elasticity tensor we have to define the material model.

In Section 3 we will propose one based on Mooney–Rivlin hyperelastic material model.

3. Hyperelastic Material Model

To obtain a constitutive model for large strains of an isotropic elastic solid, we shall
start with the free energy function ψ = ψ(IB, IIB, IIIB), and the Cauchy stress given by

T = 2ρ
∂ψ

∂B
B, (16)

where B is the left Cauchy–Green strain tensor and IB, IIB, IIIB are the first, second and
third invariants of B. By Taylor series expansion, we can write

ψ(IB, IIB, IIIB) = ψ0(3, 3, IIIB) + ψ1(IB − 3) + ψ2(IIB − 3)

+
1
2

ψ3(IB − 3)2 + ψ4(IB − 3)(IIB − 3) +
1
2

ψ5(IIB − 3)2, (17)
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where ψk = ψk(IIIB) for k = 0, 1 . . . , 5, which stands for the expansion up to the second
order for moderate strains.

From (16), by the use of the relations

∂IB

∂B
= I,

∂IIB

∂B
= IBI− B,

∂IIIB

∂B
= IIIBB−1, (18)

we obtain

T + pI = 2ρ[ψ1 + ψ3(IB − 3) + ψ4(IIB − 3)]B

− 2ρ[ψ2 + ψ4(IB − 3) + ψ5(IIB − 3)](B2 − IBB), (19)

where terms with the identity tensor are lumped into the pressure p(IB, IIB, IIIB).
By the use of the Cayley–Hamilton theorem,

B2 − IBB = IIIBB−1 − IIBI, (20)

it becomes

T + pI = 2ρ[ψ1 + ψ3(IB − 3) + ψ4(IIB − 3)]B

− 2ρ[ψ2 + ψ4(IB − 3) + ψ5(IIB − 3)]IIIBB−1, (21)

in which the term IIBI is absorbed into the indeterminate pressure pI.
We can rewrite the above equation with the definition of the parameters,

s1 = 2ρ(ψ1 − 3ψ3 − 3ψ4),

s2 = 2ρIIIB(ψ2 − 3ψ4 − 3ψ5), (22)

s3 = 2ρψ3, s4 = 2ρIIIBψ4,

s5 = 2ρψ4, s6 = 2ρIIIBψ5,

and propose an isotropic elastic model as:

An extended Mooney–Rivlin material. The constitutive equation

T = −pI + (s1 + s3IB + s5IIB)(B− I)− (s2 + s4IB + s6IIB)(B−1 − I), (23)

is an extended version of Mooney–Rivlin model for isotropic solids at large strain. We shall assume
that six parameters s1, ..., s6 are material constants, and the pressure is a function of mass density
only, p(ρ) so that

β = ρ
∂p
∂ρ

, (24)

is a material parameter.
With the proposed constitutive equation, from (12) we can derive the fourth-order

elastic tensor. Therefore, in Einstein notation, it follows that

Lijkl = β(δijδkl)

+ (s1 + s3IB + s5IIB)(Bl jδki + Bilδkj)

+ (s2 + s4IB + s6IIB)(B−1
ik δjl + B−1

kj δil)

+ 2(s3Bkl + s5(IIBδkl − IIIBB−1
kl ))(Bij − δij)

− 2(s4Bkl + s6(IIBδkl − IIIBB−1
kl ))(B−1

ij − δij). (25)
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Remark on β value for cork: Since, in this paper, we are considering the cork agglomerated
as a material, from the definition of β and the compressibility of cork, it follows that β ≈ 0.

Remarks on linear model: Let B = I + 2E, hence B−1 = I− 2E and trH = trE, for small
linear strain E, then

IB = tr(I + 2E) = 3 + 2trE, (26)

IIB = (detB)IB−1 = (1 + trE)tr(I− 2E) (27)

= (1 + trE)(3− 2trE) = 3 + trE, (28)

and, using a Taylor expansion of p(ρ), the stress becomes

T = −(p0 − β0trE)I + 2[s1 + s3(3 + 2trE) + s5(3 + trE)]E (29)

− 2[s2 + s4(3 + 2trE) + s6(3 + trE)]E (30)

= −p0I + λ(trE)I + 2µE + o(2), (31)

where

λ = β0, (32)

µ = s1 − s2 + 3(s3 + s5 − s4 − s6) (33)

are the elastic Lamé constants. Note that we have the relation from linear elasticity,

β0 = λ =
2νµ

1− 2ν
, (34)

where ν is the Poisson ratio.

4. Parameter Fitting for Cork Agglomerates

Cork agglomerate can be modeled as a hyperelastic material. As any other hyperelastic
material, to parametrize an agglomerated cork we need at least two different deformation
modes to capture the correct material behavior [24].

In this paper, we will use the uniaxial and the equibiaxial compression tests, schemati-
cally represented in Figure 2, to parametrize the extended Mooney–Rivlin model proposed
before. For the parametrization procedure adopted we need the experimental data, the ana-
lytical solutions for both deformation modes and a good minimization function.

Figure 2. Uniaxial and equibiaxial compression tests schemes.

4.1. Uniaxial Compression

The uniaxial extension is given by

x = λX, y = Y, z = Z, (35)
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where λ is the stretch along the loading. For agglomerated cork, in uniaxial extension,
the transversal stretches have the same value and they are near 1, which is why we are not
considering them. Therefore, the gradient deformation, the left Cauchy–Green strain tensor
and its inverse are given, respectively, by

F =

λ 0 0
0 1 0
0 0 1

, B =

λ2 0 0
0 1 0
0 0 1

, B−1 =

 1
λ2 0 0
0 1 0
0 0 1

,

and from that, the first, second and third invariants of B are

IB = 2 + λ2, IIB = 2λ2 + 1, IIIB = λ2. (36)

Consequently, the Cauchy stress tensor, T(λ), can be obtained by inserting (36) into (23):

T(λ) = −pI + [s1 + s3(2 + λ2) + s5(2λ2 + 1)](B− I)

− [s2 + s4(2 + λ2) + s6(2λ2 + 1)](B−1 − I). (37)

Since there is no stretch in the second and third direction we have TU2(λ) = TU3(λ) = 0.
Therefore, p = 0 and the principal stress in the first direction is defined by:

TU1(λ) = [s1 + s3(2 + λ2) + s5(2λ2 + 1)](λ2 − 1)

− [s2 + s4(2 + λ2) + s6(2λ2 + 1)](λ−2 − 1), (38)

4.2. Equibiaxial Compression

The equibiaxial extension is given by

x = λX, y = λY, z = Z, (39)

Therefore, the deformation gradient, the left Cauchy–Green strain tensor and its inverse
are given, respectively, by

F =

λ 0 0
0 λ 0
0 0 1

, B =

λ2 0 0
0 λ2 0
0 0 1

, B−1 =

 1
λ2 0 0
0 1

λ2 0
0 0 1

,

and from that, the first, second and third invariants of B are

IB = 1 + 2λ2, IIB = 2λ2 + λ4, IIIB = λ4. (40)

Consequently, the Cauchy stress tensor, T(λ), can be obtained by inserting (40) into (23):

T(λ) = −pI + [s1 + s3(1 + 2λ2) + s5(2λ2 + λ4)](B− I)

− [s2 + s4(1 + 2λ2) + s6(2λ2 + λ4)](B−1 − I). (41)

Since there is no stretch in the third direction, we have TB3(λ) = 0. Therefore, p = 0 and
the principal stress in the first and second directions are defined by:

TB1(λ) = TB2(λ) = [s1 + s3(1 + 2λ2) + s5(2λ2 + λ4)](λ2 − 1)

− [s2 + s4(1 + 2λ2) + s6(2λ2 + λ4)](λ−2 − 1). (42)

Equations (38) and (42) are the analytical solutions for the uniaxial and equibiaxial
compression problems, respectively.
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4.3. Experimental Tests

To parameterize our model, we have to collect some experimental data for both tests,
uniaxial, and equibiaxial compression. The quasi-static uniaxial compression tests were
performed in a universal testing machine, the Shimadzu AGS-X-10 kN. The equibiaxial
compression tests were performed in an in-house built biaxial machine developed and
properly validated in [25]. Both types of experiments were carried out at room temperature.

For uniaxial compression tests, 60 mm agglomerated cork cubes were manufactured,
as shown in Figure 3. For the equibiaxial tests, 30 mm thick octagon-shaped samples were
produced. The other dimensions are shown in Figure 4.

Figure 3. Agglomerated cork sample positioned for uniaxial compression testing at quasi-static
strain rates.

Figure 4. Dimensions of the octagon-shaped sample and the experimental setup for the equibiaxial
compression tests.

In the equibiaxial compression tests, we consider the values of stretch and stress at the
central part of sample, a square with a 70 mm side. The values for stress and stretch for
both tests are presented in Table 1.
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Table 1. Values of experimental tests of uniaxial and equibiaxial compression.

Uniaxial Compression Equibiaxial Compression

Stretch Stress [MPa] Stretch Stress [MPa]

0.99990 −0.00267 0.99983 −0.00154
0.98716 −0.08793 0.96683 −0.18431
0.97331 −0.15326 0.93350 −0.31465
0.91794 −0.25836 0.90016 −0.38643
0.86256 −0.32187 0.86683 −0.45608
0.80718 −0.38418 0.83350 −0.52095
0.77949 −0.41763 0.81683 −0.54994
0.72411 −0.48701 0.78350 −0.61324
0.69642 −0.52242 0.76683 −0.65323
0.64104 −0.59524 0.73350 −0.73154
0.61335 −0.63417 0.71683 −0.77041
0.55797 −0.72245 0.68350 −0.86132
0.53028 −0.77436 0.66683 −0.92065
0.47490 −0.90147 0.63350 −1.06085
0.44721 −0.98206 0.61683 −1.14073
0.39183 −1.19875 0.58350 −1.38921
0.36414 −1.34949 0.56683 −1.59243
0.33645 −1.54421
0.30876 −1.80366
0.25339 −2.65663

4.4. Curve Fitting

To parametrize the material we use the Wolfram Mathematica software through the
function Nminimize. This function implements four methods that don’t need derivatives
for minimization: Nelder–Mead, Simulated Annealing, Differential Evolution and Random
Search. The results presented by the four were very similar with a slight advantage for the
Nelder–Mead, used in this work.

This algorithm tries to find a maximum or minimum of an objective function by
doing a direct search. This search uses simplexes as input data for the objective function
and evaluates how close the minimum of this function is. One of its features is that the
derivatives of the function may not be known.

As we have to consider both, uni and equibiaxial tests, our objective function has to
take both experiments into account. Let us define TExp

U , ΛExp
U , TExp

B , ΛExp
B as stress and

stretch in uniaxial test and stress and stretch in equibiaxial test, respectively. Therefore, our
objective function is given by

Θ(s1, . . . , s6) = Q1(s1, . . . , s6) + Q2(s1, . . . , s6), (43)

with,

Q1(s1, . . . , s6) =
R

∑
r=1

[
TExp

Ur
− TU1(Λ

Exp
Ur

)

TExp
Ur

]2

,

Q2(s1, . . . , s6) =
S

∑
s=1

[
TExp

Bs
− TB1(Λ

Exp
Bs

)

TExp
Bs

]2

, (44)

where R, S are the number of experimental data for each case and TU1(Λ
Exp
Ur

) and TB1(Λ
Exp
Bs

)
are the uniaxial and biaxial stress calculated, respectively, by (38) and (42), considering
experimental deformations ΛExp

Ur
and ΛExp

Bs
. Q1 and Q2 are the normalized error function
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for each of the tests and both depend on the parameters s1, . . . , s6. This objective function
was based on that used in the [24].

In Table 2, we present the obtained values for each parameter. The experimental and
analytical curves, using the obtained parameters, are presented in Figure 5.

Table 2. Obtained material parameters.

Parameter Value

s1 −25.860100
s2 2.7356100
s3 19.317400
s4 0.0407647
s5 −8.3524100
s6 −2.5714300

Figure 5. Comparison between analytical and experimental results for uniaxial and equibiaxial tests,
respectively.
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5. Linearized Partial Differential Equations

Let Ω = {x ∈ κt(B)} ⊂ R3 be the region occupied by the body at the present
configuration κt, and let ∂Ω = Γ1 ∪ Γ2 be the disjoint unions of its boundary. Let n(x, t) be
the exterior unit normal to ∂Ω at the present time.

At time τ > t, we shall consider an initial boundary value problem in Lagrangian
formulation, with the present state at time t as the reference configuration, given by

ρ(t) üt(τ)− divx Tt(τ) = ρ(t)b(τ), in Ω, (45)

Tt(τ) n(t) = f (τ), on Γ1, (46)

ut(τ) = d(τ), on Γ2, (47)

ut(t) = 0, u̇t(t) = v(t), in Ω. (48)

The body is subjected to the surface traction f (x, τ), the boundary displacement d(x, τ)
on the respective parts of ∂Ω at time τ > t, and the initial velocity v(x, t) in Ω at the present
time t. Note that unlike the explicit time dependence in the above expressions, the spatial
dependence is implicitly understood and is not explicitly indicated for simplicity.

In these relations, for simplicity, divx stands for the divergence operator relative to the
coordinate x ∈ κt(B), which is the same as the operator divκt for the reference configuration
κt in this case.

Together with the constitutive Equation (23), the mechanical problem is to be solved
for the relative displacement vector ut(τ). Since the constitutive function T in (23) is
generally nonlinear for finite deformations, the partial differential equation of this problem
is genuinely nonlinear. However, in the relative Lagrangian formulation, for small enough
incremental time ∆t = τ − t, we can easily linearize the constitutive equations relative to
the present state at time t, so that the boundary value problem becomes linear.

By regarding the present state as the reference state, it is assumed that the state
variables are all known functions at the present time t. Those include the deformation
gradient F(t) and the stress T(t).

By use of the linearization (14), the partial differential equation of the problem be-
come [26]

ρ(t) üt(τ)− divx

(
K(t)[∇xut(τ)]

)
= divx T(t) + ρ(t)b(τ), (49)

where the relevant material function K is defined in (15) and (25).
The Equation (49) is a linear partial differential equation for the relative displacement

vector ut(x, τ) to be solved with the corresponding initial boundary conditions in the
problems (45), for which the state variables of the body at time t are known and the external
supplies b(τ) is given so that the right-hand side of the Equation (49) is known quantity.

In this linearization, we do not assume the deformation is small, rather only the
relative displacement gradient with respect to the present state is assumed to be small.
This is the idea of “small-on-large”, the same as the well-known problem of small defor-
mations superposed on finite deformation in the literature [27]. Therefore, the overall
deformation may be of finite values, in contrast to the usual theory of linear elasticity which
linearizes the problem with respect to the fixed reference configuration assuming a small
deformation gradient.

6. Variational Formulation

Consider
V = {v ∈

(
H1(Ω)

)n
; v = 0, on Γ2}.
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Lets u, v ∈ V. By multiplying Equation (49) for v, integrating it by parts over Ω
and using the definition of the inner product of second-order tensors (if A and B are
second-order tensors, A.B = tr(ABT)), we have, ∀v ∈ V,∫

Ω
ρ(t) üt(τ) · vdΩ +

∫
Ω

tr
[(
K(t)[∇xut(τ)]

)
∇xvT

]
dΩ

−
∫

∂Ω=Γ1

v ·
(
K(t)[∇xut(τ)]

)
nκdΓ =

∫
Ω

divx Te(t) · vdΩ

+
∫

Ω
ρ(t) b(τ) · vdΩ.

(50)

By the boundary condition,

−
∫

Γ1

v ·
(
K(t)[∇xut(τ)]

)
nκdΓ = −

∫
Γ1

v · f (τ)dΓ

−
∫

Γ1

v · Te(t)dΓ, ∀v ∈ V.
(51)

Replacing (51) in (50) and using, again, integration by parts, we have the weak formu-
lation, ∫

Ω
ρ(t) üt(τ) · vdΩ +

∫
Ω

tr
[(
K(t)[∇xut(τ)]

)
∇xvT

]
dΩ =∫

Ω
ρ(t) b(τ) · vdΩ−

∫
Ω

Te(t) · ∇xvdΩ +
∫

Γ1

v · f (τ)dΓ, ∀v ∈ V,
(52)

or we can rewrite this in terms of the bilinear forms(
ρ(t) üt(τ), v

)
+ a
(
K(t)[∇xut(τ)], v

)
=
(

ρ(t) b(τ), v
)
−(

Te(t),∇xv
)
+
(

v, f (τ)
)

Γ1
, ∀v ∈ V.

(53)

Let us consider Vh a finite subspace of V. By restricting the formulation (53) to the
space Vh we have(

ρ(t) üh
t (τ), vh

)
+ a
(
K(t)[∇xuh

t (τ)], vh
)
=
(

ρ(t) b(τ), vh
)
−(

Te(t),∇xvh
)
+
(

vh, f (τ)
)

Γ1
, ∀vh ∈ Vh.

(54)

Now consider {ϕ1, ϕ2, · · · , ϕn} a basis of the subspace Vh, that is, all elements uh ∈ Vh

can be expressed as

uh =
n

∑
i=1

bi ϕi. (55)

Replacing in (54) uh by (55) and taking vh = ϕj, 1 ≤ j ≤ n, we have

Ab̈ + Lb = N , (56)

where, for 1 ≤ i, j ≤ n

Aij =
(

ρ(t) ϕi, ϕj

)
,

Lij = a
(
K(t)[∇x ϕi], ϕj

)
,

Nj =
(

ρ(t) b(τ), ϕj

)
−
(

Te(t),∇x ϕj

)
+
(

ϕj, f (τ)
)

Γ1
. (57)
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7. Numerical Validation

For the numerical simulation, as the two cases studied are examples of large defor-
mations, the SLA method that was presented in Section 2 was used. We consider the
material model developed in Section 3 with the parameters defined in Section 4, Table 2. In
both cases, we are interested in the deformation after each loading step. Thereby, we are
considering quasi-static, time-independent problems.

Regarding the implementation, all the finite element codes were developed by the
author. The solver of the linear algebra problem that naturally arises in the finite element
context was also implemented by the author. This decision was taken, principally, to solve
the linear system with a good algorithm that takes into account the finite element matrix.
The Gaussian quadrature was the integration method adopted. All the code is developed
in an object-oriented programming language, C++.

For uniaxial compression, we consider a mesh of 50 mm × 100 mm, with 10 elements
in the x-direction and 10 elements in the y-direction. The boundary condition applied
considered that a displacement was prescribed on the upper surface and the lateral sur-
face is free, while the base is free horizontally but not vertically. It applied a prescribed
displacement equal to 7 mm in each load step.

In the case of the equibiaxial test, we consider a mesh of 200 mm × 200 mm, with
10 elements in the x-direction and 10 elements in the y-direction. The symmetry of the
problem on the x and y axes was considered, and with only a quarter of the model was
modeled. Still considering the symmetry, equal displacements were prescribed on both x
and y surfaces on the top and the right side, while the left was free to move vertically and
the bottom was free to move horizontally. In this case, the prescribed displacement in each
load step is equal to 10 mm both in x and y directions.

For both tests, we use 100 steps of SLA and Q4 element, a bilinear quadrilateral element
which combines two sets of Lagrange polynomials, i.e., linear isoparametric quadrilateral
elements with four nodes. Figure 6 shows the finite element mesh and the boundary
conditions for both cases.

Figure 6. Finite element mesh and boundary condition for both tests, uniaxial (left) and equibiaxial
(right).

In Figure 7, we can see the results obtained for the two cases studied. From left
to right, we can see the comparison between the numerical and analytical results of the
equibiaxial and uniaxial tests. As expected, the equibiaxial test has a smaller plateau area
and densification occurs earlier than in the uniaxial test.
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Figure 7. Comparison between numerical, analytical and experimental solutions for uniaxial and
equibiaxial compression tests, respectively.

These two simulations show that the agglomerated cork model presented represents
with good accuracy the real behavior of the material, and therefore, it is a good option to be
studied from now on.

8. Conclusions and Future Work

In this paper, we present a new material model for agglomerated cork. This model
is based on the Mooney–Rivlin hyperelastic model and, as the cork agglomerate has a
Poisson ratio near zero, has six material parameters. Analytical solutions for uniaxial
and equibiaxial tests were developed and used for parameterization. To parameterize,
the Nelder–Mead algorithm was used.

We also describe and use the successive linear approximation method (SLA) for the
numerical simulation. The description of the SLA was quite general, and can be used for
any material.

Our results show that the presented model is a good model and was validated through
numerical simulation. One of the advantages of our model is the mathematical simplicity in
relation to the classical model [16,17], being a direct extension of a Mooney–Rivlin model.

For future work, it will be interesting to try to relate the parameters s1, s2, s3, s4, s5
and s6 with physical parameters of the material, as was performed directly with the β and
the Poisson ratio. Another interesting approach to test the efficiency of the SLA will be the
study of a contact-impact problem.
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