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Abstract: The present research was developed to find out the effect of heated cylinder configurations
in accordance with the magnetic field on the natural convective flow within a square cavity. In the
cavity, four types of configurations—left bottom heated cylinder (LBC), right bottom heated cylinder
(RBC), left top heated cylinder (LTC) and right top heated cylinder (RTC)—were considered in the
investigation. The current mathematical problem was formulated using the non-linear governing
equations and then solved by engaging the process of Galerkin weighted residuals based on the finite
element scheme (FES). The investigation of the present problem was conducted using numerous
parameters: the Rayleigh number (Ra = 103–105), the Hartmann number (Ha = 0–200) at Pr = 0.71
on the flow field, thermal pattern and the variation of heat inside the enclosure. The clarifications
of the numerical result were exhibited in the form of streamlines, isotherms, velocity profiles and
temperature profiles, local and mean Nusselt number, along with heated cylinder configurations.
From the obtained outcomes, it was observed that the rate of heat transport, as well as the local
Nusselt number, decreased for the LBC and LTC configurations, but increased for the RBC and RTC
configurations with the increase of the Hartmann number within the square cavity. In addition,
the mean Nusselt number for the LBC, RBC, LTC and RTC configurations increased when the
Hartmann number was absent, but decreased when the Hartmann number increased in the cavity.
The computational results were verified in relation to a published work and were found to be in
good agreement.

Keywords: natural convection; magnetic field; FES; heated cylinder; square cavity

1. Introduction

As a mechanism of heat transfer, the natural convective electrical conduction flow
of fluid, in accordance with the effect of magnetic field in cavities, has been thoroughly
studied by researchers due to its technical importance in engineering applications. The
extensive studies of various applications include electronic device cooling, ventilation of
rooms, reactor insulation, solar ponds, fire prevention and crystal growth in liquids [1].
By considering this importance, many researchers have conducted many numerical and
experimental studies inside the cavities with and without obstacles to research the flow
and heat transfer behaviors. Krakov and Nikiforov [2] studied the influence of the vertical
magnetic field on thermo-magnetic convection in a square cavity. They showed that the
convective flow can have either a one-cell or two-cell structure in the cavity. Steady-state
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natural convection in a square cavity using a fully compact higher-order computational
method was performed by Kalita et al. [3]. Conjugate gradient and hybrid bi-conjugate
gradient are used to find good convergence at higher Rayleigh numbers by solving the
symmetrical and non-symmetrical algebraic systems. Natural convection in a square
enclosure was performed by Shu and Wee [4] using the SIMPLE-generalized differential
quadrature method and produced accurate numerical results only for a few grid points.
Basak and Roy [5] examined the thermal effects of natural convection flows within a
square cavity. They found that the power law correlations played a vital role between
the average Nusselt number and Rayleigh numbers for convection-dominated regimes.
Natural convection fluid flow and heat transfer using discrete source–sink pairs in square
cavities were studied by Deng [6]. The result showed that total heat transmission is directly
proportional to the amount of eddies in the enclosure. Pirmohammadi et al. [7] investigated
buoyancy-driven convection and the influence of magnetic field within a differentially
heated square cavity. The result indicated that the magnetic field reduces the rate of
convective heat transfer. Magneto convection and partially active vertical walls in a square
cavity were studied by Nithyadevi et al. [8].

With the increase in the Hartmann number, the average Nusselt number decreased,
but the Prandtl number and Grashof number increased. The porous layer on the flow
structure and heat transfer within a square was examined by Hamimid et al. [9] to find
out the velocity pressure formulation. Jani et al. [10] studied MHD free convection in a
square cavity with a hot bottom wall and cooled side walls. It was found that the magnetic
field reduced free convection strength as well as flow velocity and at higher Rayleigh
numbers. Natural convection with an inner circular cylinder through square enclosure
was investigated by Lee et al. [11]. It was found that the size of the local heating zone
influenced the production and dissolution of vortices. Hussein et al. [12] studied transient
natural convection flow in the enclosures and obtained heat transfer properties of three-
dimensional impacts of transitory natural convection. Natural convection in a square
cavity was examined by Park et al. [13], where two inner circular cylinders were positioned
in the cavity. Hossain et al. [14] performed a trapezoidal cavity, including the effect of
the magnetic field as well as non-uniformly heated bottom wall. It was demonstrated
that the average and local Nusselt number with the non-uniform heating of the cavity’s
bottom wall depended on dimensionless parameters, as well as tilt angles. The effect of a
perpendicular magnetic field on free convection in a rectangular cavity to solve the resulting
boundary value problem was examined by Singh et al. [15]. Park et al. [16] studied natural
convection in a square enclosure with four circular cylinders to locate various rectangular
positions of the cylinders on the flow and thermal fields. Hossain et al. [17] analyzed
magneto-natural convection within trapezoidal cavity and utilized circular block in the
cavity and observed that the conduction-dominant region had changed for different angles
of Φs. Seo et al. [18,19] investigated flow instability on natural convection in a square
enclosure with the aid of four inner cylinders. The effects of the rectangular array cylinder
positions in a square enclosure on heat transfer characteristics were highlighted. The
effect of buoyancy force by using bottom heating in a square cavity was analyzed by
Siddiki et al. [20]. An analysis of the flow of natural convection was conducted by Hossain
et al. [21] in a trapezoidal cavity, in which a non-uniformly heated triangular block was
used inside the cavity. They observed that the heat transfer rates were significantly affected
by tilt angles and heated triangular blocks. Feldman [22] studied the oscillatory instability
flow of natural convection in a square enclosure, incorporating a tandem of vertically
aligned cylinders.

Hossain et al. [23] demonstrated natural convection in a trapezoidal cavity and also
utilized magnetic fields and cold triangular obstacles. They observed that streamlines,
isotherms and average Nusselt numbers were affected by rotations of the cold triangular
obstruction. Magneto-hydrodynamic free convection through a square enclosure Lattice
Boltzmann simulation was studied by Laouer and Djeghiour [24]. It was seen that the heat
transfer rate fell as the Ha increased, but it increased when the Ra increased. Furthermore,
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for high Rayleigh numbers and a wide range of Hartmann numbers, the magnetic field
direction had a significant impact on the heat transfer and fluid movement inside the
enclosure. Fayz-Al-Asad et al. [25] analyzed natural convection in a wavy cavity to obtain
the result of the fin length and its location. They found that there was a significant impact
on the flow structure and temperature for the fin lengths and their locations. Magneto-
hydrodynamic natural convection flow was studied by Hossain et al. [26]. They used
heated triangular obstacles in accordance with a porous trapezoidal cavity. They showed
that local and average Nusselt numbers were highly influenced by a variety of aspect
ratios of heat source obstacles within the cavity. Liao and Li [27] presented an empirical
correlation of natural convection with the effect of a magnetic field in a square enclosure to
anticipate the heat transfer transition for various values of Ha and Ra. Shahid et al. [28]
studied a lid-driven rectangular cavity using a multi-relaxation time Lattice Boltzmann
simulation. They analyzed the aspect ratio of the cavity, as well as the sizes of the heated
obstacles on fluid flow. Natural convection flow in a trapezoidal cavity was studied by
Khan et al. [29]. They used a porous matrix within the cavity, along with heated cylindrical
barriers. They showed that the average Nusselt number showed a dominant boost for both
the fluid and solid phases. Fayz-Al-Asad et al. [30,31] studied a vertically wavy enclosure.
They used magneto conditions to find out the effect of undulation in the cavity. They
observed that, due to the increase in the number of undulations, the evolution of heat
transport increased. The study of a rectangular heating source ofnatural convective flow
within a triangular cavity was conducted by Fayz-Al-Asad et al. [32]. They confirmed
that the rate of heat variation increased as the Rayleigh number increased in the cavity.
Fayz-Al-Asad et al. [33] analyzed the magneto-combined convection in a lid-driven wavy
cavity. They found that variations of lengths of the fin surface had a significant impact
on the flow building and heat line sketch. Mixed convection flow in a lid-driven cavity
was performed by Xiong et al. [34] for different obstacles. The results showed that the
intensity of maximum convection was achieved for a higher Grashof number. Recently,
Alshare et al. [35] conducted a hydrothermal and entropy critique of nanofluid natural
convection inside an elliptical shape in the concentric irregular cavity. They observed
that a single increase in undulation increased the Nusselt number by an average of 9.5%
within the examined range (N = 1 to 4). Furthermore, doubling the nanoparticle volume
fraction increased the Nusselt number by nearly 8%. In addition, the finite element method,
magnetic field and natural convection were found to be more detailed [36–39].

To the best knowledge of the scientist, it was noted that no inquiry has been conducted
on the effect of heated cylinders in accordance with magnetic-natural convection flow in
a square cavity in which the geometrical result for the heat transport characteristics is
necessary in order to know the industrial functions. The flow field has been characterized
by the streamlines whereas the thermal area is defined by the isotherms, local and average
Nusselt numbers. For computation, the Prandtl number (Pr = 0.71) is considered for
the airflow in the cavity. The present research study was conducted for the assorted
configurations of heated cylinders for the range of Ha and Ra on flow, as well as thermal
field through square enclosure.

2. Problem Definition

The physical configuration for the current investigation is shown in Figure 1. A steady,
two-dimensional square cavity with various heated cylinders (LBC, RBC, LTC and RTC)
embedded inside, along with magnetic field (B0) with the y-axis, was used in the present
model. The dimension of the cavity was defined by its height (H) and length (L). The
gravitational force (g) always worked in the vertically downward direction. The left and
right walls of the cavity were thermally insulated (Ti). The base wall of the cavity was
considered to be at a uniform hot temperature (Th) and the top wall was maintained at
a cold temperature (Tc), where Th > Tc. Furthermore, a heated cylinder of a diameter D
was placed in various positions within the square cavity. The diameter of the cylinder
was made to be one third of the cavity’s height. The electrically conductive fluid with
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Pr = 0.71 [10] was placed in the square cavity and the flow of fluid was thought to be
Newtonian and laminar. In addition, stable fluid properties were seen, and the boundary
walls of the cavity were no-slip.

Math. Comput. Appl. 2022, 27, x FOR PEER REVIEW 4 of 19 
 

2. Problem Definition 
The physical configuration for the current investigation is shown in Figure 1. A 

steady, two-dimensional square cavity with various heated cylinders (LBC, RBC, 
LTC and RTC) embedded inside, along with magnetic field (B0) with the y-axis, was 
used in the present model. The dimension of the cavity was defined by its height 
(H) and length (L). The gravitational force (g) always worked in the vertically 
downward direction. The left and right walls of the cavity were thermally insulated 
(Ti). The base wall of the cavity was considered to be at a uniform hot temperature 
(Th) and the top wall was maintained at a cold temperature (Tc), where Th > Tc. Fur-
thermore, a heated cylinder of a diameter D was placed in various positions within 
the square cavity. The diameter of the cylinder was made to be one third of the cav-
ity’s height. The electrically conductive fluid with Pr = 0.71 [10] was placed in the 
square cavity and the flow of fluid was thought to be Newtonian and laminar. In 
addition, stable fluid properties were seen, and the boundary walls of the cavity 
were no-slip. 

 
Figure 1. Schematic model of the present study. 

3. Mathematical Modeling 
The flow of fluid was steady, viscous and incompressible in the present study. 

The electrically conducting flow of fluid was also invariant, excluding density vari-
ation. Furthermore, Boussinesq approximation was used to report the variation of 
density as a function of temperature and, in this way, connect the temperature field 
to the flow field for the treatment of buoyancy term in the momentum equation. In 
addition, viscous dissipation, the effect of radiation, the low-magnetic Reynolds 
number model for Lorentz force and Joule heating were neglected in this study. The 
two-dimensional conservations equations of mass, momentum and energy for the 
present study in dimensionless form were as follows [10,14,17,23,26,40,41]: 

y

xB

g

y,v

x,u

iT iT

hT

cT

L

H
D

 =
 H

/3
 

D
 =

 H
/3

 

LTC 

RBC 

RTC 

LBC 

0B

Figure 1. Schematic model of the present study.

3. Mathematical Modeling

The flow of fluid was steady, viscous and incompressible in the present study. The
electrically conducting flow of fluid was also invariant, excluding density variation. Fur-
thermore, Boussinesq approximation was used to report the variation of density as a
function of temperature and, in this way, connect the temperature field to the flow field
for the treatment of buoyancy term in the momentum equation. In addition, viscous dis-
sipation, the effect of radiation, the low-magnetic Reynolds number model for Lorentz
force and Joule heating were neglected in this study. The two-dimensional conservations
equations of mass, momentum and energy for the present study in dimensionless form
were as follows [10,14,17,23,26,40,41]:

∂U
∂X

+
∂V
∂Y

= 0, (1)

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+ Pr
(

∂2U
∂X2 +

∂2U
∂Y2

)
, (2)

U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+ Pr
(

∂2V
∂X2 +

∂2V
∂Y2

)
+ RaPrθ − Ha2PrV, (3)

U
∂θ

∂X
+ V

∂θ

∂Y
=

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
. (4)
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Using the following variables in the present study, Equations (1)–(4) were non-
dimensionalized:

X = x
L , Y = y

L , U = uL
α , V = vL

α , P = pL2

ρα2 , θ = T−Tc
Th−Tc

,

Ha = B0L
√

σ
µ , Pr = v

α , Ra = gβ(Th−Tc)L3

αv ,

where X and Y both are non-dimensional coordinates alongside horizontal and vertical
directions, respectively; U and V are non-dimensional velocity components in X and Y
directions, respectively; θ and P are the non-dimensional temperature and pressure; and
Ra, Pr and Ha, are the Rayleigh number, the Prandtl number and the Hartmann number,
respectively. Thermal diffusivity, volumetric thermal expansion coefficient, kinematic
viscosity, density, specific heat, acceleration due to gravity and dimensional temperature
difference of the fluid are represented, respectively, by the symbols α, β, ν, ρ, cp, g, and ∆T.

The related boundary conditions for Equations (1)–(4) take the following forms:
on the left and right (side) walls: U = 0, V = 0, ∂θ

∂n = 0;
on the top wall: U = 0, V = 0, θ = 0;
on the bottom wall: U = 0, V = 0, θ = 1;
on the insider elliptic obstacle: U = 0, V = 0, θ = 1.
The heat transfer co-efficient, as well as the local Nusselt number (Nulocal) and mean

Nusselt number (Nuav) on the heated part of the cavity, were determined as follows:

Nulocal = − ∂θ

∂Y
and Nuav =

∫ 1

0
Nulocal dX

4. Numerical Details

The computational technique was employed to simulate the flow dynamics within
the cavity for the problem presented in this paper, with the help of the Galerkin weighted
residual finite element technique. Using this technique, the solution domain was discretized
into finite element meshes composed of non-uniform triangular elements. Then, the
nonlinear governing partial differential equations (i.e., mass, momentum and energy
equations) were transferred into a system of integral equations by applying this technique.
The Galerkin weighted residual finite element technique (as shown in the works of Taylor
and Hood [42], Zienkiewicz [43] and Dechaumphai [44]) was applied to Equations (1)–(4)
for the evaluation of finite element equations as:∫

A
Nα

(
∂U
∂X

+
∂V
∂Y

)
dA = 0, (5)

∫
A

Nα

(
U

∂U
∂X

+ V
∂U
∂Y

)
dA = −

∫
A

Hλ

(
∂P
∂X

)
dA + Pr

∫
A

Nα

(
∂2U
∂X2 +

∂2U
∂Y2

)
dA, (6)

∫
A

Nα

(
U

∂V
∂X

+ V
∂V
∂Y

)
dA = −

∫
A

Hλ

(
∂P
∂Y

)
dA + Pr

∫
A

Nα

(
∂2V
∂X2 +

∂2V
∂Y2

)
dA + RaPr

∫
A

NαθdA − Ha2
∫
A

NαVdA, (7)

∫
A

Nα

(
U

∂θ

∂X
+ V

∂θ

∂Y

)
dA =

∫
A

Nα

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
dA, (8)

where A is the element section; Nα refers to functions of element interpolation for velocity
and temperature and α = 1, 2, . . . , 6; Hλ refers to functions of element exclamation for
pressure; and λ = 1, 2, 3.
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Gauss’s theorem with appropriate boundary integral terms, in accordance with heat
flux and surface tractions, was applied to Equations (6)–(8), then becoming∫

A Nα

(
U ∂U

∂X + V ∂U
∂Y

)
dA +

∫
A Hλ

(
∂P
∂X

)
dA

+Pr
∫

A

(
∂Nα
∂X

∂U
∂X + ∂Nα

∂Y
∂U
∂Y

)
dA =

∫
S0

NαSxdS0,
(9)

∫
A

Nα

(
U ∂V

∂X + V ∂V
∂Y

)
dA +

∫
A

Hλ

(
∂P
∂Y

)
dA

+Pr
∫
A

(
∂Nα
∂X

∂V
∂X + ∂Nα

∂Y
∂V
∂Y

)
− RaPr

∫
α

NαθdA + Ha2
∫
α

NαVdA =
∫
s0

NαSydS0 ,
(10)

∫
α

Nα

(
U

∂θ

∂X
+ V

∂θ

∂Y

)
dA +

∫
α

(
∂Nα

∂X
∂θ

∂X
+

∂Nα

∂Y
∂θ

∂Y

)
dA =

∫
Sw

NαqlwdSw, (11)

where (9)–(10) specify the surface tractions (Sx, Sy) alongside the outflow boundary S0 and
(11) specifies the components of velocity and heat flux (qw), which flows into or out from
field alongside Sw.

Now, the basic unidentified elements for the major partial differential equations are
velocity distributions components U and V; the temperature distribution θ; and the pressure
distribution P. These distributions, by their uppermost derivative orders, were then applied
to Equations (5)–(8):

U(X, Y) = NβUβ, V(X, Y) = NβVβ, θ(X, Y) = Nβθβ, P(X, Y) = HλPλ, (12)

where β = 1, 2, . . . , 6; λ = 1, 2, 3.
The finite element equations, by substituting Equation (12), are as follows:

Kαβx Uβ + Kαβy Vβ = 0, (13)

Kαβγx UβUγ + Kαβγy VγUγ + Mαµx Pµ + Pr
(
Sαβxx + Sαβyy

)
Uβ = Qαu , (14)

Kαβγx UβVγ + Kαβγy VγVγ + Mαµy Pµ + Pr(Sαβxx + Sαβyy + Ha2Kαβ)Vβ − RaPrKαβθβ = Qαv , (15)

Kαβγx Uβθγ + Kαβγy Vβθγ +
(
Sαβxx + Sαβyy

)
θβ = Qαθ , (16)

where element matrices coefficients are in the shape of the integrals in the element region
and alongside the element edges S0 and Sw as:

Kαβx =
∫

A NαNβ,xdA, Kαβy =
∫

A NαNβ,ydA, Kαβγx =
∫

A NαNβNγ,xdA,
Kαβγy =

∫
A NαNβNγ,ydA, Kαβ =

∫
A NαNβdA, Sαβxx =

∫
A Nα,x Nβ,xdASαβyy =

∫
A Nα,yNβ,ydA,

Mαµx =
∫

A Hα Hµ,xdA, Mαµy =
∫

A Hα Hµ,ydA,
Qαu =

∫
S0

NαSxdS0, Qαv =
∫

S0
NαSydS0, Qαθ =

∫
Sw

Nαq1wdSw, Qαθ s =
∫

Sw
Nαq2wdSw.

The non-linear resulting finite element Equations (13)–(16) are algebraic. Finally, the
process of Newton–Raphson, as well as the integration technique, was used to iteratively
determine the equations of residuals. A convergence of the procedure of computation is
put aside once the convergence criteria or the condition is determined as

∣∣∣Ψn+1−Ψn

Ψn+1

∣∣∣ < 10−6,
where n refers to the iterative number, ψ = ψ(U, V, θ).

As the code validation is necessary for the accurateness of the numerical technique,
the present problem is considered with Pr = 0.71, Ha = 50 and Ra = 105, which had been
solved for streamlines (stream function) and isotherms for 2D magneto-hydrodynamic
free convection flow through the square cavity. The result was checked for streamlines
and isotherms and then the present work was compared with the reported reference of
Jani et al. [10] and presented in Figure 2. From the above comparisons of the figures, we
found a good agreement between the present work and Jani et al. [10], which is displayed
in Figure 2. Furthermore, mesh configuration is a technique in which a large domain is
subdivided into a set of sub domains called finite elements, control volume and so on. A lot
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of boundary value problems of several engineering fields have been solved with the aid of
irregular geometry via a set of finite elements. The answer for the current geometry for the
specific non-dimensional parameters was computed at discrete locations called numerical
grids. The mesh structure for the current problem is provided in Figure 3.
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Figure 3. Mesh configuration for the cavity.

In addition, to select a proper grid size, in the present study, a particular grid sensi-
tivity selecting procedure was performed for the square cavity along with various heated
cylinders for Pr = 0.71, Ha = 100 and Ra = 105, considering assorted size of mesh. The
manifest meshing is shown in Table 1 and Figure 4, where the average Nusselt number
is calculated. It was found that further increments of Nuav have insignificant transform.
Throughout the study, for 23,780 nodes and 3568 elements, the mesh configuration was
chosen for accurate simulation to find the optimized, desired result in the present study.

Table 1. Grid sensitivity tests at Pr = 0.71, Ha = 100 and Ra = 105.

Nodes 16,030 19,099 21,560 23,780 32,945 37,682

Elements 2408 2878 3258 3568 4978 5696

Nuav 0.130212 0.130203 0.137988 0.141502 0.141502 0.1415

Time (s) 15.913 19.308 22.568 26.879 36.5135 38.495
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5. Results and Discussion

In the present study, the effect of a heated cylinder for different configurations, LBC,
RBC, LTC and RTC, in accordance with the magnetic field for the fluid flow on the natural
convection in a square cavity numerically, was studied. The results of the square cavity
with an insider heated cylinder were presumed for electrically conductive fluid with the
Prandtl number (Pr = 0.71) and a confined airflow. The wide range of governing parameters
were the Rayleigh number (103 ≤ Ra ≤ 105) and the Hartmann number (0 ≤ Ha ≤ 200),
studied here in order to find the computational results. The results were analyzed in the
form of streamlines and isotherms, velocity profiles, temperature profiles, heat transfer
rates and local and mean Nusselt numbers, alongside the heated wall of the cavity.

5.1. Effect of Cylinder Position and Magnetic Field on Streamlines and Isotherms

Streamlines and isotherms for assorted heated cylinder configurations along with
different parameters Ha, Pr and Ra were shown in Figures 5–8. As the beneath wall of the
cavity and cylindrical block were heated, the flow of hot fluids creates eddy circulation
cells, rotating along the cold walls inside the cavity from the heating wall for all parameters:
Pr, Ha and Ra. To find the variations of streamlines and isotherms on various configurations
of heated cylinders (LBC, RBC, LTC and RTC), a numerical study was performed with
Pr = 0.71, Ha = 0–200 and Ra = 103–104, correspondingly, for flow and thermal field in
Figures 5 and 6. The impact of the presence of a magnetic field for streamlines and
isotherms is also demonstrated in Figures 5a and 6, respectively, for cavity configuration
(LBC). Figure 5a shows that one eddy circulation cell formed inside the cavity. The flow
strength decreases and streamlines close to the heated cylinder configurations due to the
enhancement of the Hartmann number, which is shown in Figure 5b–d. The effect of
the Hartmann number (Ha = 0–200) on the distributions of the velocity and temperature
contours for right bottom configuration (RBC), while Ra = 103 and Pr = 0.71 is also shown
in Figure 5. A tiny recirculation cell appeared in the center of the square of the cavity and
the recirculation cell was smaller, owing to the increase in the Hartmann number, which is
shown in Figure 5. Figure 5 also illustrates the streamlines for the left top heated cylinder
configurations (LTC), along with variations of the Hartmann number (Ha = 0–200), when
Ra = 103 and Pr = 0.71. Figure 5 shows in the LTC configuration that one cell was created
inside the center of the square cavity in the absence of magnetic field. In addition to this,
one large vortex also formed in the left bottom side of the cavity. The cell became bigger
and oval shaped in the cavity with the increase of the Hartmann number and also, a tiny
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vortex was found in the left top side of the cavity. The variation of the Hartmann number
for the right top cylindrical heat source (RTC) configuration is shown in Figure 5 for the
square cavity. It can be seen that the smaller cell was formed in the square cavity due to
both the absence and presence of Ha, compared with the LTC. Figure 6 shows that the
isotherms for the left bottom heated cylinder configuration (LBC) are likely linear, as well
as nonlinear close to the upper wall and base wall, correspondingly, with the increase in the
Hartmann number when Ra = 103 and Pr = 0.71 (see Figure 6a–d). Furthermore, Figure 6a–d
shows the thermal increases, owing to the increase of the magnetic field parameter: the
Hartmann number (Ha). The temperature distributions for the right bottom cylindrical heat
source configuration (RBC) with magnetic field’s effect on the parameter Hartmann number
(Ha = 0–200) is shown in Figure 6a–d for fixed Ra = 103 and Pr = 0.71. The isotherms were
parallel to the upper wall of the cavity. On the other hand, a nonlinearity effect was found
near to the base wall of the cavity. The isotherms for LTC shown in Figure 6 were almost as
linear as those near to the top wall. However, bend isotherms could be seen near the base
wall through the effect of the Hartmann number. By increasing the Hartmann number, it
could be seen that the isotherms in the RTC transform slightly in the cavity, as shown in
Figure 6. When the Rayleigh number increased, that is, for higher Ra = 105, streamlines
and isotherms were analyzed, as shown in Figures 7 and 8 for various configurations of
heated cylinders (LBC, RBC, LTC and RTC) within the square cavity for Ha = 0–200 and
Pr = 0.71. As shown in Figure 7, by analyzing all configurations of the heated cylinders
(LBC, RBC, LTC and RTC), it can be understood that one primary larger eddy circulation
cell was created inside the cavity when Ha = 0. However, due to the increase in the
Hartmann number (0 ≤ Ha ≤ 200), the velocity flow strength dwindled. Therefore, likely
larger secondary recirculation cells with tiny vortices were created inside the square cavity.
At higher Ra = 105–103 and when Pr = 0.71, it is shown in Figure 8 that isotherms for
every arrangement of heated cylinders (LBC, RBC, LTC and RTC) looked parallel and
non-parallel, respectively, near to the upper and beneath wall of the cavity for the impact of
magnetic field Ha = 0–200. However, due to the increased Hartmann number and strength
of flow of convection, more compacted and non-parallel isotherm lines were seen in the
cavity. In addition to this, fewer bond isotherm lines were also observed near the side walls
of the cavity.

5.2. Velocity and Temperature Profiles

Figure 9 displays the effects of the Hartmann number (Ha) on velocity pro-files with
distances for different cylinder configurations (LBC, RBC, LTC and RTC) adjacent to the
line X = 0.3. As shown in Figure 9, the velocity decreased for each cylinder configuration
(LBC, RBC, LTC and RTC) and with the increasing value of the Hartmann number below
the central portion of the cavity. On the other hand, the velocity increased with the decrease
in the Hartmann number. Due to the counterclockwise and clockwise flow directions, the
maximum and minimum velocities were found in the absence of a magnetic field. The
temperature fields with the distance X are plotted in Figure 10 for different cylinder heat
source configurations (LBC, RBC, LTC and RTC). Figure 10 shows, for LBC, RBC, LTC
and RTC, that when the Hartmann number was absent, the maximum and minimum
temperatures were found in the cavity. The temperature field lessened due to the increase
in the Hartmann number. For LBC and LTC, the temperature field transformed slightly
with the increase in the Hartmann number to X < 0.2, but transformed significantly when
the Hartmann number was X > 0.2. An inverse result was observed for RBC and RTC. It
was observed that the change in the temperature field was insignificant when the Hartmann
number increased to X < 0.4, but the change was significant when the Hartmann number
was X > 0.4.
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Figure 9. Variations of velocity vs. distance for different orientations of heated cylinders for
Ha = 0–200, Ra = 105 and Pr = 0.71.
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Figure 10. Variations of temperature with distance for different orientations of heated cylinders for
Ha = 0–200, Ra = 105 and Pr = 0.71.

5.3. Heat Transfer

The heat transfer rates, as well as the local Nusselt number with the distance wall
for different configurations (LBC, RBC, LTC and RTC) are presented in Figure 11 for the
variations of the Hartmann number. Regarding the LBC and LTC configurations, Figure 11
shows that the local Nusselt number decreased with the increase in the Hartmann number,
but for the RBC and RTC configurations, it was observed that the local Nusselt number
increases due to the increasing Hartmann number. The heat transfer rates, as well as
the mean Nusselt number for different configurations (LBC, RBC, LTC and RTC) are
presented in Figure 12 against the variations of the Hartmann number. Figure 12 shows,
for all configurations, that the mean Nusselt number increases due to the absence of the
Hartmann number, but the mean Nusselt number decreases due to the increase in the
Hartmann number.
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Figure 11. Variations of local Nusselt number with distance for different orientations of heated
cylinders for Ha = 0–200, Ra = 105 and Pr = 0.71.
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Figure 12. Variations of average Nusselt number with the Hartmann number for different orientations
of heated cylinders for Ha = 0–200, Ra = 105 and Pr = 0.71.

6. Conclusions

A 2D computational framework was generated to analyze the fluid dynamic per-
formance in a square cavity in order to find the effect of heating cylinders in line with a
magnetic field using natural convection by applying the free triangular grid-established
finite element technique through the use of an easy algorithm. The numerical work within
a square cavity for various cylindrical heat source configurations (LBC, RBC, LTC and RTC)
when Pr = 0.7, 0 ≤ Ha ≤ 200 and 103 ≤ Ra ≤ 105 was studied in this work by employing
the Galerkin weighted residual method of finite element formulation. The results are
displayed for assorted cylinder configurations in the phase of streamlines, isotherms, veloc-
ity profiles, temperatures and heat transfers rates, as well as the local and mean Nusselt
number for the bottom wall of the cavity. The concise summary is as follows:

� The distributions of flow field and isotherm patterns, velocity and temperature pro-
files, rate of heat transport for various cylinder configurations within the cavity fully
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depended on the Prandlt number (Pr), the Rayleigh number (Ra) and the Hartmann
number (Ha) and the heated bottom wall of the cavity.

� The number of vortices increased within the streamlines for various configurations of
the cavity due to enhance of the Hartmann number.

� The bonding of isotherm lines reduced close to the side walls of the cavity.
� The bend isotherm lines were observed adjacent to the base wall of the cavity.
� The velocity decreased for each heated cylinder configurations (LBC, RBC, LTC

and RTC), as well as for the increasing value of the Hartmann number below the
central portion of the cavity, but the velocity increased with the decrease in the
Hartmann number.

� For the LBC and LTC configurations, the local Nusselt number decreased with the
increase of the Hartmann number, but for the RBC and RTC configurations, the local
Nusselt number increased with the increase in the Hartmann number.

� The mean Nusselt number for the LBC, RBC, LTC and RTC configurations increased
due to the absence of the Hartmann number, but the mean Nusselt number decreased
due to the increase in the Hartmann number.
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Nomenclature

B0 Magnetic field
Cp Specific heat at constant pressure (J/kg·K)
g Gravitational acceleration (m/s2)
h Convective heat transfer coefficient (W/m2·K)
Ha Hartmann number
k Thermal conductivity of fluid (W/m·K)
K Thermal conductivity ratio fluid
N Non-dimensional distance
Nuav Mean Nusselt number
Nulocal Local Nusselt number
P Non-dimensional pressure
p Pressure
Pr Prandtl number
Ra Rayleigh number
T Non-dimensional temperature
U Dimensionless horizontal velocity
u Velocity in x-direction (m/s)
V Dimensionless vertical velocity
v Velocity in y-direction (m/s)
x, y Cartesian coordinates
X, Y Dimensionless Cartesian coordinates
Greek symbols
α Thermal diffusivity (m2/s)
β Coefficient of thermal expansion (K−1)
θ Temperature of fluid
∆θ Discrepancy of temperature
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µ Dynamic viscosity of the fluid (Pa·s)
ν Kinematic viscosity of the fluid (m2/s)
r Fluid density (kg/m3)
σ Fluid electrical conductivity (Ω−1m−1)
Abbreviations
LBC Left bottom heated cylinder
LTC Left top heated cylinder
RTC Right top heated cylinder
RBC Right bottom heated cylinder
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