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Abstract: Motion planning methods often rely on libraries of primitives. The selection of primitives
is then crucial for assuring feasible solutions and good performance within the motion planner.
In the literature, the library is usually designed by either learning from demonstration, relying
entirely on data, or by model-based approaches, with the advantage of exploiting the dynamical
system’s property, e.g., symmetries. In this work, we propose a method combining data with a
dynamical model to optimally select primitives. The library is designed based on primitives with
highest occurrences within the data set, while Lie group symmetries from a model are analysed
in the available data to allow for structure-exploiting primitives. We illustrate our technique in
an autonomous driving application. Primitives are identified based on data from human driving,
with the freedom to build libraries of different sizes as a parameter of choice. We also compare
the extracted library with a custom selection of primitives regarding the performance of obtained
solutions for a street layout based on a real-world scenario.

Keywords: dynamical systems; control; symmetry; trajectory planning; motion primitives; maneuver
automata; clustering; data-based modeling; autonomous driving

1. Introduction

In engineering, modern computational tools for simulation, optimization, and control
have become inevitable, starting from early in the design phase up to the operation of the
systems. These numerical methods strongly rely on dynamical system models, and thus,
their performance is directly restricted by the model accuracy. Two approaches can be
followed for defining dynamical system models: using physics-based model equations
with a suitable tuned (small) set of parameters or data-based models of generic structure
with a (large) set of parameters to be learned from data in an automated way. While these
approaches have formerly been considered diametrically opposed, in recent years, more and
more fruitful combinations from both worlds have been proposed. In particular, the term
physics-inspired learning has been coined for methods that integrate physical knowledge in
data-based modeling techniques [1–3].

In this contribution, we propose a physics-based learning approach based on motion
primitives (MP). It results in a maneuver automaton (MA), which can be used for efficient
trajectory planning, e.g., in autonomous driving applications. The primitives are charac-
terized as short snippets of solutions: given a dynamical system with symmetries, MP are
equivalence classes of controlled maneuvers. In particular, constantly controlled relative
equilibria are called trim primitives.

For motion planning with MP, the selection of a primitives’ library is of fundamental
importance for the feasibility and the performance quality of the planning. Procedures pre-
sented in the literature include a custom selection based on possible operating points [4,5],
which can include maneuvers by optimal control methods [6–8], numerical approximation
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from a simplified state machine of actions [9], and extraction from experts’ driving trajec-
tories [10,11]. As an expansion of the library, Ref. [12] propose an exploration phase via
reinforcement learning and, then, extracting and adding new trims and maneuvers to the
initial library.

Yet, MP bridge the model perspective and the data viewpoint: considering a human
controlling a technological system and partial solutions to control problems, i.e., primitives,
which have been learned (probably subconsciously) are repetitively used and which can be
concatenated by the operator according to the current situation [6]. Based on data from
human driving, we identify MP and construct a MA, which is then fed to a trajectory
planner for autonomous vehicles.

1.1. Related Work

As detailed in the following, so far, a library has alternatively been comprised of data-
based or of model-based primitives, exclusively. For data-based primitives, one aims to
solve the learning from demonstration problem, in which, based on an expert’s solution, a policy
mapping the states to inputs is adjusted. In the model-based approach, the dynamical
system is represented by an ordinary differential equation, and the MP can be extracted by
mathematical analysis.

According to [13], there are two methods for learning from demonstration: (1) the
mimic of the MP using some dynamical system, for example, dynamic motion primitives
(DMP) [14,15] and applications of inverse optimal control [16]; and (2) statistical machine
learning methods, such as hidden Markov models [17], Gaussian mixture models [18],
probabilistic motion primitives [19], and kernelized movement primitives [20] with its
extensions [21]. These methods are suitable for repetitive tasks of typical scenes. How-
ever, they do not take into consideration a dynamical system model, making it difficult to
develop mathematical analysis of, for example, robustness or stability assurance. The gen-
eralization of the motions is totally reliant on the machine learning algorithm and the
sample data characteristics. In particular, DMP are shown to have the advantage of better
generalization, being able to adapt for the motion planning specifications and to be robust
to perturbations [22]. This method extracts the motion features by adjusting the parameters
of basis functions, being able to learn the positions, velocities and acceleration time-wise. It
is used in a wide range of applications from robotics to biological control [23].

In this regard, the work from [11] stands out. It proposes a segmented representation,
extraction, and library establishment of MP. They achieved it by a modified DMP method
for representation, implementing a probabilistic extraction algorithm for the segmentation
of the unlabeled trajectory data and connecting the MP by correlating the representation
parameters. However, as disadvantages, it showed a lower accuracy in the representation
at the end of each MP, affecting the connection transition over them and the inability to
design emergency driving behaviour. Also, studying an extension of DMP, [24] concluded
that it is hard for the DMP to ensure kinodynamic feasibility.

On the other hand, there are the model-based approaches to select MP. As one of the
simplest cases, there are Dubins curves [25]. Here, three possible MP apply a constant
action over an interval of time: turn left or turn right and go straight. Dubins considers a
simple kinematic car model, consisting only in the pose, i.e., the position and orientation.
Reeds–Shepp curves are a natural extension of Dubins’ work by also allowing traveling in
the reverse direction [26].

It is also possible to exploit some properties of the system to design the MP. In [6],
the invariance property was exploited to generate two types of MP: trim primitives and
maneuvers. The first ones are relative equilibria under constant control, while the second
are controlled trajectories starting and ending on trims. Then, a MA is generated in the form
of a directed graph. Here, trims are represented by vertices and maneuvers by edges of
the graph, such that a graph-based planning method can determine admissible or optimal
sequences of MP which form a trajectory plan.
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Since the approach is based on a continuous-time dynamical model, in principle, it
would be possible to generate a large amount of primitives. Although more MP could
improve the planner’s performance in practice, it can also increase the difficulty of ensuring
resolution completeness [27]. The number of MP is thus an important design parameter of
the planning method. It should be noted that the importance of MP, especially in the field
of autonomous driving, was showed in different applications, e.g., in motion planning [6],
in driving style recognition [28], and to predict drivers’ behaviours [29].

With a MA ruling the concatenation of primitives, the motion planning problem
becomes the search for the best sequence of MP that lead to a goal state. This can be
accomplished through graph-search algorithms, for instance A*, which is today presumably
the most well-known best-first search algorithm [30–32]. The characteristic of A* is the
expansion of nodes based on an evaluation function, which is a sum of two costs: 1) from
the start point to the considered node and 2) from the node to the goal [32]. While A*
deals with fully discrete states, e.g., centers of grid-cells when applied to a continuous
state space, the Hybrid A* is more suitable for MP of dynamical systems as it associates
the cost of continuous state trajectories to grid-cells [33,34]. As an alternative, the authors
presented the Optimized Primitives (Π*) algorithm in a previous work [4]. It admits
any continuous point in the state space, without associations to grid-cells. In addition,
it solves an optimization problem of reduced complexity to adjust the duration of trim
primitives to let the vehicle reach any desired point in the state space, e.g., an exact goal
pose. An alternative method suitable for multi-agent systems is to deal with the graph
search as a receding horizon problem [35].

1.2. Contributions

In this paper, we propose a novel grey-box method combining data-based learning
with model-based automata. We use the differential geometric description of relative
equilibria to reveal Lie group symmetries and invariances in data and present the symmetry
group for a generic class of vehicle models. An automaton can be designed which is tailored
to include primitives which have the highest occurrences within the data. Here, we use
data from human driving in real-world traffic scenarios and street layouts. In the analysis,
we focus on the representation of trajectories mimicking the human-driven solutions within
the automaton. The resulting data-based automaton is shown to outperform handcrafted
automata of comparable size, but based on model information only, in planning tests. Thus,
we propose modeling techniques which allow reliable but efficient trajectory planning as
needed for autonomous driving.

2. Dynamical Control System Representation by Automata

Our starting point will be an autonomous dynamical system with control, ẋ = f (x, u)
on an n-dimensional state manifold X and an m-dimensional control space U ⊂ Rm. We
consider trajectory planning problems in the form:

Find (x, u) : [0, T]→ X ×U and T ∈ R+,

such that ẋ = f (x, u) and

g(x(t), u(t)) ≤ 0 ∀t ∈ [0, T],

x(0) = x0, x(T) = xT .

(1)

Later on, we add an optimization criterion J(x, u) =
∫ T

0 `(x(t), u(t))dt + µ(x(T)) to
obtain an optimal control problem constrained by (1). Let us assume the existence of unique
solutions for suitable chosen inputs u on the time interval [0, T] being ensured, such that x
on [0, T] is given by the flow, x(t) = ϕu(x0, t) with x(0) = x0.

In general, nonlinear, complex dynamical models pose difficulties to numerical opti-
mization techniques, e.g., in optimization-based real-time control schemes such as model
predictive control (MPC). Thus, simplified system models ranging from equivalent system
reformulations up to scalable system approximations are of interest from the application
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point of view. For instance, the motion primitive approach of Frazzoli et al. [6] combines
an exact reformulation in terms of MP with a discrete approximation of system dynamics
in terms of an automaton.

2.1. Symmetry and Motion Primitives

We focus on dynamical systems with symmetries which act as state transformations
defined by Lie group representations. Excluding finite Lie groups (used for modeling per-
mutations, reflections, or rotations by fixed angles), we consider continuous Lie groups of
compact and non-compact form, as they model, e.g., rotations, translations, and com-
binations thereof [36]. Let the Lie group be denoted by G, its identity element by e,
and its left action on X by Ψ : G × X → X with Ψ smooth, Ψ(e, x) = x for x ∈ X ,
and Ψ(g, Ψ(h, x)) = Ψ(gh, x) for all g, h ∈ G and x ∈ X .

Definition 1 (Symmetry). The tupel (G, Ψ) is a symmetry for ẋ = f (x, u) on X , if for any fixed
control u ∈ L∞

loc([0, ∞),Rm), it holds for all g ∈ G, x ∈ X , and t ≥ 0,

ϕu(Ψ(g, x0), t) = Ψ(g, ϕu(x0, t)). (2)

Remark 1. Equivalently, we could ask for

• (G, Ψ) to generate trajectories, i.e., for any given trajectory x on [0, T], T > 0, with corre-
sponding control u on that time interval, also (Ψ(g, x), u) satisfies the dynamical system
equations, i.e., it is a solution for any group element g ∈ G;

• the vector field being equivariant w.r.t. (G, Ψ), i.e.,

f (Ψ(g, x), u) = ΨTX (g, f (x, u)) (3)

for any pair (x, u) ∈ X × U and ΨTX being the lift of the symmetry action (detailed out e.g.,
in [8]);

• the invariance of the Lagrangian or the Hamiltonian w.r.t. (G, Ψ), if we have a mechanical
system of this kind [7,37–39].

In any case, symmetry allows us to reduce the set of all admissible pairs (x, u) via the
equivalence relation based on the symmetry action.

Definition 2 (Motion Primitive). A motion primitive is the equivalence class of a representing
pair (x, u) on [ti, t f ], if for any class member (x̄, ū) on [t̄i, t̄ f ], t f − ti = t̄ f − t̄i and there exists a
group element g ∈ G and a shift ∆t ∈ R, such that

(x(t), u(t)) = (Ψ(g, x̄(t− ∆t)), ū(t− ∆t)) ∀t ∈ [ti, t f ].

By slight abuse of notation, we also call the representative (x, u) a motion primitive.
The set of MP is denoted by P .

2.2. Trim Primitives

The name trim primitives has been introduced in [6], since these MP are characterized
by fixed, i.e., trimmed, controls. Moreover, they are symmetry-induced motions.

Definition 3 (Trim Primitive). Based on the setting of Definition 1, let g denote the Lie algebra of
G and exp : g→ G the exponential map. Let ū ∈ U . The tupel (x, u) on [0, T] with x(0) = x0 is
called a trim primitive if it is a solution to the system dynamics which can be expressed by

x(t) = Ψ(exp(ξt), x0), u(t) ≡ ū, ∀t ∈ [0, T], (4)

with ξ ∈ g being a suitable chosen Lie algebra element.
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We refer to, e.g., [37] for the following definitions, also summarized in [39]. The Lie
algebra is defined as the vector space TeG, and it is isomorphic to the vector space of
left-invariant vector fields on G. That is, for ξ ∈ g, there is a vector field Xξ , such that a
solution γξ : R → G of γ′ξ(t) = Xξ(γξ(t)) with γξ(0) = e is a one-parameter subgroup
in G. The exponential map exp : g → G is defined by exp(1) = γξ(1). Then, a line tξ in g

for t ∈ R is mapped via exp(tξ) = γξ(t) to a one-parameter subgroup in G. Furthermore,
the orbit of x is defined by Orb(x) = {Ψ(g, x)|g ∈ G} ⊂ X .

Fixing the control to a constant value ū ∈ U allows us to study the ū-parametrized
vector field fū(x(t)): trim primitives are relative equilibria of ẋ(t) = fū(x(t)), i.e., xtr
belongs to a relative equilibrium if the vector field fū : X → TX points in the direction of
the group orbit Orb(xtr) through xtr, i.e.,

fū(xtr) ∈ Txtr(Orb(xtr)). (5)

Equivalently, xtr belongs to a relative equilibrium if there exists ξ ∈ g such that, with the
group orbit g(t) := exp(ξt), we have x(t) = Ψ(exp(ξt), xtr) as a solution for the dynamics.
In [38], the alternative definitions are discussed in detail for Hamiltonian mechanics.

2.3. Automaton and Sequencing

Maneuvers are MP, i.e., controlled trajectories on some fixed time-interval [0, T], which
allow us to link trim primitives.

Definition 4 (Maneuver). A motion primitive is called a maneuver if it connects two trim
primitives, i.e., applying suitable symmetry shifts and time shifts, the sequence trim–maneuver–
trim generates a trajectory which is admissible to the system dynamics.

The trajectory planning problem on X × U could equivalently be posed on the set
of MP thanks to the symmetry property. However, to generate a system representation
by a finite automaton, a finite number of MP need to be chosen. Choose a finite set of MP
(P, M) ⊂ P , divided into trim primitives P and maneuvers M. Let P define the vertices
of a graph to define the MP automaton. An edge mi,j is included in the automaton if trim
pi ∈ P and trim pj ∈ P are connected by a maneuver in M, which is then denoted by mi,j,
as illustrated in Figure 1.

p1 p2

p4 p3

m1,1
m1,2

m1,4 m2,3m4,1

m3,4

m3,2

m3,3

Figure 1. Example of a maneuver automaton with P = {p1, p2, p3, p4} and M = {m1,1, m1,2, m1,4,
m2,3, m3,2, m3,3, m3,4, m4,1}.

Then, we have the following property.

Proposition 1. Consider the trajectory planning problem (1). If there are initial and final trims
p0, pT ∈ P such that x0 ∈ p0 and xT ∈ pT and if there exists a path within the automaton connect-
ing p0 to pT , then a trajectory-control-pair can be generated which is admissible to problem (1).

Formal details on the concatenating of MP based on automaton sequences and on the
reconstructing of corresponding trajectories are given in [6]. They form a constructive proof
to the statement above.

As discussed in Section 1.1, various graph-based search methods can be applied for
finding admissible or optimal sequences of trajectories. We refer to the cited literature
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without giving further details, since this paper is not focused on the planning, but on the
modeling aspect, i.e., on the optimal generation of automata.

2.4. Shortcomings

The motion planning by MP approach has been extended by Frazzoli and his co-
founders, as well as by several others, see, e.g., [5–7,12,40–42]. However, some issues
remain: first, the MP are specific to a certain system, e.g., a specific vehicle, since they
typically depend on parameters. Thus, the automaton has to be adapted to each individual
system. Second, as previously mentioned, the size of automaton is crucial: a larger automa-
ton provides a better representation of the original control system behaviour, but the search
within planning algorithms can become computationally more costly. Thus, finding an
optimal trade-off is desirable and can be based on the following criteria. The Lie algebra
contains all candidate elements to generate trim primitives. It is reasonable to generate
a set of trims via gridding the Lie algebra [42]. However, the choice of trims, i.e., the
size of the Lie algebra grid and the total amount of trims are up the designer. Moreover,
the number of maneuvers and which trims to directly link via a maneuver is up to design
as well: a high number of maneuvers might improve reachability within the graph and
allows for optimizing among admissible sequences. Again, this comes at the cost of higher
computation times. Ideally, one would like to restrict to needed maneuvers a priori to solve
or even know the posed trajectory planning problems.

While the first issue of individualized automata for each different vehicle would
have to be resolved via parameter identification, which is beyond the focus of this paper,
the latter issue with all its subproblems is addressed in the following sections by including
data to the modeling procedure. Thus, the overall aim is to design an automaton capable of
representing realistic dynamical behaviour.

3. Generating Data-Based Automata

In this section, we describe our approach for generating motion primitive automata,
as introduced in Section 2, based on data of a dynamical system in general. We assume a
basic dynamical model to be known, as well as its symmetries, such that we can focus on
the following steps:

1. Finding invariances in terms of trims in data,
2. Clustering trim primitives,
3. Evaluating a transition matrix,
4. Computing maneuvers.

We discuss these steps in detail in the following.

3.1. Assumptions on Data and Model

We assume data in terms of sets of triples (tk, yk, uk) consisting of (partial) state
observations, with time stamps, augmented by the applied control input sequence, i.e.,

D =
D⋃

k=0

(tk, yk, uk)

such that, for all sets, k = 0, . . . , D, we have (tk, yk, uk) = ((tk
0, yk

0, uk
0), . . . , (tk

Nk
, yk

Nk
, uk

Nk
))

with time points satisfying tk
0 < tk

1 < · · · < tk
Nk

and a minimum length of two, Nk ≥ 1.
Based on a priori knowledge on the observed system, a continuous-time model

ẋ = f (x, u) needs to be chosen as introduced in Section 2, together with sets of admis-
sible states and controls. That is, the choice of control space U has to satisfy uk

j ∈ U
for 0 ≤ j ≤ Nk and 0 ≤ k ≤ D. Furthermore, the state space X has to be chosen with
Y ⊆ X and yk

j ∈ Y for 0 ≤ j ≤ Nk and 0 ≤ k ≤ D. In general, it might hold that
dim(Y) < dim(X ), because rarely are there sensors available measuring every internal
state of a dynamical system model. However, control theory provides the method for
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observers to reconstruct missing states. Since observer design is not within the scope of
this paper, let us assume the model is observable such that the full system state could be
reconstructed. To simplify notation, we drop Y and rename the data as

D =
D⋃

k=0

(tk, xk, uk) with (tk, xk, uk) =
{
(tk

j , xk
j , uk

j )
}Nk

j=0

and xk
j ∈ X for all 0 ≤ j ≤ Nk and 0 ≤ k ≤ D.

Finally, the model ẋ = f (x, u) has to possess trims as introduced in Section 2, i.e., based
on a suitable chosen symmetry (G, Ψ), there exist solutions (x, u) satisfying Definition 3.
Despite assuming the symmetry group G, its action Ψ, and the corresponding Lie algebra g

to be given, these can only be thought of as the maximal set of trim primitives which might
exist within the recorded data.

3.2. Identifying Trim Primitives in Data

We now aim to identify data points which belong to trim primitives. Recall
from Definition 3 that model-based trims are defined as trajectories being expressed
via x(t) = Ψ(exp(ξt), x0), u(t) ≡ ū, ∀t ∈ [0, T]. Pick a one-dimensional group orbit
g(t) := exp(ξt) for t ∈ [0, T]. If xtr is the initial point (x0 in Definition 3) of a trim
with corresponding ξ ∈ g, then all

x ∈ Orbξ(xtr) := {Ψ(g(t), xtr) | g(t) = exp(ξt), t ∈ [0, T]}

belong to the same trim. Since a trim is a motion primitive (see Definition 2), the requirement
xtr = x0 can be relaxed by introducing suitable time shifts. Moreover, all x ∈ Orbξ(xtr)
share the property that, cf. Equation (5), fū(x) ∈ Tx(Orbξ(xtr)), which can be used for
identifying trims.

Remark 2 (Systems with Cyclic Variables). The most obvious way in which a symmetry of
ẋ = f (x, u) may occur is via independence w.r.t. some of the states. In geometric mechanics, these
(configuration) states are called cyclic [38]. In fact, the configuration manifold Q is split into the
shape space S and multiple copies of S1 (for rotational symmetry) or R (for translational symmetry,
respectively), i.e., Q = S× S1 × . . .× S1 and X = TQ. Symmetry action Ψ is then restricted to
be the identity on S, and thus, the coordinates in S are necessarily constant along a trim primitive.
In this case, this provides a characteristic for automatically detecting trim primitives in data.

The vehicle models we consider in Section 4.2 do not only have cyclic variables though,
but a subgroup of SE(3) as their symmetry group.

For now, we have to analyze each data set (tk, xk, uk) ∈ D separately. Thus, let us omit
index k for the time being. Identical trims across different sets will be found subsequently
by a clustering method as described in Section 3.3.

Corollary 1. As it follows directly from Definition 3 for all
{
(tj, xj, uj)

}te
j=ti

with 0 ≤ ti, te ≤ N
belonging to the same trim, necessarily, it holds that there is a ut ∈ U and εu > 0 small, such that
||uj − ut|| < εu for ti ≤ j ≤ te.

While there are examples of control systems in which every constant control input
generates a trim primitive, e.g., the holonomic robot/kinematic car as studied in [8], this
property is not sufficient, in general.

Corollary 2. Assuming ||ui+1 − ui|| < ε as in Corollary 1. Then, the corresponding data points
belong to a trim if there exists ξ ∈ g and εx > 0 small, such that

||Ψ(exp(ξ(ti+1 − ti)), xi)− xi+1|| < εx.
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In the most general setting, the Lie algebra element ξ could be found by a regression
problem. A threshold on the fitting error would then be used to decide whether a sequence
of points is a trim. However, ξ can often be directly linked to the velocities within a
system, as it is shown for the vehicle models studied in Section 4. This simplifies the
classification step. The choice of εx is crucial but problem-dependent, since it has to be
balanced against the noise within the data, which itself might split up trims in a too sensitive
scanning. Finally, let us remark that classification based on thresholds, i.e., rectangular
decision boundaries, is not the only choice, see e.g., quadratic discriminant analysis based
on probability computations, e.g., [43].

3.3. Clustering Trim Primitives

Let all identified trim primitives be collected in P. For i = 1, . . . , |P|, let pi ∈ Rp denote
the defining values of the trim, e.g., the generating Lie algebra element, the constant control
value, and x0 := xti in the notation of Corollary 1. We now aim at finding trims, also from
different trajectories, which are similar. More precisely, we look for a finite amount of
clusters of trims and define a single representative trim for each cluster.

We choose to work with the k-means algorithm, an unsupervised learning technique to
find clusters in a set of data points [44]. Fixing the number of clusters to nσ, the k-means
algorithm finds the clusters C1, . . . , Cnσ ⊂ P, with

⋃nσ
j=1 Cj = P, and representative trims

σj, j = 1, . . . , nσ, in which σj ∈ Rp is the center of the jth cluster in Rp. This is accomplished
by minimizing the following objective function (also called as distortion measure) [45]:

JP =
|P|

∑
i=1

nσ

∑
j=1

αij||pi − σj||2 (6)

where αij ∈ {0, 1} is a binary indicator variable, defining to which cluster the trim pi is
assigned. There is a two-stage optimization process: First, JP is minimized w.r.t. αij, keeping
initial values of σj fixed. Then, JP is minimized w.r.t. σj, keeping αij fixed. This process is
repeated until convergence, which was studied in [46].

We denote a state in the relative equilibria characterized by a trim σ as x
∣∣
σ

. In addition,
for two connected trims by a maneuver, we identify the predecessor trim as σpred and the
successor one as σsucc.

3.4. Identification of Transition Matrix Based on Densities

Let σ1, . . . , σnσ denote the centers of the trim clusters obtained in the previous step.
Now, we draw attention to the computation of maneuvers. As introduced in Definition 4,
maneuvers link trims to allow for smooth concatenations of primitives. However, a com-
plete graph would lead to highly inefficient planning. Thus, we define the selection of
transitions in the automaton based on their occurrence in the data, i.e., trim cluster σpred
is linked to trim cluster σsucc, if the trims belonging to σsucc have been used after (i.e., via
connecting maneuvers) the trim members of σpred with high probability.

The probabilities are organized in a transition matrix K ∈ Nnσ×nσ : for each trim cluster,
the transitions from all trim members of this cluster to other clusters are analyzed and
summed up and, equivalently, for the transitions to all trim members. Algorithm 1 briefs
the occurrences counter for each entry of K.
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Algorithm 1: Pseudo-code of the transition matrix occurrences counter.
Input : A time limit Tmax, a set of trim primitives P and a set of nσ clusters

Ci ⊂ P, i = 1, . . . , nσ.
Output : Transition matrix K.

1 foreach (σpred, σsucc) ∈ K do
2 foreach pi ∈ Cpred and pj ∈ Csucc do
3 if exists a trajectory connecting pi to pj in the data with duration T ≤ Tmax then
4 increment the occurrence of (σpred, σsucc) in K;
5 end
6 end
7 end

3.5. Automaton Augmentation by Optimized Maneuvers

Based on the thresholded transition matrix and the trim clusters, the selected maneu-
vers can be computed optimally with respect to a cost functional. Then, each maneuver
with duration T going from a predecessor trim cluster representative σpred to a successor
σsucc is obtained by solving the following optimal control problem (OCP):

minimize
T, x, u

J(T, x, u) (7a)

subject to ẋ(t) = f (x(t), u(t)), 0 < t ≤ T, (7b)

x(0) = x0
∣∣
σpred

, (7c)

x(T) = xT
∣∣
σsucc

, (7d)

T > 0, (7e)

0 ≥ g(x(t), u(t)), 0 < t ≤ T, (7f)

with s0 and sT as fixed states evaluated at the relative equilibria characterized by σpred and
σsucc, respectively, and g(·) as the constraints for the states and inputs.

4. Autonomous Driving

We evaluate the proposed method for trajectory planning in autonomous driving
applications showing that it leads to beneficial automata of MP.

4.1. Data

The data used for the numerical examples are taken from the nuScenes data set [47],
more specifically from the nuScenes CAN bus expansion. Among other values, it contains
information on the pose together with velocity, acceleration, and rotation rate recorded
using an inertial measurement unit during urban driving in Singapore and Boston. This
data is available for 979 trajectories with a length of 20 s each, which are depicted in Figure 2.
Alternatively, there exists the well known NGSIM data set [48] as well as Ko-PER [49],
but both only provide pose data with a relatively low sampling rate from camera and laser
scanner data, which are not suitable for the computation of velocities and accelerations.
In contrast, nuScenes contains high quality data from an IMU sampled at 50 Hz. It is also
free to use for academic purposes.
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Figure 2. The coordinates projection of the trajectory data in the nuScenes data set. All trajectories
were rotated and translated to begin at the origin with zero initial yaw angle for this representation.

4.2. Models

Let p =
[
sx sy ψ

]T ∈ R3 be the pose, where sx and sy are the positions of the center
of gravity, and ψ is the vehicle orientation. We consider the state vector given by

x =
[
p r

]T ∈ Rn, (8)

where r is a vector of n− 3 states. In addition, let u be the input vector and f1(r, u), f2(r, u),
fψ(r, u), and fr(r, u) be arbitrary nonlinear functions. We make the assumption that the
model ẋ = f (x, u) which corresponds to the data is of the following form:

ẋ =


ṡx
ṡy
ψ̇
ṙ

 =


f1(r, u) cos ( f2(r, u) + ψ)
f1(r, u) sin ( f2(r, u) + ψ)

fψ(r, u)
fr(r, u)

. (9)

Proposition 2. The symmetry group for (9) is given by combined rotations and translations on the
pose, i.e.,

G :=
{

g ∈ SE(n) : g := g(∆x) =
[

R ∆x
0 1

]}
, (10)

where

R =

[
RSO(3) 0

0 I

]
∈ SO(n), (11)

∆x =


∆sx
∆sy
∆ψ
0

 ∈ R2 × S1 × {0}n−3, (12)

RSO(3) =

cos(∆ψ) − sin(∆ψ) 0
sin(∆ψ) cos(∆ψ) 0

0 0 1

 ∈ SO(3), (13)
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for I being the identity matrix with appropriate dimension, a vector ∆x, and g given in homogeneous
coordinates, such that the the affine-linear group action can be represented by:

Ψg(x) = Rx + ∆x. (14)

Proof. The proof is given in Appendix A.

Many vehicle models assume the generic configuration represented by (9), e.g., the
kinematic single-track, single-track, single-track drift, and multi-body models presented
in [50]. We chose to use the kinematic bicycle model from [50], characterized by the
state vector:

x =
[
sx sy ψ v δ

]T ∈ R5, (15)

and the input vector:
u =

[
uv̇ uδ̇

]T ∈ R2, (16)

where sx and sy are the positions of the rear axis, ψ is the vehicle orientation, v is the velocity
vector, δ is the steering angle, uv̇ is the longitudinal acceleration, and uδ̇ is the velocity of
the steering angle. The state space equations are given by:

ṡx(t) = v(t) · cos(ψ(t)),

ṡy(t) = v(t) · sin(ψ(t)),

ψ̇(t) =
v(t)

L
· tan(δ(t)),

v̇(t) = uv̇(t),

δ̇(t) = uδ̇(t),

(17)

for L being the wheelbase with value 2.588 m, reference for the Renault Zoe used in obtain-
ing the nuScenes data [51]. For this model, the parameters that characterize a trim primitive
are the velocity and the yaw rate when “trimmed”.

4.3. Numerical Examples

The trajectory data needed to extract trim primitives can be obtained from the nuScenes
data set. Acceleration data is available from the inertial measurement data, but the values
are sometimes non-zero although the car is standing still. This could be caused by the effect
of gravity on the sensor on tilted terrain. Thus, we obtain the acceleration data, as well as
the derivative of the yaw rate, using finite differences. Both the velocity and the rotation
rate data have to be smoothed before the derivatives could be calculated to get rid of noise.
This smoothing was accomplished by a convolution with a box function, which was 134
time points wide for the yaw rate and 17 time points for the velocity. Convolution with a
box function results in a running average.

4.3.1. Trim Detection

Instead of directly applying Corollary 2, we further exploit the structure of the trims
obtained from the used model. Due to the second-order equations, trims necessarily have
to be uncontrolled, i.e., uk

i = 0. Moreover, along a trim, both the acceleration and the yaw
rate have to vanish. Thus, we scan individual data sets for∣∣∣∣∣vk

i+1 − vk
i

tk
i+1 − tk

i

∣∣∣∣∣ < εv and

∣∣∣∣∣ ψ̇k
i+1 − ψ̇k

i

tk
i+1 − tk

i

∣∣∣∣∣ < εψ̇.

The considered tolerance for absolute acceleration is εv = 0.2 m/s2 and for the derivative
of the yaw rate, εψ = 0.08 rad/s2. Parts of the trajectory which satisfy these conditions for a
minimal duration of 1 s are considered to be trim trajectories. The mean velocity and mean
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yaw rate are then stored for the next step of the process. A trajectory with the trim parts
marked can be seen in Figure 3.

The trim detection finds 1460 trim trajectories, which means that each trajectory
contains 1.49 trims on average. The average duration is 2.17 s. The distribution of the
parameters of the detected trims, velocity, and yaw rate is depicted in Figure 4a.
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Figure 3. Trajectory data with the parts detected to be a trim trajectory marked using different colours.

4.3.2. Trim Clustering

As the clustering is accomplished using the k-means algorithm, the number of clusters
is a hyperparameter that must be chosen. To compute k-means, we used the scikit-learn
package [52]. The initial clusters’ centers were selected for a faster convergence through
the k-means++ technique [53].

While searching for parts of a trajectory with numerically constant velocity and yaw
rate is suitable for detecting trims in data, other pairs of constant parameters characterizing
a trim exist. For example, velocity and curvature of the curve travelled by the point (sx, sy)
uniquely define a trim up to the coasting time. The distribution of those features is shown
in Figure 4b. This signed curvature is also given by κ = ψ̇/v, with v being the velocity of
(sx, sy). It is independent of the speed at which the car travels, and in purely kinematic car
models, it is directly related to the steering angle.
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The features used for clustering are the velocity and the curvature. As the k-means
algorithm uses Euclidean distance as a closeness metric, the features are normalized by
dividing the values by their standard deviation. They are then multiplied by importance
factors, which are one for the velocity and three for the curvature. Choosing a higher
importance factor for the curvature results in more cluster centers at higher curvatures can
improve automaton quality, counteracting the phenomenon that there are relatively few
detected trims with a high steering curvature. The standstill trim, i.e. with v = 0 and κ = 0,
was added artificially after the clustering process, followed by relabeling each point, since
it enables braking and stopping in the motion planning.

We choose eight different configurations for the automata: with 4, 7, 13, 21, 26, 31, 36
and 43 trim primitives. The choice of these quantities was made to match the number of
trims of handcrafted automata, as it will be shown in Section 4.4. The results can be seen in
Figure 5.
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Figure 4. (a) Speed and yaw rate of all detected trims; (b) speed and curvature of all detected trims.

4.3.3. Transition Matrix

In Section 3.4, the transition matrix was introduced to analyze the statistics of two
trims being used subsequently within trajectory data. In Figure 6, the resulting matrices
are given for the selected automata. For each cluster, at least the two outgoing and the two
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incoming edges of highest probability are added to the automaton graph as maneuvers.
Each maneuver’s state and control trajectory was then determined by solving an optimal
control problem, minimizing the time.
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Figure 5. Automata with clustered trims using k-means, where the black squares are the centers of
each cluster: (a) 4 trims; (b) 7 trims; (c) 13 trims; (d) 21 trims; (e) 26 trims; (f) 31 trims; (g) 36 trims;
(h) 43 trims.
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Figure 6. Transitions matrices for the different automata, where the axis labels identify each trim
primitive, and brighter colours signify a higher number of occurrences of the corresponding transition
in the data: (a) 4 trims; (b) 7 trims; (c) 13 trims; (d) 21 trims; (e) 26 trims; (f) 31 trims; (g) 36 trims;
(h) 43 trims.

4.3.4. Computation of Maneuvers

We obtained the maneuvers solving the OCP (7) as:

minimize T (18a)

subject to ẋ(t) = f (x(t), u(t)), (18b)

x(0) =
[
0 0 0 vpred δpred

]T, (18c)

v(T) = vsucc, (18d)

δ(T) = δsucc, (18e)

T ≥ 0.1, (18f)

uv̇ ≤ uv̇(t) ≤ uv̇, (18g)

uδ̇ ≤ uδ̇(t) ≤ uδ̇, (18h)

v ≤ v(t) ≤ v, (18i)

δ ≤ δ(t) ≤ δ, (18j)

uv̇(t) · v(t) ≤ uv̇ · ṽ. (18k)

The minimum duration in (18f) was set to 0.1 s for not slowing down the graph search,
specifically the chosen Π* search. Computation (18k) models the engine power’s limit of
a vehicle, where ṽ is a switching velocity. Lower and upper bars represent, respectively,
minimum values and maximum values for the variables given in Table 1. These constraints
are taken from the model description in [50].

Table 1. Parameters of the optimization problem (18).

Param. Value Param. Value Param. Value

uv̇ −11.5 m s−2 uδ̇ −0.4 s−1 δ −0.91
uv̇ 11.5 m s−2 uδ̇ 0.4 s−1 δ 0.91
v −13.9 m s−1 v 45.8 m s−1 ṽ 4.755 m s−1
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4.4. Validation of the Automata

We choose a region in the Boston seaport, one of the places where nuScenes collected
data, to validate our automata. We generated a simulated scenario based on the real
map using CommonRoad’s converter and Scenario Designer [54,55]. The initial and final
positions for the motion planning problem were extracted from a nuScene’s trajectory on
this map, which can be seen in Figure 7.

Figure 7. Boston seaport region with a trajectory from nuScenes data in the simulated scenario
(coordinates: 42◦20’51′′ N, 71◦02’09′′ W, eye altitude 179 m).

For verifying the results, we compare the extracted automata with handcrafted ones.
When there is not any real-world data available for the construction of automata, one
pragmatic, yet efficient way to design the automaton is by an equally spread grid covering
the entire space of allowed velocities and steering angles for the model [4]. However, for a
fair comparison, we chose a grid of trims covering the same range of steering angles and
velocities as the extracted automata. Moreover, the handcrafted and extracted automata
have the same quantity of trims, and the numbers of maneuvers match as closely as possible.
Figure 8 shows the resulting automata for the handcrafted and the extracted versions, where
each coloured line represents at least one existent maneuver relating the trims, denoted
by black squares. For the handcrafted ones, the lines are specifically two maneuvers
in opposite directions. Different colors were used just to identify distinct relationships
between trims.
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Figure 8. Automata with different sizes. With 4 trims: (a) handcrafted; (b) extracted; with 7 trims:
(c) handcrafted; (d) extracted; with 13 trims: (e) handcrafted; (f) extracted; with 21 trims: (g) hand-
crafted; (h) extracted; with 26 trims: (i) handcrafted; (j) extracted; with 31 trims: (l) handcrafted;
(m) extracted; with 36 trims: (n) handcrafted; (o) extracted; and with 43 trims: (p) handcrafted;
(q) extracted. The handcrafted automata are based on the considered model only and the extracted
automata are based on data and model. Different colors only highlight distinct relationships between
trims.

4.5. Evaluation in Simulation and Discussion

We tested the motion planning problem in a Windows 11 workstation with 1.90 GHz
Intel® Core™ i7 CPU and 16 GB RAM using the CommonRoad benchmark [50]. For the
motion planning problem, we used the Π* algorithm, described in [4], in which the search
is performed for trim primitives with fixed duration, and, then, it is possible to optimize
their durations to match an exact goal pose if the node is inside an allowed optimization
region. The Π* search presented the following parameters:

• The trajectory’s duration as the cost for the search;
• Fixed trim’s duration of 0.7 s;
• Timeout of 60 s;
• As mentioned previously in Section 4.4, the initial and goal pose were extracted from

the data’s trajectory depicted in Figure 7, and the vehicle is initially stopped;
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• Goal region as the circle with radius of 2 m centered in the goal position;
• Optimization region in a radius of 30 m from the goal;
• The inflation factor and heuristics were the same as in [4].

The numerical results are given in Table 2 and Figure 9, with relative trajectories
depicted in Figures 11–17. The algorithm’s times presented on the table reflect the fastest
running time found in each case.

Table 2. Results for the handcrafted and extracted automata.

Type Trims Maneuvers Cost (s) Runtime (s)

Handcrafted 4 10 – > 60
Extracted 4 14 21.73 2.23

Handcrafted 7 23 – > 60
Extracted 7 27 19.94 5.07

Handcrafted 13 49 36.12 12.30
Extracted 13 53 20.97 2.03

Handcrafted 21 85 22.08 1.77
Extracted 21 85 22.23 20.64

Handcrafted 26 108 17.45 1.30
Extracted 26 106 19.25 19.44

Handcrafted 31 131 22.55 4.27
Extracted 31 129 17.97 22.39

Handcrafted 36 154 15.16 0.61
Extracted 36 151 21.90 2.29

Handcrafted 43 187 15.08 1.40
Extracted 43 174 19.94 1.70
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Figure 9. Plots of the results from Table 2.

No trend in the computation times in Table 2 can be observed. For 21, 26, and
31 trims, the extracted automata explored many nodes on the second exit of the roundabout
that resulted in higher runtimes. This peculiarity is also due to the characteristics of the
chosen test scenario, the planning algorithm, and its parameters. In fact, it was observed
empirically that the results are significantly sensitive to the parameters of the Π* search.
To illustrate it, we solved the same problem just increasing the trim’s duration by 0.05 s,
with the results presented in Figure 10. Thus, the adjustment of these variables should be
carefully performed to solve the planning problem. This paper does not intend to perform
a full quantitative investigation of the results and sensitivity analysis, which is due more to
the motion planning algorithm than to the automata themselves. Instead, we are focused
on a qualitative analysis of different automata.

Interestingly, extracted trims caused a relatively constant cost, i.e., the duration of the
whole trajectory. In contrast, the cost tends to decrease as the handcrafted automaton’s size
increased, which should be expected. Despite the small differences, in general, between the
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costs of the two types of automata, the performance differed considerably among them.
The extracted automata performs better in the scenario for all three automata sizes, i.e.,
even reducing the automaton size, the selected primitives accurately represent the vehicle
behaviour in the given scenario. In contrast, the performance for the handcrafted one
decreased with fewer primitives. We base performance on the trajectories w.r.t. the street
layout and lanes as depicted in Figures 11–17. In particular, when leaving the round-
about, the snapshot trajectory of a handcrafted automaton does not show an acceptable
behaviour, e.g., the final pose was not aligned with the lane, unlike the solutions from the
extracted automaton.
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Figure 10. Results for the same problem with fixed trim’s duration of 0.75 s.

Moreover, sequences of extracted automata show longer periods of trims and fewer
maneuvers. This resembles the original idea of Frazzoli (see [6]) that trimmed motions are
naturally beneficial for traveling, while maneuvers are only used for short corrections in
between.

However, the most critical differences were observed for the smallest automata, i.e.,
with four and seven trims (and 13 in Figure 10). The handcrafted architectures were not able
to find a solution in the time limit of 60 s, while the extracted automaton could do it with
relative small computation time. This illustrates the potential of our method in extracting
the most representative features from the data, even for reduced automaton sizes. Such a
feature allows generalization, and we expect the extracted automaton to also outperform
handcrafted alternatives in different scenarios since the automaton includes information
from the full data set. However, a detailed study has to be left for a future work.
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Figure 11. Trajectories for the smallest extracted automata: (a) with four trims; (b) with seven trims.

(a)

20 0 20 40 60
60

80

100

120

140

20 0 20 40 60
60

80

100

120

140
visited point
maneuver
trim

(b)

20 0 20 40 60
60

80

100

120

140

20 0 20 40 60

60

80

100

120

140 visited point
maneuver
trim

Figure 12. Trajectories for the automaton with 13 trims: (a) handcrafted; (b) extracted.
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Figure 13. Trajectories for the automaton with 21 trims: (a) handcrafted; (b) extracted.
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Figure 14. Trajectories for the automaton with 26 trims: (a) handcrafted; (b) extracted.
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Figure 15. Trajectories for the automaton with 31 trims: (a) handcrafted; (b) extracted.
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Figure 16. Trajectories for the automaton with 36 trims: (a) handcrafted; (b) extracted.



Math. Comput. Appl. 2022, 27, 54 24 of 28

(a)

20 0 20 40 60
60

80

100

120

140

20 0 20 40 60
60

80

100

120

140
visited point
maneuver
trim

(b)

20 0 20 40 60
60

80

100

120

140

20 0 20 40 60

60

80

100

120

140 visited point
maneuver
trim

Figure 17. Trajectories for the automaton with 43 trims: (a) handcrafted; (b) extracted.

5. Conclusions

Trajectory planning is a crucial step in autonomous driving. Motion planning with
primitives is a model-based approach that allows us to encode (continuous-time) dynamical
system behaviour, to exploit symmetries by considering equivalence classes and trims,
and to apply graph-based planning methods. We present a data-based variant of this
approach: the design parameter of an MA is chosen such that the automaton can model
behaviour matching recorded data from human drivers. To this aim, we split up the
automaton generation: first, we identified trims within the data based on their invariance
properties. Then, we clustered similar trims. A transition matrix for the clusters identified
commonly used sequences of trims. Model-based, computed maneuvers provided edges in
the automaton accordingly.

The performance of our method was studied in driving applications. An urban
scenario was chosen for which data from human driving was provided by nuScenes [47].
Our designed automaton was based on human driving style and on the street layouts with
which the car needs to deal. For evaluation, we focused on a comparison to handcrafted
algorithms and the ability to represent humanly driven trajectories. The results showed that
our approach outperformed the handcrafted automata regarding drivability performance
on the selected scenario and achieved especially better results for reduced automata.

One could thus argue whether a proposed automaton produces optimal driving. Let
us argue with a focus on setting where cooperative driving is required: despite all success
in real-world autonomous driving, in the near future, there will still be a majority of human
drivers. Therefore, an autonomous vehicle behaving similar to a human driver is perceived
as driving “naturally” from the perspective of the other traffic participants. This might add
to acceptance and safety for autonomous driving. Alternatively, in related applications
such as autonomous racing cars, our proposed technique would allow enrichment to
an automaton, which was primarily based on typical human driving style, by extreme
maneuvers for further performance optimization.
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So far, we have not evaluated the data-based automaton in cooperation with other
vehicles, as, e.g., in [4,35], along with considering maneuvers directly from mimicking the
data with DMP, as in [11], instead of computing them via a vehicle model. This will be
an interesting point for future work since the corresponding time-dependent constraints
might require large automata or longer planning times. In addition, it would be interesting
to analyse a single extracted automaton exploring different scenarios.
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Acronyms

DMP dynamic motion primitives

MA maneuver automaton

MP motion primitives

OCP optimal control problem

Π* Optimized Primitives

Appendix A. Proof of Proposition 2

Proof. Let f (x, u) :M×Rm → TM, where T M is the tangent bundle of a differentiable
manifold M. Then, Ψ : G ×M → M can be lifted to TxM for x ∈ M, such that
ΨTxM : G × TxM→ TxM, via [8]:

ΨTxM
g ( f (x, u)) =

dΨg(x)
dx

· f (x, u). (A1)

The relation (2) can be proven in terms of the equivariance of the vector field f . From [8],
the vector field f is equivariant w.r.t. the symmetry action Ψ if Equation (3) holds, i.e.,

f (Ψg(x), u) = ΨTxM
g ( f (x, u)), ∀x ∈ M.

Let ∆p =
[
∆sx ∆sy ∆ψ

]T. The group action (14) can be written as

Ψg(x) =
[

RSO(3)p + ∆p
r

]
=


cos(∆p)sx − sin(∆p)sy + ∆sx
sin(∆p)sx + cos(∆p)sy + ∆sy

ψ + ∆ψ
r

. (A2)

Writing the vector field in (9) shifted by (A2), we get

f
(
Ψg(x), u

)
=


f1(Ψg(x), u) cos ( f2(Ψg(x), u) + ψ + ∆ψ)
f1(Ψg(x), u) sin ( f2(Ψg(x), u) + ψ + ∆ψ)

fψ

(
Ψg(x), u

)
fr
(
Ψg(x), u

)
. (A3)

https://www.nuscenes.org/
https://www.nuscenes.org/
https://doi.org/10.48550/arXiv.1903.11027
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Note that, as f1, f2, fψ, and fr are functions of r and Ψg(x) over r is equal to r itself, we have:

f
(
Ψg(x), u

)
=


f1(r, u) cos ( f2(r, u) + ψ + ∆ψ)
f1(r, u) sin ( f2(r, u) + ψ + ∆ψ)

fψ(r, u)
fr(r, u)

 (A4)

=


f1(r, u)

(
cos ( f2(r, u) + ψ) cos (∆ψ)− sin ( f2(r, u) + ψ) sin (∆ψ)

)
f1(r, u)

(
cos ( f2(r, u) + ψ) sin (∆ψ) + sin ( f2(r, u) + ψ) cos (∆ψ)

)
fψ(r, u)
fr(r, u)

 (A5)

=


cos(∆ψ) − sin(∆ψ) 0

sin(∆ψ) cos(∆ψ) 0
0 0 1

 f1(r, u) cos ( f2(r, u) + ψ)
f1(r, u) sin ( f2(r, u) + ψ)

fψ(r, u)


fr(r, u)

 (A6)

=

[
RSO(3) 0

0 I

]
f (x, u) (A7)

= R f (x, u). (A8)

Considering Ψg(x) = Rx + ∆x in (14),

dΨg(x)
dx

= R. (A9)

Then, replacing (A9) in (A1), we get

R · f (x, u) = ΨTxM
g ( f (x, u)). (A10)

Thus, from (A8) and (A10):

f
(
Ψg(x), u

)
= ΨTxM

g ( f (x, u)) (A11)

for R given by (11), proving the equivariance of the vector field by satisfying (3).
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