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Abstract: This study provides a least-squares-based numerical approach to estimate the boundary
value geodesic trajectory and associated parametric velocity on curved surfaces. The approach is
based on the Theory of Functional Connections, an analytical framework to perform functional
interpolation. Numerical examples are provided for a set of two-dimensional quadrics, including
ellipsoid, elliptic hyperboloid, elliptic paraboloid, hyperbolic paraboloid, torus, one-sheeted hyper-
boloid, Moëbius strips, as well as on a generic surface. The estimated geodesic solutions for the
tested surfaces are obtained with residuals at the machine-error level. In principle, the proposed
approach can be applied to solve boundary value problems in more complex scenarios, such as on
Riemannian manifolds.
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1. Introduction

Geodesic trajectories represent the paths on a curved surface, whose acceleration has
no component on the local tangent plane to the surface. In many common scenarios, a
geodesic represents the straightest path between two points. In particular, in a Riemannian
manifold, geodesics are characterized by the property of having no geodesic curvature [1,2].

Most of the general studies on geodesics’ trajectories are provided as initial value
problems, while most of the boundary value problems are related to the biaxial and triaxial
ellipsoid. In [3], the boundary value problem on an ellipsoid with boundary (Dirichlet)
conditions is replaced by an initial value problem with Dirichlet and Neumann conditions.
In particular, the Neumann condition is obtained iteratively by numerically integrating a
system of four first-order differential equations. Triaxial ellipsoids are considered in [4,5],
while [6] has provided an analytical approach to solve this boundary value problem with
symmetry. Reference [7] contains, because of its importance to terrestrial geodesy, a rich
literature survey on the geodesic equations for low eccentric ellipsoid in both Cartesian and
polar coordinates. Since the problem of fitting ellipsoid is important in geodesy (all geodetic
calculations are performed on a reference ellipsoid), Refs. [5,8] analyzes the computational
differences in the fitting ellipsoid using biaxial ellipsoid instead of triaxial ellipsoid and
by performing least-squares ellipsoid fitting. Noteworthy, Reference [7] has improved (in
terms of computational time) the existing solutions using differential equations in Cartesian
coordinates and Taylor series expansions by simplifying previous formulations.

In this study, the geodesic boundary value problem is numerically investigated for
any curved surface using the general geodesic equations from differential geometry. These
geodesic equations are then solved by nonlinear least-squares using the method that the
Theory of Functional Connections [9] (TFC) has introduced to solve differential equa-
tions [10,11]. The existence of a solution for the geodesic boundary value problem (bound-
ary value problems, in general, may have a unique solution, no solution, or infinite solu-
tions) is guaranteed by the Hopf–Rinow theorem [12,13]:

If a length-metric space (M, d) is complete and compact then any two points, (p1, p2 ∈
M), can be connected by a minimizing geodesic.
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In this theorem, M indicates a manifold and d the metric distance. Roughly speaking,
complete indicates a space where there are no “points missing” from it (inside or at the
boundary), while compact indicates a space that is closed (space bounds included) and
bounded (distance between any two points limited).

Motivated by this theorem, this study proposes a general numerical and accurate
approach to solve boundary value geodesic problems in curved surfaces. First, this study
briefly provides the geodesic equations for the general Riemannian spaces, followed by
a short background on TFC. Then, it shows how to apply TFC to solve boundary value
geodesic problems by nonlinear least-squares. In particular, an ad hoc algorithm to avoid
local minima is presented.

The proposed approach is then numerically tested on various quadric surfaces, such
as triaxial ellipsoid, elliptic hyperboloid, elliptic paraboloid, hyperbolic paraboloid, torus,
one-sheeted hyperboloid, Moëbius strip, and on a generic surface. In all these tests, machine
error estimation of the geodesic trajectory is obtained along with the indirect numerical
proof that the associated parametric velocity is constant.

2. Background on Geodesics Equations on Riemannian Manifold

A Riemannian manifold is a smooth curved space in which the infinitesimal distance,
ds, satisfies

ds2 = gij dxi dxj (1)

where gij is the covariant metric tensor of the space and where Einstein’s notation has been
used in Equation (1).

The metric tensor is the fundamental tool used in differential geometry to study curved
spaces. Specifically, for Euclidean spaces, the metric tensor is diagonal (gij = 0 if i 6= j) and,
in particular, is the identity, gij = δij, for the Cartesian metric tensor. The metric tensor, gij,
is the matrix composed by all inner products between all partials of the vector defining the
Riemannian surface, p(x1, x2, . . . , xn)

gij =

(
∂p
∂xi

)T ∂p
∂xj

In Riemannian geometry, geodesics are not the same as “shortest curves” between two
points, though the two concepts are closely related. The difference is that geodesics are
only locally the shortest distance between points. Going the “long way round” on a great
circle between two points on a sphere is a geodesic but not the shortest path between the
points. In addition, geodesic paths need not be unique.

On a curved surface, the length of a parametric trajectory, defined by the coordinates
xi = xi(t) and connecting the position vectors, p(t0) and p(t f ), respectively, is,

L =
∫ t f

t0

ds =
∫ t f

t0

√
gij

dxi

dt
dxj

dt
dt (2)

This parametric trajectory has no normal acceleration if it satisfies the following n differen-
tial equations [1,2,14],

d2xi

dt2 + Γi
jk

dxj

dt
dxk

dt
= 0. (3)

These n second-order ordinary differential equations are the geodesic equations. They define
the geodesic trajectories on a manifold with metric tensor, gij. In Equation (3), the Γi

jk terms
are the Christoffel symbols of second kind, defined as,

Γi
jk =

1
2

gmi
(

∂gkm

∂xj +
∂gmj

∂xk −
∂gjk

∂xm

)
(4)
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where gmi is the controvariant inverse of the covariant metric tensor (or conjugate or dual
metric),

gmi = (gmi)
−1

Note that the Christoffel symbols satisfy the relationship, Γi
jk = Γi

kj and are related to

the Christoffel symbols of the first kind, [m, jk], by the relationship, [m, jk] = gmi Γi
jk.

Geodetic (Parametric) Velocity

A curve on a surface is called geodesic if, at every point, the acceleration is either zero or parallel
to the normal. A geodesic trajectory, p(t), on a curved surface has constant parametric speed.
The proof is immediate,

dṗ2

dt
=

d(ṗT ṗ)
dt

= 2p̈T ṗ = 0.

The word “velocity,” here, is not the instantaneous ratio between distance and time, but the
instantaneous ratio between distance and the parameter t selected to describe the trajectory
(which can also be the time).

Let us consider a two-dimensional surface in a three-dimensional space. Let the
surface be described by the parametic equations,

x = fx(u, v), y = fy(u, v) and z = fz(u, v),

then, by computing,

ṗx =
∂ fx

∂u
u̇ +

∂ fx

∂v
v̇, ṗy =

∂ fy

∂u
u̇ +

∂ fy

∂v
v̇, and ṗz =

∂ fz

∂u
u̇ +

∂ fz

∂v
v̇,

the velocity in a trajectory defined by ṗ(u(t), v(t)), is provided by ṗ2 = ṗ2
x + ṗ2

y + ṗ2
z .

To give a trivial example, the parametric description of a unit-radius sphere is provided by,

pT =
{

sin u cos v, sin u sin v, cos u
}

where u ∈ [0, π] and v ∈ [0, 2π). The covariant metric tensor and the geodesic equations
for the sphere are,

gij =

[
1 0
0 sin2 u

]
and

{
Lu = ü− v̇2 sin u cos u = 0
Lv = v̈ + 2u̇ v̇ cot u = 0

,

respectively, and the geodetic parametric velocity on the sphere is,

ṗ2 = 2u̇2 cos2 u + v̇2 sin2 u.

Note that u = 0 and u = π make singular the gij matrix and, consequently, make singular
the geodesic equations. This singularity changes location if another set of polar coordinates
is selected to describe a sphere.

3. Background on the Theory of Functional Connections

The Theory of Functional Connections (TFC) is a mathematical framework to perform
functional interpolation [9,15]. This is performed by analytically deriving some functionals,
called constrained expressions, representing all functions satisfying a set of linear constraints
in n-dimensional space. This way, constrained optimization problems subject to linear
constraints, such as differential equations, are transformed into unconstrained problems.
The optimization problem consists then of deriving the expression of an unconstrained free
function, g(x) (Note that g(x) can be discontinuous, partially defined, and even the Dirac
delta function, as long as it is defined on where the constraints are defined.).
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In general, for a univariate function, y(x), subject to n linear constraints (e.g., points,
derivatives, integrals, and any linear combination of them), two equivalent definitions of
constrained expressions can be introduced [15–17],

y(x, g(x)) = g(x) +
n

∑
k=1

ηk(x, g(x)) sk(x) (5)

y(x, g(x)) = g(x) +
n

∑
k=1

ρk(x, g(x)) φk(x, s(x)) (6)

In the formal definition of Equation (5), the ηk(x, g(x)) are functional coefficients whose
expressions are derived by imposing the n constraints on (5), and the sk(x) are a set of n
user-defined linearly independent support functions. In Equation (6), the φk(x, s(x)) are
switching functions which imply changing between the constraints, and the ρk(x, g(x)) are
projection functionals, which project the free function g(x) to the kth constraint. See Ref. [9]
for a complete and detailed explanation of these terms.

For example, consider a function y(x) subject to the constraints

dy
dx

∣∣∣
x1

= ẏ1 and
dy
dx

∣∣∣
x2

= ẏ2. (7)

Using the form given in Equation (5) with s1(x) = x and s2(x) = x2, the constraints in
Equation (7) can be expressed as

y(x, g(x)) = g(x) + η1 s1(x) + η2 s2(x) = g(x) + η1 x + η2 x2 (8)

where the two constants η1 and η2 are computed from Equations (7) and (8) as follows:{
ẏ1 − ġ1
ẏ2 − ġ2

}
=

[
ṡ1(x1) ṡ2(x1)
ṡ1(x2) ṡ2(x2)

]{
η1
η2

}
→

{
η1
η2

}
=

[
1 2x1
1 2x2

]−1{ẏ1 − ġ1
ẏ2 − ġ2

}
from which, {

η1
η2

}
=

1
x2 − x1

{
x2(ẏ1 − ġ1)− x1(ẏ2 − ġ2)
−(ẏ1 − ġ1) + (ẏ2 − ġ2)

}
.

Substituting the η1 and η2 expressions into Equation (8), the following constrained expression,

y(x, g(x)) = g(x) +
x (2x2 − x)
2(x2 − x1)︸ ︷︷ ︸

φ1(x,s(x))

(ẏ1 − ġ1)︸ ︷︷ ︸
ρ1(x,g(x))

+
x (x− 2x1)

2(x2 − x1)︸ ︷︷ ︸
φ2(x,s(x))

(ẏ2 − ġ2)︸ ︷︷ ︸
ρ2(x,g(x))

, (9)

is obtained for the constraints given in Equation (7). Equation (9) satisfies the constraints
(7), no matter what the free function g(x) is. Moreover, Equation (9) indicates the expressions
of the switching functions, φk(x, s(x)), and the projection functionals, ρk(x, g(x)). Here,
the meaning of the switching functions becomes more clear: when the first constraint,
ẏ(x1) = ẏ1, holds then φ̇1(x1) = 1 and φ̇2(x1) = 0; when the second constraint, ẏ(x2) = ẏ2,
holds then φ̇1(x2) = 0 and φ̇2(x2) = 1. The projection functionals are scalars in this
univariate case, but they become functionals in the multivariate case (see [9] for full
explanation).

The multivariate TFC [9,16] extends the original univariate theory [15] to n dimensions
and to any linear (boundary and/or internal) constraints. This extension can be summarized
by the expression,

y(x, g(x)) = h(c(x)) + g(x)− h(g(x)),

where x = (x1, x1, . . . , xn)T is the vector of n coordinates, c(x) is a function specifying the
linear constraints, h(c(x)) is any interpolating function satisfying the linear constraints, and
g(x) is the free function. Several examples on how to derive constrained expressions can
be found in [9,17,18].
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The Theory of Functional Connections has been developed for points, derivatives,
integrals, infinite, component constraints, and any linear combination of them for univariate
functions [15] as well as multivariate functions [16] in rectangular domains, while in generic
domains some initial results have been obtained via domain mapping [19]. The main
feature of these functionals (constrained expressions) is that they allow for restricting
the whole function space of a constrained optimization problems to just the space of its
feasible solutions, fully satisfying the constraints. This way, a large number of constrained
optimization problems can be transformed into unconstrained ones, which can be solved
by more simple, efficient, robust, reliable, fast, and accurate methods.

The first application of TFC was in solving linear [10] and nonlinear [11] ODEs. This
has been conducted by expanding the free function g(x) in terms of a set of basis functions
(e.g., orthogonal polynomials, Fourier, neural networks, etc.). Linear or nonlinear least-
squares method is then used to find the coefficients of the expansion. This TFC approach
for solving ODEs has many advantages over traditional methods: (1) it consists of a unified
framework to solve IVP, BVP, or multi-valued problems, (2) it provides an analytically
approximated solution that can be used for subsequent manipulation (derivatives, inte-
grals), (3) the solution is usually obtained in millisecond and at machine error accuracy,
(4) the procedure is numerically robust (small condition number), and (5) it can solve
differential equations subject to a variety of different constraint types. Additionally, TFC
has been also applied to solve other mathematical optimization problems [20] such as in:
homotopy continuation for control problems [21], epidemiological models [22], radiative
transfer problems [23], rarefied-gas dynamics [24], Timoshenko-Ehrenfest beam [25], hybrid
systems [26], machine learning [27–30], quadratic and nonlinear programming problems
subject to linear equality constraints [31], orbit transfer and propagation [18,32,33], optimal
control problems via indirect methods, relative motion [34], landing on small and large
planetary bodies [35], and intercept problems [30].

4. Solving the Geodesic Equations Using the Theory of Functional Connections

Any trajectory on a two-dimensional surface in three-dimensional space can always
be described by two coordinates, [u(t), v(t)], depending on a parameter t. Specifically,
let us consider a trajectory from an initial point [u0, v0] to a final point [u f , v f ], while the
parameter range is t ∈ [−1,+1].

All possible trajectories, [u(t), v(t)], connecting [u0, v0] to [u f , v f ], can be represented
by the following two functionals (constrained expressions) [9]

u(t, gu(t)) = gu(t) +
1− t

2
(
u0 − gu0

)
+

1 + t
2
(
u f − gu f

)
v(t, gv(t)) = gv(t) +

1− t
2
(
v0 − gv0

)
+

1 + t
2
(
v f − gv f

) (10)

where gu(t) and gv(t) are two free functions and where it has been set gu0 = gu(−1),
gv0 = gv(−1), gu f = gu(+1), and gv f = gv(+1). No matter what the functions, gu(t) and
gu(t) are, the Equation (10) always generate trajectories moving from [u0, v0] to [u f , v f ], as t
increases from t = −1 to t = +1.

The parametric derivatives of Equation (10) are,

u̇(t, gu(t)) = ġu(t)−
1
2
(
u0 − gu0

)
+

1
2
(
u f − gu f

)
ü(t, gu(t)) = g̈u(t)

v̇(t, gv(t)) = ġv(t)−
1
2
(
v0 − gv0

)
+

1
2
(
v f − gv f

)
v̈(t, gv(t)) = g̈v(t)

(11)

Let us express the free functions, gu(t) and gv(t), as a linear combination of linearly
independent basis functions, h(t), (e.g., orthogonal polynomials). Then,
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{
gu(t) = ξ T

u h(t)
gv(t) = ξ T

v h(t),

{
ġu(t) = ξ T

u ḣ(t)
ġv(t) = ξ T

v ḣ(t),
and

{
g̈u(t) = ξ T

u ḧ(t)
g̈v(t) = ξ T

v ḧ(t).
. (12)

The geodesic equations provided in Equation (3) can be solved using the expressions given
in Equations (10) and (11), with the free functions expanded as in Equation (12), and by
discretizing the parameter t from t = −1 to t = +1. (When expressing the free functions in
terms orthogonal polynomial, the best discretization of t for the least-squares problem is
obtained by the Chebyshev–Gauss–Lobatto points distribution.) The resulting equations
are two nonlinear algebraic equations in the unknown coefficient vectors, ξu and ξv, that
can be solved by nonlinear least-squares,

{
ξu
ξv

}
k+1

=

{
ξu
ξv

}
k
− (J T

k Jk)
−1J T

k

{
Lu
Lv

}
k

where Jk =


∂Lu

∂ξu
,

∂Lu

∂ξv
∂Lv

∂ξu
,

∂Lv

∂ξv


k

(13)

is the Jacobian of the system.
Note that, the constrained expressions given in Equation (10) are derived using con-

stant and linear terms of support functions. This implies that the set of basis functions
adopted in the least-squares process for the free functions, gu(t) and gv(t), cannot include
both the constant and the linear terms. For instance, if Chebyshev orthogonal polynomials
are selected as support functions, then T0 = 1 and T1 = t must be excluded, otherwise
the matrix to invert in the least-squares process becomes singular. This is because a least-
squares process of a linear combination of functions is singular if not all the functions are
linearly independent.

Initial Guess and the Local Minima Problem

Since the constrained expressions provide trajectories always satisfying the constraints
(for any expression of the free functions), then the most natural (and simplest) initial guess
is to start the iterative least-squares solving Equation (13) by setting ξu = ξv = 0. This is
equivalent to initially select gu(t) = gv(t) = 0 and, consequently—see Equation (10)—,
selecting an initial linear variation of the parametric variables, u and v, from the initials
(u0, v0) to the final values (u f , v f ).

Nonlinear least-squares applied to find the geodesic trajectory is, unfortunately, a
process affected by local minima. Typically, when an iterative procedure enters into the
convergence phase, then each following step is smaller than the previous,

L2
(
∆ξk+1

)
< L2

(
∆ξk

)
where ∆ξk =

{
∆ξu
∆ξv

}
k

(14)

This convergence criteria has two interesting aspects: (1) it can be used to push the conver-
gence to the maximum accuracy and (2) no tolerance is needed to stop the iterations. In
fact, when the convergence reaches the maximum accuracy, the procedure cannot anymore
improve the estimation of ∆ξk and the inequality, L2

(
∆ξk+1

)
> L2

(
∆ξk

)
, happens because

of numerical errors (convergence saturation).
Figure 1 shows the flowchart of the algorithm adopted to avoid local minima. Starting

with ξ0 = 0, the least-squares iterations continue until Equation (14) is verified for N
consecutive times (initial convergence loop). During this sequence, if the least-squares
diverges, then the algorithm restarts with a new random initial guess. If Equation (14)
is verified for N consecutive times, then the algorithm enters into the convergence loop
and exits when L2

(
∆ξk+1

)
> L2

(
∆ξk

)
is experienced. Then, the L2 norm of the residuals

is computed. The L2 norm of the residuals allows one to discriminate local minima and
global minima (associated with the geodesic trajectory) using a small tolerance, such as
ε = 10−15. If L2

(
rk
)
> ε then the algorithm restarts with a new random initial guess.
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Figure 1. Local minima avoidance algorithm flowchart.

5. Numerical Validations

In this section, some boundary value geodesic problems are numerically solved to
validate the proposed methodology on 2-dimensional surfaces, for visualization purposes.
The proposed approach has been tested on eight different kind of surfaces: triaxial ellipsoid,
elliptic hyperboloid, elliptic paraboloid, hyperbolic paraboloid, one-sheeted hyperboloid,
torus, Moëbius strip, and a generic surface. Six of them are shown in Figure 2.

Figure 2. Examples of six tested surfaces.

5.1. Triaxial Ellipsoid

A (non-oriented) triaxial ellipsoid is described by,

pT =
{

a sin u cos v, b sin u sin v, c cos u
}
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where u ∈ [0, π] and v ∈ [0, 2π), and (a, b, c) are the three ellipsoid semi-major axes. The
covariant metric tensor for the ellipsoid is,

gij =

cos2 u(a2 cos2 v + b2 sin2 v) + c2 sin2 u − sin(2u) sin(2v)
4

(a2 − b2)

− sin(2u) sin(2v)
4

(a2 − b2) sin2 u
[

sin2 v(a2 − b2) + b2]


Since the ellipsoid is an affine image of the unit sphere, it is affected by the same singularity
problem, occurring for u = 0 and u = π.

By setting a = 2, b = 3, and c = 1, the geodesic equations for this ellipsoid are [36],
ü +

(5 cos2 v− 32) cos u sin u
sin2 u

(
5 cos2 v− 32

)
+ 36

u̇2 − 36 cos u sin u
sin2 u

(
5 cos2 v− 32

)
+ 36

v̇2 = 0

v̈− 5 cos v sin v
sin2 u

(
5 cos2 v− 32

)
+ 36

u̇2 +
2 cos u
sin u

u̇v̇− 5 sin2 u cos v sin v
sin2 u

(
5 cos2 v− 32

)
+ 36

v̇2 = 0

To solve these differential equations using nonlinear least-squares, the following partials
must be evaluated to compute the Jacobian of the system,

∂Lu

∂ξu
=

∂Lu

∂u
· du

dξu
+

∂Lu

∂u̇
· du̇

dξu
+

∂Lu

∂ü
· dü

dξu
∂Lu

∂ξv
=

∂Lu

∂v
· dv

dξv
+

∂Lu

∂v̇
· dv̇

dξv
∂Lv

∂ξu
=

∂Lv

∂u
· du

dξu
+

∂Lv

∂u̇
· du̇

dξu
∂Lv

∂ξv
=

∂Lv

∂v
· dv

dξv
+

∂Lv

∂v̇
· dv̇

dξv
+

∂Lv

∂v̈
· dv̈

dξv

(15)

Figure 3 shows the numerical results using 40 basis functions (Legendre orthogonal poly-
nomials) to describe the free functions and 200 discretization points. This test validates the
approach in terms of fast convergence (just six iterations using a noisy initial guess) and in
terms of finding constant the parametric velocity.

The geodetic velocity on a generic triaxial ellipsoid has components,

ṗ =


a(u̇ cos u cos v− v̇ sin u sin v)
b(u̇ cos u sin v + v̇ sin u cos v)

−cu̇ sin u


5.2. Elliptic Paraboloid

For the elliptic paraboloid, the geodesic equations and the TFC solution procedure are
provided. The parametric equations of the elliptic paraboloid, z = x2 + y2, can be described
by the vector,

pT =
{

u, v, u2 + v2}
where u ∈ [umin, umax] and v ∈ [vmin, vmax]. The partials of the generic point, p, are

∂p
∂u

= pu =


1
0

2u

 and
∂p
∂v

= pv =


0
1

2v


from which the metric tensor,

gij =

[
pT

u pu pT
u pv

pT
v pu pT

v pv

]
=

[
1 + 4u2 4uv

4uv 1 + 4v2

]
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and its inverse,

gij =
(

gij
)−1

=
1

4(u2 + v2) + 1

[
1 + 4v2 −4uv
−4uv 1 + 4u2

]
are derived. The non-null Christoffel symbols are derived using Equation (4),

Γ1
11 =

4 u
4(u2 + v2) + 1

, Γ1
22 =

4 u
4(u2 + v2) + 1

,

Γ2
11 =

4 v
4(u2 + v2) + 1

, and Γ2
22 =

4 v
4(u2 + v2) + 1

.

The geodesic equations, given in Equation (3), becomeü + Γ1
11 u̇2 + Γ1

22 v̇2 = 0

v̈ + Γ2
11 u̇2 + Γ2

22 v̇2 = 0

After substituting the Christoffel symbols and rearranging the equations, the geodesic
equations for the elliptic paraboloid become,{

Lu = (4u2 + 4v2 + 1)ü + 4u u̇2 + 4u v̇2 = 0
Lv = (4u2 + 4v2 + 1)v̈ + 4v u̇2 + 4v v̇2 = 0

(16)

Figure 3. Numerical validation test on triaxial ellipsoid.
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To solve these differential equations using nonlinear least-squares, the same structure
of partials provided in Equation (15) must be evaluated to compute the Jacobian of the
system, where

∂Lu

∂u
= 8uü + 4(u̇2 + v̇2),

∂Lu

∂u̇
= 8uu̇,

∂Lu

∂ü
=

∂Lv

∂v̈
= 4(u2 + v2) + 1,

∂Lu

∂v̇
= 8uv̇,

∂Lv

∂u
= 8uv̈,

∂Lv

∂u̇
= 8vu̇,

∂Lv

∂v
= 8vv̈ + 4(u̇2 + v̇2),

∂Lv

∂v̇
= 8vv̇,

∂Lu

∂v
= 8vü,

Note that, the elliptic paraboloid can also be expressed by, p = {u sin v, u cos v, u2}T,
where u and v are angles. In this case, the geodesic equations provided in Equation (16)
can be rewritten as, {

Lu =
(
4u2 + 1

)
ü + 4u u̇2 − u v̇2 = 0

Lv = u v̈ + 2u̇ v̇ = 0

and the following partials must be computed to solve the boundary value problem,

∂Lu

∂ξu
=

∂Lu

∂u
· du

dξu
+

∂Lu

∂u̇
· du̇

dξu
+

∂Lu

∂ü
· dü

dξu

∂Lu

∂ξv
=

∂Lu

∂v̇
· dv̇

dξv

∂Lv

∂ξu
=

∂Lv

∂u
· du

dξu
+

∂Lv

∂u̇
· du̇

dξu

∂Lv

∂ξv
=

∂Lv

∂v̇
· dv̇

dξv
+

∂Lv

∂v̈
· dv̈

dξv

where,

∂Lu

∂u
= 8uü + 4u̇2 − v̇2,

∂Lu

∂u̇
= 8uu̇,

∂Lu

∂ü
= 4u2 + 1,

∂Lu

∂v̇
= −2uv̇,

∂Lv

∂u
= v̈,

∂Lv

∂u̇
= 2v̇,

∂Lv

∂v̇
= 2u̇,

∂Lv

∂v̈
= u,

and,

∂u
∂ξu

=
∂v
∂ξv

= h− 1− t
2

h0 −
t + 1

2
h f ,

∂u̇
∂ξu

=
∂v̇
∂ξv

= ḣ +
1
2

h0 −
1
2

h f ,

∂ü
∂ξu

=
∂v̈
∂ξv

= ḧ,

This second parametrization of the elliptic paraboloid is provided because a particular
attention must be given to the boundary value of angles to avoid discontinuous angle
evolution. For example, if the absolute difference between the two angles is |v0 − v f | > π,
then the value of the smallest of these two angles is increased by 2π. This avoids the
discontinuity at v = 0 while unchanging the problem. For instance, if v0 = 3π/2 and
v f = π/4, then the value of v f is set as v f = π/4 + 2π = 9π/4.

Geodesic (Parametric) Velocity on an Elliptic Paraboloid

The derivative of the position vector is,

ṗT =
{

ṗx, ṗy, ṗz
}
=
{

u̇, v̇, 2uu̇ + 2vv̇
}
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Therefore, the velocity is provided by,

ṗ(t) =
√

u̇2 + u2 + 4
(
uu̇ + vv̇

)2

Since the velocity on a geodesic is constant, then the (instantaneous) value ṗ(t) for a
geodesic is not a function of t and, therefore, the expression of ṗ(t) must coincide with the
average value of the velocity which, in turn, can be computed using Equation (2),

¯̇p =
L

t f − t0
=

1
t f − t0

∫ t f

t0

√(
v2 + 1

)
u̇2 + 2uvu̇v̇ +

(
u2 + 1

)
v̇2 dt

therefore, for a geodesic trajectory on the elliptic paraboloid, we have a closed form
expression for the integral,∫ t f

t0

√(
v2 + 1

)
u̇2 + 2uvu̇v̇ +

(
u2 + 1

)
v̇2 dt =

(
t f − t0

)√
u̇2 + u2 + 4(uu̇ + vv̇)

5.3. Elliptic Hyperboloid

The parametric description of the elliptic hyperboloid is,

pT =
{

a sinh u cos v, b sinh u sin v, c cosh u
}

and his covariant metric tensor is,

gij =

cosh2 u(a2 cos2 v + b2 sin2 v) + c2 sinh2 u − sinh(2u) sin(2v)
a2 − b2

4

− sinh(2u) sin(2v)
a2 − b2

4
sinh2 u((a2 − b2) sin2 v + b2)


By setting a = 1, b = 2, and c = 3, the geodesic equations are,

ü +
cosh u sinh u

(
13 + 27 cos2 v

)
27 cosh2 u cos2 v + 13 cosh2 u− 9− 27 cos2 v

u̇2+

+
4 cosh u sinh u

27 cosh2 u cos2 v + 13 cosh2 u− 9− 27 cos2 v
v̇2 = 0

v̈− 27 cos v sin v
27 cosh2 u cos2 v + 13 cosh2 u− 9− 27 cos2 v

u̇2+

+
2 cosh u
sinh u

u̇ v̇−
27 cos v sin v

(
cosh2 u− 1

)
27 cosh2 u cos2 v + 13 cosh2 u− 9− 27 cos2 v

v̇2 = 0

The geodesic velocity components on the elliptic hyperboloid are,
ṗx = a (u̇ cosh u cos v− v̇ sinh u sin v)
ṗy = b (u̇ cosh u sin v + v̇ sinh u cos v)
ṗz = cu̇ sinh u

Figure 4 provides detailed information of the test results using 40 basis functions (for
the free functions) and 300 points discretization. In this case, a very noisy initial guess
is selected (black trajectory on the left/top figure), instead of the simple, ξ0 = 0. The
right/top figure shows, for subsequent iterations, the L2 norm of the error. The procedure
entered into the convergence phase after about 35 iterations. The convergence loop pushed
the accuracy to the limit, when L2

(
∆ξk+1

)
> L2

(
∆ξk

)
occurred. The final solution residuals

are shown in the left/bottom figure, while the central/bottom figure shows the initial
and final solutions for u(t) and v(t). Finally, the right/bottom figure gives the parametric
velocity of the initial guess (black) and of the final (red) solution (geodesic trajectory). This
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validates the parametric velocity with a constant value. For this example, no local minima
were ever experienced (convex problem).

Figure 4. Elliptic paraboloid test results.

5.4. Hyperbolic Paraboloid

The parametric description of the hyperbolic paraboloid is,

pT =
{

u, v, u v
}

the covariant metric tensor for the hyperbolic paraboloid is

gij =

[
v2 + 1 uv

uv u2 + 1

]

and the Christoffel symbols are, Γ2
11 =

v
u2 + v2 + 1

, Γ1
12 =

v
u2 + v2 + 1

, Γ2
21 =

u
u2 + v2 + 1

,

and Γ1
22 =

u
u2 + v2 + 1

, while the geodesic equations are,

{
Lu =

(
1 + u2 + v2)ü + 2v u̇ v̇ = 0

Lv =
(
1 + u2 + v2)v̈ + 2 u u̇ v̇ = 0

The expression of the geodesic velocity on hyperbolic paraboloid is,

ṗ2 = u̇2 + v̇2 + (vu̇ + uv̇)2.

Figure 5 contains the results obtained on hyperbolic paraboloid (same meaning than
those provided for the elliptic paraboloid), while Table 1 shows the L2 norm of the error
step, L2

(
∆ξk

)
, and the associated L2 norm of the differential equations residuals, L2

(
rk
)
,

for the first 8 iterations.
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Table 1. First eight iterations for the hyperbolic paraboloid.

Iteration k L2
(
∆ξk

)
L2
(
rk
)

0 - 78,019.3597
1 0.014083 682.5215
2 0.13725 51.5259
3 0.10102 4.9834
4 0.029109 0.10211
5 0.00097301 7.6775× 10−5

6 9.8617× 10−7 7.4134× 10−11

7 1.0705× 10−12 7.3451× 10−17

8 2.3949× 10−19 8.1203× 10−17

Figure 5. Hyperbolic paraboloid test results.

5.5. Generic Surface

Let us consider the surface identified by,

pT =
{

u, v, u cos v− v sin u
}

in the range u, v ∈ [−5,+5]. By setting, α = sin u + u sin v and β = cos v− v cos u, the
metric tensor and its inverse for this surface are,

gij =

[
β2 + 1 −αβ
−αβ α2 + 1

]
and gij =

1
α2 + β2 + 1

[
α2 + 1 αβ

αβ β2 + 1

]
and the nonzero Christoffel symbols are,

Γ1
11 =

v sin u
α2 + β2 + 1

β, Γ1
12 = Γ1

21 = −cos u + sin v
α2 + β2 + 1

β, Γ1
22 = − u cos v

α2 + β2 + 1
β,

Γ2
11 = − v sin u

α2 + β2 + 1
α, Γ2

12 = Γ2
21 =

cos u + sin v
α2 + β2 + 1

α, Γ2
22 =

u cos v
α2 + β2 + 1

α
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The geodesic equations can be written in the compact form,{
Lu = p ü + β q = 0
Lv = p v̈− α q = 0

where,

p = α2 + β2 + 1 and q = (v sin u)u̇2 − 2(cos u + sin v)u̇v̇− (u cos v)v̇2

The partials forming the Jacobian matrix in the least-squares process are,

∂Lu

∂ξu
= ü

∂p
∂u
· ∂u

∂ξu
+ p

∂ü
∂ξu

+ β

(
∂q
∂u
· ∂u

∂ξu
+

∂q
∂u̇
· ∂u̇

∂ξx

)
+ q

∂β

∂u
· ∂u

∂ξu

∂Lu

∂ξv
= ü

∂p
∂v
· ∂v

∂ξv
+ β

(
∂q
∂v
· ∂v

∂ξv
+

∂q
∂v̇
· ∂v̇

∂ξv

)
+ q

∂β

∂v
· ∂v

∂ξv

∂Lv

∂ξu
= v̈

∂p
∂u
· ∂u

∂ξu
− α

(
∂q
∂u
· ∂u

∂ξu
+

∂q
∂u̇
· ∂u̇

∂ξu

)
− q

∂α

∂u
· ∂u

∂ξu

∂Lv

∂ξv
= v̈

∂p
∂v
· ∂v

∂ξv
+ p

∂v̈
∂ξv
− α

(
∂q
∂v
· ∂v

∂ξv
+

∂q
∂v̇
· ∂v̇

∂ξv

)
− q

∂α

∂v
· ∂v

∂ξv

where,

∂α

∂u
= cos u + sin v,

∂α

∂v
= u cos v,

∂β

∂u
= v sin u, and

∂β

∂v
= − sin v− cos u

and,
∂p
∂u

= 2α
∂α

∂u
+ 2β

∂β

∂u
and

∂p
∂v

= 2β
∂β

∂v
+ 2α

∂α

∂v
and,

∂q
∂u

= (v cos u)u̇2 + 2(sin u)u̇v̇− (cos v)v̇2

∂q
∂v

= (sin u)u̇2 − 2(cos v)u̇v̇ + (u sin v)v̇2

∂q
∂u̇

= 2(v sin u)u̇− 2(cos u + sin v)v̇

∂q
∂v̇

= −2(cos u + sin v)u̇− 2(u cos v)v̇

Figure 6 gives the results obtained for this specific generic surface. The convergence is
obtained in just 8 iterations, using 30 basis functions for the free functions and a 300 point
discretization. The constancy of the parametric velocity is an alternative way validating the
solution as a geodesic trajectory.
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Figure 6. Surface pT =
{

u, v, u cos v− v sin u
}

test results.

5.6. One-Sheeted Hyperboloid

This surface is described by the parametric vector,

pT(u, v) =
{√

1 + u2 cos v,
√

1 + u2 sin v, 2 u
}

The covariant and the contravariant associated metric tensors are,

gij =

5 u2 + 4
u2 + 1

0

0 u2 + 1

 and gij =

 u2 + 1
5 u2 + 4

0

0
1

u2 + 1


and the nonzero Christoffel symbols are,

Γ1
11 =

u
(5u2 + 4)(u2 + 1)

, Γ1
22 = −

u
(
u2 + 1

)
5 u2 + 4

, and Γ2
12 = Γ2

21 =
u

u2 + 1

This implies the geodesic equations for one-sheeted hyperboloid,Lu =
(
5u2 + 4

)
ü +

u
u2 + 1

u̇2 − u
(
u2 + 1

)
v̇2 = 0

Lv =
(
u2 + 1

)
v̈ + 2u u̇ v̇ = 0

To apply the nonlinear least-squares, the following partials must be computed,

∂Lu

∂ξu
=

∂Lu

∂ü
· ∂ü

∂ξu
+

∂Lu

∂u̇
· ∂u̇

∂ξu
+

∂Lu

∂u
· ∂u

∂ξu

∂Lu

∂ξv
=

∂Lu

∂v̇
· ∂v̇

∂ξv

∂Lv

∂ξu
=

∂Lv

∂u̇
· ∂u̇

∂ξu
+

∂Lv

∂u
· ∂u

∂ξu

∂Lv

∂ξv
=

∂Lv

∂v̈
· ∂v̈

∂ξv
+

∂Lv

∂v̇
· ∂v̇

∂ξv

The expressions of these partials are,
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∂Lu

∂ü
= 5u2 + 4

∂Lu

∂u̇
=

2u
u2 + 1

u̇

∂Lu

∂u
= 10u2ü +

1− u2

(u2 + 1)2 u̇2 −
(

3u2 + 1
)

v̇2 ∂Lu

∂v̇
= −2u

(
u2 + 1

)
v̇

∂Lv

∂v̈
= u2 + 1

∂Lv

∂v̇
= 2u u̇

∂Lv

∂u̇
= 2u v̇

∂Lv

∂u
= 2uv̈ + 2u̇ v̇

The parametric velocity is given by

ṗ2 =
u2u̇2

1 + u2 + 4u̇2 + (1 + u2)v̇.2

The results of the test conducted on the one-sheeted hyperboloid are reported in Figure 7
where the sub-figures provide full information of the least-squares process. The free
functions were expanded by 40 basis functions (Legendre orthogonal polynomials) and the
discretization was conducted by 300 points.

Figure 7. One-sheeted hyperboloid test results.

5.7. Torus

The implicit and parametric equation of the torus are,

pT =
{
(R + r cos u) cos v, (R + r cos u) sin v, r sin u

}
where R and r are the two torus radii. The covariant metric tensor for the torus is,

gij =

[
r2 0
0 (R + r cos u)2

]
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while the geodesic equations are,{
Lu = r ü + v̇2 (R + r cos u) sin u = 0

Lv = (R + r cos u)v̈− 2u̇v̇ r sin u = 0

The partials needed to populate the Jacobian are,

∂Lu

∂ξu
= r

∂ü
∂ξu

+ v̇2
[
(R + r cos u) cos u− r sin2 u

] ∂u
∂ξu

∂Lu

∂ξv
= 2v̇

∂v̇
∂ξv

(R + r cos u) sin u

∂Lv

∂ξu
= −

[
rv̈ sin u + 2u̇v̇ r cos u

] ∂u
∂ξu
− 2

∂u̇
∂ξu

v̇ r sin u

∂Lv

∂ξv
= (R + r cos u)

∂v̈
∂ξv
− 2u̇

∂v̇
∂ξv

r sin u

and the nonlinear least-squares can be performed using Equation (13). The geodetic
parametric velocity on the torus is,

ṗ2 = r2 u̇2 + (R + r cos u)2v̇2

The sub-figures given in Figure 8 show the details of the least-squares process to
estimate the geodesic trajectory on the torus surface. The number of basis functions were
40 and the number of discretization points were 300. The constancy of the velocity as well
as the machine-level L2 norm of the differential equations residuals validate the estimated
geodesic trajectory (in red).

Figure 8. Torus: test results.

5.8. Moëbius Strip

The last test of the proposed least-squares approach is performed on the Moëbius strip,
which can be described by,

pT =
{[

2− u sin
(v

2

)]
cos(v),

[
2− u sin

(v
2

)]
sin(v), u cos

(v
2

)}
where u ∈ [−1,+1] and v ∈ [0, 2π). The metric tensor and its inverse for this surface can
be given in a compact form by setting, d(u, v) = 4u sin

(v
2

)[
u sin

(v
2

)
− 4
]
+ u2 + 16,
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gij =

1 0

0
d(u, v)

4

 and gij =

1 0

0
4

d(u, v)


while the nonzero Christoffel symbols are,

Γ1
22 = sin

(v
2

)[
2− u sin

(v
2

)]
− u

4

Γ2
21 = Γ2

12 =
u− 4 sin

(v
2

)[
2− u sin

(v
2

)]
d(u, v)

Γ2
22 = −

2u cos
(v

2

)[
2− u sin

(v
2

)]
d(u, v)

Hence, the geodesic equations of the Moëbius strip are,

ü + Γ1
22 v̇2 = 0 and v̈ + 2Γ2

21 u̇ v̇ + Γ2
22 v̇2 = 0

which can be written as,ü + c1(u, v) v̇2 = 0

d(u, v) v̈ + c2(u, v) u̇ v̇ + c3(u, v) v̇2 = 0

where 
c1(u, v) = 2 sin

(v
2

)
− u sin2

(v
2

)
− u

4
c2(u, v) = 2u− 16 sin

(v
2

)
+ 8u sin2

(v
2

)
c3(u, v) = −4u cos

(v
2

)
+ 4u2 sin v

Figure 9 provide all information about this last test validation case. Table 2 details
the iterative results: the L2 norm of the accuracy gain and the L2 norm of the differential
equation at each iteration. The iterative process ended because L2

(
∆ξ23

)
> L2

(
∆ξ22

)
, due

to numerical convergence saturation.

Figure 9. Moëbius strip test results.
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Table 2. Moëbius strip: convergence L2 norms terms used in the least-squares approach.

Iteration k L2
(
∆ξk

)
L2
(
rk
)

1 - 4.4143
2 2,590,717.6067 2.7918
3 125,575.9139 1.4362
4 324.6177 0.7541
5 27,398.8611 0.87001
6 2583.4652 0.60306
7 2142.7967 0.39897
8 2330.2236 1.2032
9 1485.2018 0.55737
10 1197.0006 0.61434
11 311.3524 0.14478
12 487.9178 0.012141
13 35.4515 0.0008965
14 1.1049 2.1828× 10−6

15 0.0088866 1.433× 10−7

16 0.00014298 3.7817× 10−9

17 7.4714× 10−6 1.5985× 10−10

18 1.5249× 10−7 6.5714× 10−12

19 3.3531× 10−10 2.6535× 10−13

20 5.5449× 10−13 1.0555× 10−14

21 4.0001× 10−15 4.1414× 10−16

22 2.8094× 10−15 4.9073× 10−17

23 5.1466× 10−15 3.4713× 10−17

5.9. Discussions

In this article, a new general method to numerical solve boundary value geodesic
problems in curved surfaces is presented. The approach takes advantage of the ability to
derive special functionals, called constrained expressions, which always satisfy assigned
boundary conditions. The proposed approach has been validated by performing numerical
tests on several two-dimensional surfaces. In theory, this approach can be extended to
manifolds in higher Riemannian spaces. This will require more computational capability
than that used for this article and, most likely, optimized and compiled code, instead of the
MATLAB interpreter adopted.

The problem of finding the geodesic by least-squares introduces the risk of getting
stuck on some local minima. A simple algorithm has been developed to mitigate this
problem. Thanks to this algorithm, all boundary geodesic problems considered were
quickly solved with machine-error level accuracy, which is an acceptable definition of an
exact solution by engineers.

This article restricts the research on finding geodesic trajectories on surfaces that
are continuous and differentiable. The problem of finding geodesic-type trajectories on
discretized surfaces, which is solved by combinatorial/computational algorithms and
methods, is not taken here into consideration. The performed tests have the only purpose
to validate the least-squares approach. A complete analysis quantifying the responses of
this methodology to various surface shapes, boundary conditions (e.g., singular boundary
points for the Ellipsoid), as well as comparisons with competing approaches, will be the
subject of future studies.

As for future research directions, it should be natural to derive the real velocity
(instead of the parametric velocity) in geodesic problems of a mass particle, and to use the
constancy of the velocity—in addition to or instead of—the geodesic equations. Another
future research activity is to investigate what the optimal range of basis functions for the
free functions is and to investigate the optimal number of discretization points. These
two analyses will help the proposed least-squares solution approach to provide optimal
performances. Topics more interesting in physics, such as using the Schwarzschild metric
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(uncharged, non-rotating black holes) or more general space metrics are welcome to be
investigated by researchers with good knowledge on general relativity.
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