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Abstract: A new family of continuous distributions called the generalized odd linear exponential
family is proposed. The probability density and cumulative distribution function are expressed
as infinite linear mixtures of exponentiated-F distribution. Important statistical properties such
as quantile function, moment generating function, distribution of order statistics, moments, mean
deviations, asymptotes and the stress–strength model of the proposed family are investigated. The
maximum likelihood estimation of the parameters is presented. Simulation is carried out for two of
the mentioned sub-models to check the asymptotic behavior of the maximum likelihood estimates.
Two real-life data sets are used to establish the credibility of the proposed model. This is achieved
by conducting data fitting of two of its sub-models and then comparing the results with suitable
competitive lifetime models to generate conclusive evidence.

Keywords: generalized odd linear distribution; hazard rate function; moments; residual analysis;
maximum likelihood estimation; Monte Carlo simulation

1. Introduction

Analysis of lifetime data is an important subject in many fields, including reliability,
social sciences, biomedical, engineering and other fields. In practice, it has been observed
that many phenomena do not follow any of the classical distributions; for this reason, many
efforts have been made in the last few decades to introduce new generators or families
of distributions that extend these classical distributions to provide considerable flexibility
in modeling data in diverse spectrums. Many authors have suggested new generators or
families in the literature, for example, and not exclusively: Marshall and Olkin (1997) [1]
introduced the Marshall–Olkin family, Gupta et al. (1998) [2] introduced the exponentiated-
G family, Eugene et al. (2002) [3] proposed the beta-G family, Cordeiro and Castro (2011) [4]
suggested the Kumaraswamy-G family, Alexander et al. (2012) [5] presented the McDonald-
G family, Alzaatreh et al. (2013) [6] proposed the transformed-transformer (T-X) family,
Bourguignon et al. (2014) [7] presented the Weibull-G family, Tahir et al. (2015) [8] studied
the odd generalized exponential-G family, Cordeiro et al. (2016) [9] discussed the Zografos
Balakrishnan odd log-logistic family, Gomes-Silva et al. (2017) [10] presented the odd
Lindley-G family, Alizadeh et al. (2017) [11] provided the Gompertz-G family and Jamal
et al. (2017) [12] defined the odd Burr-III family, among others. For a clearer understanding
of the odds ratio to define new G-classes, we motivate the readers to Khan et al. (2021) [13],
in which the authors adopted a unique odd function to propose an alternate generalized
odd generalized exponential-G family.
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The linear exponential or (linear failure rate) distribution is the distribution of the
minimum of two independent random variables Z1 and Z2 having exponential (a) and
Rayleigh (b) (Sen and Bhattacharyya, 1995 [14]). Therefore, the variables have exponen-
tial and Rayleigh distributions as special cases, which are well-known distributions for
modeling lifetime data in reliability and medical studies. The linear exponential distri-
bution is used to model phenomena with linearly increasing failure rates, but it does not
provide a reasonable fit for modeling phenomena with decreasing, non-linear increasing, or
non-monotonic failure rates, which include the bathtub and upside-down bathtub, among
others. These phenomena are common in reliability and biological studies. This motivated
us to introduce generalizations of linear, exponential distribution so that their goodness
of fit measures may improve the tail properties. Our motivations and the main goals of
this paper are to propose a random variable that follows the linear exponential distribution
as a new generator to introduce new models which can yield all types of the hazard rate
functions with improved goodness of fit properties for real-life data.

2. The Generalized Odd Linear Exponential (GOLE-F) Family

Suppose the random variable Z has a linear exponential distribution with parameters
a, b ≥ 0 where a + b > 0, then its cumulative distribution function (CDF) and probability
density function (PDF) are, respectively,

R(z) = 1− e−(az+ b
2 z2), z ≥ 0 (1)

r(z) = (a + bz)e−(az+ b
2 z2). z > 0. (2)

Adopting the T-X framework defined by the authors in [6], for any power param-
eter c > 0, we define the CDF of a new wider family called the generalized odd linear
exponential (“GOLE-F” for short) family by

G(x; a, b, c, φ) =
∫ F(x;φ)c

1−F(x;φ)c

0
(a + bz)e−(az+ b

2 z2)dz = 1− exp

[
−
(

aF(x; φ)c

1− F(x; φ)c +
b
2

(
F(x; φ)c

1− F(x; φ)c

)2
)]

, (3)

where W[F(x)] = F(x;φ)c

1−F(x;φ)c is the link function with F(x; φ) as the baseline CDF of an

absolutely continuous distribution with parameter vector φ and pdf f (x; φ).
The PDF of GOLE-F corresponding to the CDF in Equation (3) is provided by

g(x; a, b, c, φ) =

[
c f (x; φ)F(x; φ)c−1(a + (b− a)F(x; φ)c)(

1− F(x; φ)c)3

]
× exp

[
−
(

aF(x; φ)c

1− F(x; φ)c +
b
2

(
F(x; φ)c

1− F(x; φ)c

)2
)]

. (4)

Henceforth, for any parent model, we will simply write F(x) = F(x; φ) as the distribution
function and f (x) = f (x; φ) as the density function. Further, any random variable X with
density function (4) is denoted by X ∼ GOLE− F (a, b, c, φ).

The hazard rate function (HRF) and reversed hazard rate function (RHRF) of the
random variable X are, respectively,

h(x; a, b, c, φ) =
c f (x)F(x)c−1(a + (b− a)F(x)c)

(1− F(x)c)3 , (5)

and

τ(x; a, b, c, φ) =

{
c f (x)F(x)c−1(a + (b− a)F(x)c)

}
e
−( aF(x)c

1−F(x)c
+ b

2 (
F(x)c

1−F(x)c
)

2
)

(1− F(x)c)3

{
1− e

−( aF(x)c

1−F(x)c
+ b

2 (
F(x)c

1−F(x)c
)

2
)

} . (6)
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The quantile function of the random variable X can be obtained by inverting Equa-
tion (3), and hence the GOLE-F distribution can be simulated easily from the following
Equation.

X = Q(U) = F−1

[ −a +
√

a2 − 2b log(1−U)

b− a +
√

a2 − 2b log(1−U)

]1/c
, (7)

where U has a uniform distribution over the interval (0,1), in particular, if u = 1/2 we
obtain the median of the random variable X as follows:

M = Q
(

1
2

)
= F−1

[ −a +
√

a2 − 2b log(1− 1/2)
b− a +

√
a2 − 2b log(1− 1/2)

]1/c
. (8)

3. Special Model of the GOLE-F Family

In this section, we provide two extended distributions as special models of the GOLE-F
family and display their plots of density and hazard rate functions.

3.1. The Generalized Odd Linear Exponential-Weibull (GOLE-W) Distribution

Consider the Weibull distribution with density and distribution functions
f (x; λ, β) = λβxβ−1e−λxβ

and F(x; λ, β) = 1− e−λxβ
, respectively, where λ, β > 0 and

x ≥ 0. Then, the GOLE-W distribution has (PDF) provided by

g(x; a, b, c, λ, β) =

 cλβxβ−1e−λxβ
(

1−e−λxβ
)c−1

(
a+(b−a)

(
1−e−λxβ

)c)
(

1−
(

1−e−λxβ
)c)3


× exp

−
 a

(
1−e−λxβ

)c

1−
(

1−e−λxβ
)c + b

2

( (
1−e−λxβ

)c

1−
(

1−e−λxβ
)c

)2
.

Figure 1a show a wealth of possible shapes of the distribution once different choices
of the parameters are made. For example, the shape can be U and inverted-U, right-
skewed, reversed-J shape or symmetrical. Additionally, Figure 1b reveal that the HRF of
the GOLE-W distribution can be increasing–constant, constant–monotone–increasing or
monotone–increasing shapes.
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3.2. The Generalized Odd Linear Exponential-Exponential (GOLE-E) Distribution

Consider the Exponential distribution with density and distribution functions f (x; λ) =
λe−λx and F(x; λ) = 1− e−λx, respectively, where λ > 0 and x ≥ 0. Then, the GOLE-E
distribution has (PDF) provided by

g(x; a, b, c, λ) =

 cλe−λx(1− e−λx)c−1
(

a + (b− a)
(
1− e−λx)c

)
(
1− (1− e−λx)

c)3

× exp

−
 a

(
1− e−λx)c

1− (1− e−λx)
c +

b
2

( (
1− e−λx)c

1− (1− e−λx)
c

)2
.

Figure 2a show possible shapes of the GOLE-E distribution for different choices of the
parameters. The shapes of pdf can be right-skewed, or symmetrical. Further, Figure 2b
reveal that the HRF of the GOLE-E distribution can be decreasing–constant, monotone–
increasing or bathtub shape. The PDF and HRF of the GOLE-W and GOLE-E distributions
for some selected values of the parameters indicate the flexibility of the new family.

Math. Comput. Appl. 2022, 27, x FOR PEER REVIEW 4 of 22 
 

 

𝑔(𝑥; 𝑎, 𝑏, 𝑐, 𝜆) = ൥௖ఒ௘షഊೣ൫ଵି௘షഊೣ൯೎షభቀ௔ା(௕ି௔)൫ଵି௘షഊೣ൯೎ቁቀଵି൫ଵି௘షഊೣ൯೎ቁయ ൩ × 𝑒𝑥𝑝 ቈ− ቆ ௔൫ଵି௘షഊೣ൯೎ଵି൫ଵି௘షഊೣ൯೎ + ௕ଶ ൬ ൫ଵି௘షഊೣ൯೎ଵି൫ଵି௘షഊೣ൯೎൰ଶቇ቉.  
Figure 2a show possible shapes of the GOLE-E distribution for different choices of 

the parameters. The shapes of pdf can be right-skewed, or symmetrical. Further, Figure 
2b reveal that the HRF of the GOLE-E distribution can be decreasing–constant, monotone–
increasing or bathtub shape. The PDF and HRF of the GOLE-W and GOLE-E distributions 
for some selected values of the parameters indicate the flexibility of the new family. 

  
(a) (b) 

Figure 2. Plots of (a) density function and (b) hazard rate of the GOLE-E distribution for different 
parameter values. 

4. Mathematical Properties of the GOLE-F Family 
In this section, some mathematical properties of the GOLE-F family are obtained. 

4.1. Asymptotic Behavior of GOLE-F Family 
First of all, for the statements of the following results, we recall that 𝐹(𝑥) is the CDF 

of an absolutely continuous distribution with pdf 𝑓(𝑥). 

Proposition 1. The asymptotes corresponding to Equations (3)–(5) when 𝑥 → −∞ are provided 
by 𝐺(𝑥)~𝑎 𝐹(𝑥)௖,  (9)𝑔(𝑥)~𝑐 𝑎 𝑓(𝑥)𝐹(𝑥)௖ିଵ,  (10)ℎ(𝑥)~𝑐 𝑎 𝑓(𝑥)𝐹(𝑥)௖ିଵ.  (11)

Proposition 2. The asymptotes corresponding to Equations (3)–(5) when 𝑥 → ∞ are provided by 

1 − 𝐺(𝑥) ~ 1 −  𝑒ି ቆ ௔ଵିி(௫)೎ ା ௕ଶ൜ ଵଵିி(௫)೎ ൠమቇ,  (12)

𝑔(𝑥)~ 𝑏𝑐𝑓(𝑥)(1 − 𝐹(𝑥)௖)ଷ   𝑒ି ቆ ௔ଵିி(௫)೎ ା ௕ଶ൜ ଵଵିி(௫)೎ ൠమቇ  (13)

ℎ(𝑥)~ 𝑏𝑐𝑓(𝑥)(1 − 𝐹(𝑥)௖)ଷ.  (14)

Figure 2. Plots of (a) density function and (b) hazard rate of the GOLE-E distribution for different
parameter values.

4. Mathematical Properties of the GOLE-F Family

In this section, some mathematical properties of the GOLE-F family are obtained.

4.1. Asymptotic Behavior of GOLE-F Family

First of all, for the statements of the following results, we recall that F(x) is the CDF of
an absolutely continuous distribution with pdf f (x).

Proposition 1. The asymptotes corresponding to Equations (3)–(5) when x → −∞ are provided by

G(x) ∼ a F(x)c, (9)

g(x) ∼ c a f (x)F(x)c−1, (10)

h(x) ∼ c a f (x)F(x)c−1. (11)

Proposition 2. The asymptotes corresponding to Equations (3)–(5) when x → ∞ are provided by

1− G(x) ∼ 1− e
−( a

1−F(x)c
+ b

2 {
1

1−F(x)c
}2
)
, (12)

g(x) ∼ bc f (x)

(1− F(x)c)3 e
−( a

1−F(x)c
+ b

2 {
1

1−F(x)c
}2
)

(13)
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h(x) ∼ bc f (x)

(1− F(x)c)3 . (14)

For detail see Appendix A.

4.2. Useful Expansions for CDF and PDF of the New Family

Using the power series for the exponential function and the generalized binomial
expansion

e−z =
∞

∑
i=0

(−1)izi

i!
,

and

(1− v)n =
∞

∑
i=0

(−1)i
(

n
i

)
vi,

respectively, where |v| < 1 and n is any real number, we can rewrite the CDF of the GOLE-F
family as follows:

G(x; a, b, c, φ) = 1−
∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(−1)ibjai
(

i
j

)(
i + j + k− 1

k

)
i!2j F(x)c(i+j+k). (15)

Again, based on the binomial expansion, we find

F(x)c(i+j+k) = (1− (1− F(x))c(i+j+k) =
∞

∑
m=0

∞

∑
l=m

(−1)l+m
(

l
m

)(
c(i + j + k)

l

)
F(x)m. (16)

From (15) and (16), we obtain

G(x; a, b, c, φ) = 1−
∞

∑
m=0

ωmF(x)m, (17)

where

ωm =
∞

∑
l=m

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

ρi,j,k,l(a, b, c),

and

ρi,j,k,l(a, b, c) =
(−1)i+l+mbjai

(
i
j

)(
l
m

)(
i + j + k− 1

k

)(
c(i + j + k)

l

)
i!2j .

Now, we can write the CDF of the GOLE-F family in Equation (17), as

G(x; a, b, c, φ) =
∞

∑
m=0

δmF(x)m, (18)

where δ0 = 1− ω0, and δm = −ωm for m = 1, 2, . . . By differentiating Equation (18), we
obtain the expansion of the density function of the GOLE-F family as an infinite linear
mixture of exp-F densities in the following form

g(x; a, b, c, φ) =
∞

∑
m=0

δm+1πm+1(x), (19)

where πm+1(x) = (m + 1) f (x)F(x)m is the exp-F density function with power parame-
ter (m + 1). Now, if the random variable Ym+1 has the density function πm+1(x), then
many mathematical properties of the random variable X, including the ordinary and in-
complete moments and moment generating function can easily be obtained based on the
exp-F distribution.
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4.3. Moments

Suppose that the random variable Ym+1 has the density function πm+1(x) in (19), then
the nth moment of the random variable X can be obtained from

µ′n = E(Xn) =
∞

∑
m=0

δm+1E
(
Yn

m+1
)
. (20)

A second alternative formula for µ′n in terms of the baseline qf. QF(u) can be obtained as

µ′n =
∞

∑
m=0

δm+1(m + 1)
∫ 1

0
QF(u)numdu, (21)

where QF(u) = F−1(u) is the qf of the parent distribution and u ∈ (0, 1).
The incomplete moments have an important role in measuring inequality, for exam-

ple, income quantiles, the mean deviations and Lorenz and Bonferroni curves. The nth
incomplete moment of X is provided by

ηn(z) =
∞

∑
m=0

δm+1(m + 1)
∫ F(z)

0
QF(u)numdu. (22)

The last integral can be computed analytically or numerically for most baseline distri-
butions. Bonferroni and Lorenz curves have applications in many different areas such as eco-
nomics to study income and poverty, reliability, demography, insurance and medicine. For
a random variable X, the Bonferroni and Lorenz curves are defined by B(p) = η1(q)/pE(X)
and L(p) = η1(q)/E(X), respectively, where p is a given probability, q = Q(p) and η1(q) is
the first incomplete moment that can be calculated from the above Equation with r = 1 at
q. Table 1 display the mean, variance, skewness and kurtosis of the GOLE-E distribution
for some choices values of the parameters. We note from Table 1 that the skewness of the
GOLE-E distribution is always positive, whereas the kurtosis of the GOLE-E distribution
varies only in the interval (1.0571, 2.6112).

Table 1. Mean, variance, skewness and kurtosis of the GOLE-E distribution with different values of a,
b, c and λ = 1.

a b c Mean Variance Skewness Kurtosis

0.5 0.5 1 0.6704 0.1330 1.2979 1.8368
2 1.1667 0.2186 1.1776 1.4755
5 1.9517 0.3004 1.0960 1.2512

10 2.5987 0.3351 1.0635 1.1656
20 3.2683 0.3541 1.0440 1.1146
50 4.1704 0.3660 1.0288 1.0753
100 4.8587 0.3701 1.0218 1.0571

1 1 1 0.4614 0.0824 1.3869 2.1392
2 0.8995 0.1587 1.2180 1.5987
5 1.6411 0.2408 1.1103 1.2923

10 2.2721 0.2776 1.0699 1.1839
20 2.9334 0.2982 1.0467 1.1226
50 3.8303 0.3114 1.0294 1.0774
100 4.5169 0.3159 1.0218 1.0574

2 1.5 1 0.3091 0.0488 1.5119 2.6112
2 0.6860 0.1130 1.2703 1.7688
5 1.3790 0.1919 1.1269 1.3424

10 1.9914 0.2297 1.0768 1.2044
20 2.6430 0.2514 1.0494 1.1308
50 3.5339 0.2654 1.0299 1.0793
100 4.2185 0.2702 1.0217 1.0574
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4.4. Generating Function

Here, we provide three formulae for the mgf M(t) = E
(
etX) of the random variable X.

The first one is provided by

M(t) =
∞

∑
n=0

tn

n!
µ′n, (23)

where µ′n is the nth moment of the random variable X. A second formula for M(t) comes
from (19) as

M(t) =
∞

∑
m=0

δm+1Mm+1(t), (24)

where Mm+1(t) is the mgf of the random variable Ym+1 ∼exp-F (m + 1). A third formula
for M(t) can also be derived based on (19) in terms of the baseline qf. QF(u) as

M(t) =
∞

∑
m=0

δm+1(m + 1)
∫ 1

0
exp(tQF(u))umdu, (25)

where QF(u) = F−1(u) is the qf of the baseline distribution and u ∈ (0, 1).

4.5. Mean Deviations

The amount of scattering in a population is evidently measured to some extent by
the totality of deviations from the mean and median. These are known as the mean
deviation about the mean and the mean deviation about the median. These measures can
be calculated using the following relationships:

δ1(X) = 2µG(µ)− 2
∫ µ
−∞ xg(x)dx and δ2(X) = µ− 2

∫ M
−∞ xg(x)dx, respectively, where

µ = E(X) and M = Q
(

1
2

)
.

4.6. Order Statistics

Let X1, X2, . . . , Xn be a random sample from the GOLE-F family with CDF and PDF
defined in Equations (3) and (4), respectively. Suppose X1:n, X2:n, . . . , Xn:n denote the order
statistics obtained from this sample and Xr:n is the ith order statistic, then the density
function of the rth order statistic is provided by

gr:n(x) =
n!

(r− 1)!(n− r)!

n−r

∑
s=0

(−1)s
(

n− r
s

)
g(x)G(x)r+s−1. (26)

From (17), we determine

G(x)r+s−1 =

[
∞

∑
m=0

δmF(x)m

]r+s−1

=
∞

∑
m=0

dr+s−1,mF(x)m, (27)

where
dr+s−1,0 = δr+s−1

0 and dr+s−1,m = (mδ0)
−1 m

∑
q=1

[q(r + s)−m]δqdr+s−1,m−q.

By replacing t instead of m in Equation (19), we obtain

g(x) =
∞

∑
t=0

δt+1(t + 1) f (x)F(x)t. (28)

By substituting (26) in (27) and (28), we determine the PDF of the rth order statistic
Xr:n as

gr:n(x) =
∞

∑
t,m=0

πt,mht+m+1(x), (29)
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where ht+m+1(x) denotes the PDF of exp-F distribution with power parameter (t + m + 1), and

πt,m =
n−r

∑
s=0

(−1)s
(

n− r
s

)
n!δt+1(t + 1)dr+s−1,m

(r− 1)!(n− r)!(t + m + 1)
.

Based on Equation (29), several mathematical properties of these order statistics such
as ordinary and incomplete moments, factorial moments, moment generating function,
mean deviations and several others, can be obtained.

4.7. Stochastic Orderings

Stochastic orders and inequalities are used in many different areas of probability and
statistics. Such areas include reliability theory, survival analysis, economics, insurance,
actuarial science, queuing theory, biology, operations research, management science, etc.
For more detail regarding stochastic ordering, see (Shaked et al., 1994 [15]). Given two
random variables X and Y, we say that X is smaller than Y in the:

1. usual stochastic order, denoted by X ≤st Y, if GX(x) ≥ GY(x), for all x;
2. hazard rate order, denoted by X ≤hr Y, if hX(x) ≥ hY(x), for all x;
3. reversed hazard rate order, denoted by X ≤rh Y, if GX(x)/GY(x), is decreases in x;
4. mean residual life order, denoted by X ≤mrl Y, if mX(x) ≤ mY(x), for all x;
5. likelihood ratio order, denoted by X ≤lr Y, if gX(x)/gY(x), is decreases in x.

For all the previous orders, we determine the following chains of implications:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y

and
X ≤lr Y ⇒ X ≤rh Y ⇒ X ≤st Y,

also
X ≤hr Y ⇒ X ≤mrl Y.

For the proposed GOLE-F family, the following theorem provides the stochastic
comparison results with respect to the above orderings.

Theorem 1. Let X ∼ GOLE(a1, b1, c1, φ) and Y ∼ GOLE(a2, b2, c2, φ). If a1 ≥ a2. and
b1 ≥ b2 and c1 ≤ c2, then X ≤st Y.

Proof. If c1 ≤ c2, then
F(x) c1

1− F(x) c1
≥ F(x) c2

1− F(x) c2
. (30)

Hence, if a1 ≥ a2 and b1 ≥ b2, then

a1F(x) c1

1− F(x) c1
+

b1

2

(
F(x) c1

1− F(x) c1

)2

≥ a2F(x) c2

1− F(x) c2
+

b2

2

(
F(x) c2

1− F(x) c2

)2

. (31)

Therefore,[
−
(

a1F(x) c1

1− F(x) c1
+

b1

2

(
F(x) c1

1− F(x) c1

)2
)]
≤
[
−
(

a2F(x) c2

1− F(x) c2
+

b2

2

(
F(x) c2

1− F(x) c2

)2
)]

. (32)

Thus,

1− exp
[
−
(

a1F(x) c1

1−F(x) c1 + b1
2

(
F(x) c1

1−F(x) c1

)2
)]

≥ 1− exp
[
−
(

a2F(x) c2

1−F(x) c2 + b2
2

(
F(x) c2

1−F(x) c2

)2
)]

.
(33)
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That means GX(x) ≥ GY(x) and X ≤st Y. �

Theorem 2. Let X ∼ GOLE(a1, b1, c, φ) and Y ∼ GOLE(a2, b2, c, φ). If a1 > a2 and
b1 = b2, then X ≤lr Y.

Proof. We determine

gX(x)
gY(x)

=

[(a1 + (b1 − a1)F(x)c)]× exp
[
−
(

a1F(x)c

1−F(x)c +
b1
2

(
F(x)c

1−F(x)c

)2
)]

[(a2 + (b2 − a2)F(x)c)]× exp
[
−
(

a2F(x)c

1−F(x)c +
b2
2

(
F(x)c

1−F(x)c

)2
)] . (34)

Thus,

log
(

gX(x)
gY(x)

)
= log [(a1 + (b1 − a1)F(x)c)]−

(
a1F(x)c

1−F(x)c +
b1
2

(
F(x)c

1−F(x)c

)2
)

− log[(a2 + (b2 − a2)F(x)c)] +

(
a2F(x)c

1−F(x)c +
b2
2

(
F(x)c

1−F(x)c

)2
)

.
(35)

By differentiating the last Equation and after some simplifications, we obtain

d
dx

(
log
(

gX(x)
gY(x)

))
= (a2b1−a1b2)c f (x)F(x)c−1

(a1+(b1−a1)F(x)c)(a2+(b2−a2)F(x)c)
+ (a2−a1)c f (x)F(x)c−1

(1−F(x)c)
2 + (b2−b1)c f (x)F(x)2c−1

(1−F(x)c)
3 . (36)

Now, if a1 > a2 and b1 = b2, then d
dx

[
log
(

gX(x)
gY(x)

)]
< 0, and hence gX(x)/gY(x) is

decreases in x. This implies that X ≤lr Y. �

4.8. Stress-Strength Model

The stress–strength model defines the life of an element which has a random strength
Y that is subjected to an accidental stress X. The component fails at the instant that
the stress applied to it exceeds the strength, and the component will function suitably
whenever X < Y. Hence, R = P(X < Y) is a measure of component reliability (Kotz et al.,
2003 [16]). It has many applications, especially in reliability engineering. We derive the
reliability R when Y and X are two independent continuous random variables from the
GOLE-F (a1, b1, c1, φ1) and GOLE-F (a2, b2, c2, φ2) distributions, respectively. The reliability
is defined by

R =
∫ ∞

0
gY(x)GX(x)dx. (37)

Using the PDF in (19) and the CDF in (18), we obtain

R =
∞

∑
m,t=0

δm+1δtRm+1,t , (38)

where
Rm+1,t =

∫ ∞
0 πm+1(x, φ1)Πt(x, φ2)dx, and

πm+1(x, φ1) = (m + 1) f (x, φ1)F(x, φ1)
m, Πt(x, φ2) = F(x, φ2)

t.
The constants δt, δm+1 are defined as:

δt =
∞

∑
l=t

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(−1)i+l+t+1bj
2ai

2

(
i
j

)(
l
t

)(
i + j + k− 1

k

)(
c2(i + j + k)

l

)
i!2j ,
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for t ≥ 1. For t = 0, then

δ0 = 1−
∞

∑
l=0

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(−1)i+l+mbj
2ai

2

(
i
j

)(
i + j + k− 1

k

)(
c2(i + j + k)

l

)
i!2j ,

and

δm+1 =
∞

∑
l=m+1

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(−1)i+l+m+2bj
1ai

1

(
i
j

)(
l

m + 1

)(
i + j + k− 1

k

)(
c1(i + j + k)

l

)
i!2j ,

for m ≥ 0.
If φ1 = φ2, then the model reduces to

R =
∞

∑
m,t=0

δm+1δt(m + 1)
m + t + 1

. (39)

5. Estimation and Simulation
5.1. Estimation of the Parameters

Here, we find the maximum likelihood estimates (MLEs) of the parameters of the
new family of distributions from complete samples only. Let x1, x2, . . . , xn be observed
values from the GOLE− F family with parameters a, b, c and φ. Let ξ = (a, b, c, φ)T be the
parameters vector. The total log-likelihood function for ξ is obtained by

l(ξ) = n log c +
n
∑

i=1
log f (xi; φ) + (c− 1)

n
∑

i=1
log F(xi; φ) +

n
∑

i=1
log
(
a + (b− a)F(xi; φ)c)

−3
n
∑

i=1
log
(
1− F(xi; φ)c)− a

n
∑

i=1
H(xi, φ)− b

2

n
∑

i=1
H( xi, φ)2,

(40)

where H( xi, φ) =
F(xi ;φ)c

1−F(xi ;φ)c and H( xi, φ)2 =
(

F(xi ;φ)c

1−F(xi ;φ)c

)2
.

The components of the score vector U(ξ) are obtained by

Ua =
n

∑
i=1

1− F(xi; φ)c

a + (b− a)F(xi; φ)c −
n

∑
i=1

H(xi, φ), (41)

Ub =
n

∑
i=1

F(xi; φ)c

a + (b− a)F(xi; φ)c −
1
2

n

∑
i=1

H( xi, φ)2, (42)

Uc =
n
c +

n
∑

i=1
log F(xi; φ) +

n
∑

i=1

(b−a)F(xi ;φ)c log F(xi ;φ)
a+(b−a)F(xi ;φ)c +3

n
∑

i=1

F(xi ;φ)c log F(xi ;φ)
1−F(xi ;φ)c

−a
n
∑

i=1

F(xi ;φ)c log F(xi ;φ)

(1−F(xi ;φ)c)
2 −b

n
∑

i=1

F(xi ;φ)2c log F(xi ;φ)

(1−F(xi ;φ)c)
3 ,

(43)

and

Uφk =
n
∑

i=1

∂ f (xi ;φ)
∂φk

f (xi ;φ)
+(c− 1)

n
∑

i=1

∂F(xi ;φ)
∂φk

F(xi ;φ)
+

n
∑

i=1

c(b−a)F(xi ;φ)c−1 ∂F(xi ;φ)
∂φk

a+(b−a)F(xi ;φ)c

+3
n
∑

i=1

cF(xi ;φ)c−1 ∂F(xi ;φ)
∂φk

1−F(xi ;φ)c −a
n
∑

i=1

∂H( xi ,φ)
∂φk

−b
n
∑

i=1
H( xi, φ)

∂H( xi ,φ)
∂φk

(44)

Setting Ua, Ub, Uc and Uφ equal to zero, and solving the equations simultaneously,

yields the MLE ξ̂ =
(

â, b̂, ĉ, φ̂
)T

of ξ = (a, b, c, φ)T . These equations cannot be solved
analytically, and statistical software can be used to solve them numerically using iterative
methods such as the Newton–Raphson type algorithms.
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5.2. Simulation Study

In this section, a graphical Monte Carlo simulation study is conducted to compare
the performance of the different estimators of the unknown parameters for the GOLE-E
(a, b, c, λ) distribution. All the computations in this section are conducted using the R
program. We generate N = 1000 samples of size n = 20, 25, . . . , 500 from the GOLE-
W and GOLE-E distributions. The true parameter values for GOLE-W (λ = 1) are
a = 1.8, b = 0.5, c = 1.7 and β = 2.8, and those for GOLE-E are a = 2, b = 1.5, c = 2
and λ = 2.5, respectively. We also calculate the bias and mean square error (MSE) of the
MLEs empirically. The bias and MSE are computed by

ˆBiash =
1
N

N

∑
i=1

(
ĥi − h

)
, ˆMSEh =

1
N

N

∑
i=1

(
ĥi − h

)2
.

For h = a, b, c, λ, respectively.
We provide the results of this simulation study in Figures 3–6. From these figures, we

can perceive that when the sample size increases, the empirical biases and MSEs approach
zero in all cases for the two models.
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6. Applications on Real-Life Data Sets

In this section, we illustrate the suitability of the proposed family by fitting two real
data sets on the special models viz-a-viz GOLE−W(a, b, c, λ, β) and GOLE− E (a, b, c, λ),
arising due to this family with PDF mentioned in Sections 3.1 and 3.2, respectively. The
comparison is conducted with some of the existing models via numerical maximizations
of log-likelihood functions using the method of a limited memory quasi-Newton code for
bound–constrained maximization (L-BFGS-B). We determine the log-likelihood function
adjudicated at the MLEs by estimating the parameters.

Data I: The first data set is related to the measurements of nicotine levels in 346 cigarettes.
[https://arxiv.org/ftp/arxiv/papers/1509/1509.08108.pdf, accessed on 19 May 2022]. Data
II: The second data set consists of 74 observations of gauge lengths of 20 mm of single carbon
fibers pertaining to failure stresses. (Kundu and Raqab, 2009 [17]). The descriptive statistics
related to this data sets are given in Table 2.

Table 2. Descriptive Statistics for the data set I and data set II.

Data Sets Min. Mean Median S.D. Skewness Kurtosis 1st Q. 3rd Q. Max.

I 0.10 0.85 0.90 0.33 0.17 0.29 0.60 1.10 2.00
II 1.312 2.477 2.513 0.487 −0.151 −0.127 2.150 2.816 3.5

The total time on test (TTT) plot proposed by Aarset (1987) [18] is a technique to
extract information about the shape of the hazard function. This is drawn by plotting

T(i/n) = {(
i

∑
r=1

y(r)) + (n− i)y(i)}/
n
∑

r=1
y(r), where i = 1, 2, . . . , n and y(r) where r = 1, 2, . . . , n

is the order statistics of the sample against (i/n). The constant hazard plot is a straight diago-
nal, while for decreasing (increasing) hazards, it is convex (concave), respectively. The TTT
plots for the data sets in Figure 7 indicate that the data sets have an increasing hazard rate.

https://arxiv.org/ftp/arxiv/papers/1509/1509.08108.pdf
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Figure 7. TTT plots of the data set I and II.

The best model is chosen on the basis of information criteria such as AIC (Akaike
Information Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Bayesian In-
formation Criterion) and HQIC (Hannan–Quinn Information Criterion) with the goodness
of fit measures as A* (Anderson–Darling criterion), W* (Cramér–von Mises criterion) and
Kolmogorov–Smirnov (K-S) tests with p-values. The model with minimum values for these
statistics could be chosen as the best model to fit the data except for the KS p-value, whose
maximum value is the desired outcome. Asymptotic standard errors and 95% confidence
intervals of the MLEs of the parameters for each competing model are also computed. For
visual comparison, the fitted PDFs and the fitted CDFs are plotted with the corresponding
observed histograms and ogives.

6.1. Application of GOLE-E

The GOLE-E (a, b, c, λ) distribution is compared with some models, namely exponen-
tial (E), moment exponential (ME) (Dara and Ahmad, 2012 [19]), exponentiated moment
exponential (EM-E) (Hasnain et al., 2015 [20]), exponentiated exponential (E-E) (Gupta
and Kundu, 2001 [21]), beta exponential (B-E) (Nadarajah and Kotz, 2006 [22]) and Ku-
maraswamy exponential (Kw-E) (Cordeiro and de Castro, 2011 [4]) distributions for all
data sets.

In Tables 3–6, the MLEs, standard errors (SEs) and confidence interval (in parentheses)
of the parameters from all the fitted distributions along with the AIC, BIC, CAIC and
HQIC for the two data sets are presented. From Tables 3–6, it is evident that for the
data sets, the GOLE-E distribution is the best model with the lowest values of the AIC,
BIC, CAIC, HQIC, A*, W* and highest p-value of the K-S statistics. Hence, it is a better
model than some recently introduced models, namely exponential (E), moment exponential
(ME), exponentiated moment exponential (EM-E), exponentiated exponential (E-E), beta
exponential (B-E) and Kumaraswamy exponential (Kw-E) distribution, for the two data
sets. More information is provided for a visual comparison in the form of histograms,
ogives or cumulative frequency curves of the observed data with the fitted densities and
fitted cdfs displayed in Figures 8 and 9. These plots show that the proposed distributions
provide the closest fit to all the observed data sets.
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Table 3. MLEs, standard error (in parentheses), confidence interval values [in brackets] for the data
set I.

Models ^
a

^
b

^
c

^
λ

GOLE-E
(a, b, c, λ)

0.218 8.949 1.345 0.554
(0.315) (3.246) (0.237) (0.083)
[0, 0.84] [2.58, 15.31] [0.88, 1.81] [0.39, 0.72]

Kw-E
(a, b, λ)

3.020 105.575
-

0.252
(0.163) (38.348) (0.045)

[2.70, 3.34] [30.41, 180.73] [0.160.34]

B-E
(a, b, λ)

4.922 17.433
-

0.298
(0.364) (8.216) (0.128)

[4.21, 5.64] [1.32, 33.54] [0.05, 0.55]

E-E
(b, λ)

-
5.526

-
2.726

(0.514) (0.128)
[4.52, 6.53] [2.475, 2.98]

EM-E
(a, b)

2.574 0.284
- -(0.229) (0.012)

[2.13, 3.02] [0.26, 0.31]

M-E
(b)

-
0.406

- -(0.016)
[0.37, 0.44]

E
(λ)

- - -
1.173

(0.063)
[1.04, 1.29]

Table 4. The AIC, BIC, CAIC, HQIC, A*, W* and KS (p-value) values for data set I.

Models AIC BIC CAIC HQIC A* W* KS
(p-Value)

GOLE-E
(a, b, c, λ)

232.14 247.54 232.28 238.30 2.67 0.47 0.25
(0.29)

Kw-E
(a, b, λ)

236.92 248.46 236.99 241.51 3.37 0.58 0.12
(0.03)

B-E
(a, b, λ)

276.04 287.59 276.11 280.66 6.48 1.09 0.24
(0.16)

E-E
(b, λ)

302.44 310.14 302.47 305.52 9.42 1.59 0.22
(0.23)

EM-E
(a, b) 290.62 298.32 290.65 293.70 8.48 1.46 0.24

(0.20)

M-E
(b) 388.70 392.55 388.71 390.24 6.49 1.09 0.23

(0.008)

E
(λ)

583.66 587.51 583.67 585.20 6.54 1.11 0.34
(0.002)
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Table 5. MLEs, standard error (in parentheses) and confidence interval values [in brackets] for data
set II.

Models ^
a

^
b

^
c

^
λ

GOLE-E
(a, b, c, λ)

0.365 1.299 4.091 2.748
(0.160) (0.657) (1.248) (0.531)

[0.05, 0.68] [0.01, 2.59] [1.64, 6.54] [1.71, 3.78]

Kw-E
(a, b, λ)

12.473 24.773
-

0.559
(3.939) (23.936) (0.194)

[4.75, 20.19] [0, 71.68] [0.17, 0.93]

B-E
(a, b, λ)

26.259 14.354
-

0.421
(5.838) (17.832) (0.376)

[14.81, 37.70] [0, 49.30] [0, 1.16]

E-E
(b, λ)

-
89.394

-
2.018

(32.458) (0.171)
[25.77, 153.01] [1.68, 2.35]

EM-E
(a, b)

32.319 0.418
- -(10.705) (0.032)

[11.33, 53.30] [0.35, 0.48]

M-E
(b)

-
1.238

- -(0.101)
[1.04, 1.44]

E
(λ)

- - -
0.403

(0.046)
[0.31, 0.49]

Table 6. The AIC, BIC, CAIC, HQIC, A*, W* and KS (p-value) values for data set II.

Models AIC BIC CAIC HQIC A* W* KS
(p-Value)

GOLE-E
(a, b, c, λ)

107.90 116.20 108.48 111.58 0.43 0.04 0.06
(0.83)

Kw-E
(a, b, λ)

112.66 119.56 113.00 115.36 0.52 0.06 0.07
(0.79)

B-E
(a, b, λ)

116.82 123.72 117.16 119.52 0.62 0.09 0.08
(0.71)

E-E
(b, λ)

121.60 126.20 121.76 123.40 1.04 0.16 0.01
(0.44)

EM-E
(a, b) 119.90 124.50 120.07 121.70 0.63 0.10 0.09

(0.52)

M-E
(b) 230.16 232.46 230.22 231.06 0.58 0.08 0.35

(0.002)

E
(λ)

284.24 286.54 284.29 285.14 0.57 0.09 0.44
(0.01)
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6.2. Application of GOLE-W

The GOLE-W (a, b, c, λ, β) distribution with (λ = 1) is compared with some models,
namely Weibull (W), moment exponential (ME), exponentiated Weibull (EW) (Mudholker
and Srivastava, 1993 [23]), generalized Weibull (GW) (Lai 2014 [24]), beta Weibull (B-W)
(Lee et al., 2007 [25]) and Kumaraswamy Weibull (Kw-W) (Cordeiro et al. 2010 [26])
distributions for all data sets.

Likewise, in Tables 7–10, the MLEs, standard errors (in parentheses) and confidence
interval [in brackets] of the parameters from all the competitive models along with AIC,
CAIC, BIC and HQIC for the two data sets are presented. From these tables, it is quite
obvious that for the two data sets, GOLE-W distribution is the best model with the lowest
values of AIC, BIC, CAIC, HQIC, A*, W* and highest p-value of the K-S statistics. Hence, it
is worth emphasizing that the proposed GOLE-F provides a more useful generalization
(with exponential and Weibull as special models) than the competitive models for both of
the datasets. A much more useful depiction is presented in the form of a visual comparison
in Figures 10 and 11, where the densities and distribution function of observed data are
compared against the fitted models, respectively. These plots reveal that the proposed
distributions provide the closest fit to all the observed data sets.
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Table 7. MLEs, standard errors (in parentheses) and confidence interval [in brackets] values for data
set I.

Models ^
a

^
b

^
c

^
λ

^
β

GOLE-W
(a, b, c, β)

2.3893 114.6653 4.8673
-

0.506777
(2.1340) (50.1098) (2.1515) (0.1582)
[0, 6.57] [16.45, 212.88] [0.65, 9.08] [0.20, 0.82]

Kw-W
(a, b, λ, β)

0.7103 0.2623
-

3.0464 3.8368
(0.0233) (0.0263) (0.0174)

[0.66, 0.76] [0.23,0.29] [2.99, 3.10] [3.80, 3.87]

B-W
(a, b, λ, β)

0.7730 0.2276
-

3.0201 4.3742
(0.0673) (0.0137) (0.0042) (0.0042)

[0.64, 0.90] [0.20, 0.25] [3.01, 3.02] [4.37, 4.38]

E-W
(b, λ, β)

-
0.8090

-
3.068922 0.9440

(0.1515) (0.3541) (0.1732)
(4.52, 6.53) (2.475, 2.98) [0.60, 1.28]

G-W
(a, λ, β)

0.5597
- -

2.7190 2.0240
(11.2701) (0.1140) (0.7523)
[0, 22.65] [2.50, 2.94] [0.55, 3.50]

M-E
(b)

-
0.406

- - -(0.016)
[0.37, 0.44]

W
(λ, β)

- - -
1.132926 2.71898
(0.0623) (0.1140)

[1.01, 1.26] [2.50, 2.94]

Table 8. The AIC, CAIC, BIC, HQIC, A*, W* and KS (p-value) values for data set I.

Models AIC CAIC BIC HQIC A* W* KS
(p-Value)

GOLE-W
(a, b, c, β)

230.11 230.23 245.49 236.23 2.51 0.44 0.10
(0.17)

Kw-W
(a, b, λ, β)

231.86 231.96 247.23 237.97 2.57 0.45 0.11
(0.03)

B-W
(a, b, λ, β)

232.84 232.95 248.22 238.96 2.67 0.46 0.12
(0.01)

E-W
(b, λ, β)

232.42 232.39 243.86 236.91 2.81 0.48 0.12
(0.000)

G-W
(a, λ, β)

233.56 233.63 245.09 238.15 2.97 0.51 0.24
(0.000)

M-E
(b) 388.70 392.55 388.71 390.24 6.49 1.09 0.23

(0.008)

W
(λ, β)

231.56 231.88 239.25 234.62 2.97 0.51 0.14
(0.000)
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Table 9. MLEs, standard errors (in parentheses), confidence interval values [in brackets] for data
set II.

Models ^
a

^
b

^
c

^
λ

^
β

GOLE-W
(a, b, c, β)

6.9553 114.6653 20.1203
-

0.8448
(6.6794) (50.1098) (6.6638) (0.31433)
[0,20.04] [0, 27.65] [7.06, 33.18] [0.23, 1.46]

Kw-W
(a, b, λ, β)

1.6646 1.0950
-

4.3675 0.0187
(0.8438) (0.5829) (2.8871) (0.0192)

[0.01, 3.32] [0.23, 0.29] [0, 10.0262] [0, 0.0564]

B-W
(a, b, λ, β)

1.7401 0.9961
-

4.2987 0.0222
(1.3064) (0.9249) (2.0778) (0.0253)
[0, 4.30] [0, 2.81] [0.23, 8.37] [0, 0.07]

E-W
(b, λ, β)

- 1.7298
-

4.3083 0.9440
(0.7208) (0.9066) (0.1732)

[0.32, 3.14] [2.53, 6.09] [0, 0.07]

G-W
(a, λ, β)

1.5460
- -

5.3816 0.0033
(0.9021) (0.4906) (0.0008)

[0, 3.3142] [4.42, 6.34] [0.002, 0.005]

M-E
(b)

-
0.406

- - -(0.016)
[0.37, 0.44]

W
(λ, β)

- - -
0.0036 5.7342

(0.0009) (0.2428)
[0.0002, 0.0053] [5.26, 6.21]

Table 10. The AIC, CAIC, BIC, HQIC, A*, W* and KS (p-value) values for data set II.

Models AIC CAIC BIC HQIC A* W* KS
(p-Value)

GOLE-W
(a, b, c, β)

110.57 111.15 119.79 114.25 0.25 0.031 0.06
(0.93)

Kw-W
(a, b, λ, β)

111.06 112.83 120.08 114.98 2.27 0.037 0.08
(0.91)

B-W
(a, b, λ, β)

111.32 112.90 120.13 115.99 0.26 0.038 0.07
(0.92)

E-W
(b, λ, β)

118.33 118.72 122.89 120.68 0.31 0.075 0.098
(0.89)

G-W
(a, λ, β)

113.84 113.13 123.02 119.15 0.30 0.052 0.08
(0.88)

M-E
(b) 388.70 392.55 388.71 390.24 6.49 1.09 0.23

(0.008)

W
(λ, β)

117.45 116.61 121.77 117.91 0.29 0.037 0.09
(0.87)
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Appendix A

Recalling Equations (3) and (4) and assigned new numbers as (A1) and (A2), respec-
tively, as follows

G(x; a, b, c, φ) = 1− exp

[
−
(

aF(x; φ)c

1− F(x; φ)c +
b
2

(
F(x; φ)c

1− F(x; φ)c

)2
)]

. (A1)

g(x; a, b, c, φ) =

[
c f (x; φ)F(x; φ)c−1(a + (b− a)F(x; φ)c)(

1− F(x; φ)c)3

]
× exp

[
−
(

aF(x; φ)c

1− F(x; φ)c +
b
2

(
F(x; φ)c

1− F(x; φ)c

)2
)]

. (A2)

Proposition A1. Given x = F(x), by using the equivalence: ey ∼ 1 + y when y→ 0 since
lim

x→−∞
F(x)c → 0 . Then, by the properties of the CDF in Equation (A1), we arrive at

G(x) ∼ aF(x)c

1− F(x)c +
b
2

(
F(x)c

1− F(x)c

)2

,

and, by asymptotic dominance, we obtain

G(x) ∼ a F(x)c. (A3)

Using the same arguments, we obtain

g(x) ∼ c a f (x)F(x)c−1. (A4)

In addition, the survival function is close to one; thus, the denominator in the hazard function
is close to one. Then, using Equations (A3) and (A4), we obtain

h(x) ∼ c a f (x)F(x)c−1. (A5)

Proposition A2. Similarly, using the same arguments when lim
x→+∞

F(x)c → 1 , we can prove that

the survival function can be approximately reduced as follows

1− G(x) ∼ 1− e
−( a

1−F(x)c
+ b

2 {
1

1−F(x)c
}2
)
. (A6)

Using the same arguments, we obtain

g(x) ∼ bc f (x)

(1− F(x)c)3 e
−( a

1−F(x)c
+ b

2 {
1

1−F(x)c
}2
)
. (A7)

Using Equations (A6) and (A7), we obtain

h(x) ∼ bc f (x)

(1− F(x)c)3 .

This completes the proof.
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