
����������
�������

Citation: Reddy, G.S.K.;

Koteswararao, N.V.; Ravi, R.;

Paidipati, K.K.; Chesneau, C.

Dissolution-Driven Convection in a

Porous Medium Due to Vertical Axis

of Rotation and Magnetic Field. Math.

Comput. Appl. 2022, 27, 53. https://

doi.org/10.3390/mca27030053

Academic Editor: Leonardo Trujillo

Received: 26 May 2022

Accepted: 17 June 2022

Published: 20 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

Dissolution-Driven Convection in a Porous Medium Due to
Vertical Axis of Rotation and Magnetic Field
Gundlapally Shiva Kumar Reddy 1 , Nilam Venkata Koteswararao 2, Ragoju Ravi 1 , Kiran Kumar Paidipati 3

and Christophe Chesneau 4,∗

1 Department of Applied Sciences, National Institute of Technology Goa, Ponda 403401, India;
gshivakumarreddy913@nitgoa.ac.in (G.S.K.R.); ravi@nitgoa.ac.in (R.R.)

2 The School of Advanced Sciences and Languages, VIT Bhopal University, Sehore 466114, India;
nilam.venkatakoteswararao@vitbhopal.ac.in

3 Area of Decision Sciences, Indian Institute of Management Sirmaur, Sirmaur 173025, India;
kkpaidipati@iimsirmaur.ac.in

4 Laboratoire de Mathématiques Nicolas Oresme (LMNO), Université de Caen Normandie, Campus II,
Science 3, 14032 Caen, France

* Correspondence: christophe.chesneau@unicaen.fr

Abstract: This article aims to study the effect of the vertical rotation and magnetic field on the
dissolution-driven convection in a saturated porous layer with a first-order chemical reaction. The
system’s physical parameters depend on the Vadasz number, the Hartmann number, the Taylor
number, and the Damkohler number. We analyze them in an in-depth manner. On the other hand,
based on an artificial neural network (ANN) technique, the Levenberg–Marquardt backpropagation
algorithm is adopted to predict the distribution of the critical Rayleigh number and for the linear
stability analysis. The simulated critical Rayleigh numbers obtained by the numerical study and
the predicted critical Rayleigh numbers by the ANN are compared and are in good agreement. The
system becomes more stable by increasing the Damkohler and Taylor numbers.

Keywords: linear stability; magnetic field; porous layer; chemical reaction; Levenberg–Marquardt
backpropagation algorithm

1. Introduction

Dissolution-driven convection occurs in the host phase of a partially miscible system
when a buoyantly unstable density stratification develops upon dissolution. The onset of
convection in a porous layer has received considerable interest in science, engineering, and
technology, such as food engineering, oil recovery, chemical reactor design, and plastic
processing. Dissolution-driven convection in porous media has received recent interest
in the context of the long-term geological storage of carbon dioxide in the underground,
natural, brine-filled caverns, often referred to as saline aquifers, in the production of mineral
deposits, and a variety of other applications. Following injection into the saline aquifer,
dissolution of supercritical carbon dioxide in the host brine causes a local density increase,
leading to gravitational instability of the diffusive boundary layer and the formation of
convective fingers [1–6]. In addition, Benard and chemical instabilities were studied for
the dissociation of a horizontal layer of Navier–Stokes fluid due to the Boussinesq approx-
imation. Dissolution-driven convection of a binary fluid in a reactive porous layer was
foremost studied [7,8], then secondary instabilities [9], and constant temperatures and
chemical equilibrium in binary fluid at the boundary surfaces while the solubility of the
dissolved issue relies upon temperature [10–18]. The diffusive boundary layer becomes
unstable in anisotropic porous media where both the capillary transition zone and dis-
persion are considered, even if the geochemical reaction is significantly large. While the
reaction enhances stability by consuming the solute, porous media anisotropy, hydrody-
namic dispersion, and capillary transition zone destabilize the diffusive boundary layer
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that is unstably formed in a gravitational field [19–21]. Stability techniques that look at and
broaden the way the solute’s dissolution influences the thermal convection and prolongs
this evaluation by the use of an asymptotic energy method, Galerkin and spectral tech-
niques, are expecting the structure of the preliminary bifurcation. Darcy, Darcy Brinkmann,
and Darcy Lapwood Brinkmann’s models were used to study porous, anisotropic porous,
and sparsely packed porous medium over multiple diffusive convection [22–25].

Exhausting the magnetic field is an adequate method to regulate a thermally induced
flow. The magnetic field will propagate a Lorentz force to permeate the convective flow. The
penetration effect depends on the strength of the applied magnetic field and its assimilation
into the convective flow direction. The magnetic field is significant for engineering applica-
tions such as magnetohydrodynamics, cooling of nuclear reactors, micropump electronic
packages, and microelectronic devices. The density can be enhanced or reduced depending
on the magnetic field and electrode configuration. The magnetic field effect on formally
charged transfer-controlled active dissolution and the Lorentz force reduces the field gradi-
ent force, which boosts active dissolution. The convective cavities of various aspect ratios in
the magnetohydrodynamics of fluids are broadly studied [26–38]. Due to the simultaneous
action of buoyancy and induced magnetic forces, heat transfer to liquid metals may be
significantly affected by the presence of a magnetic field, but very small effects are experi-
enced by other fluids. The Coriolis and centrifugal buoyancy forces arising from rotation
have a remarkable influence on the local heat transfer when compared with the nonrotating
results. A series of interferograms, stream functions, and isotherm plots demonstrated the
strong effect of rotation on the flow field and heat transfer. A correlation of the Nusselt
number as a function of Taylor and Rayleigh numbers is presented [15,19,39–42].

Various machine learning techniques, in particular artificial neural networks (ANN),
have been widely used in different research areas for predicting data. Recently, many
researchers have used ANN to predict the data and compare them with their results.
Neural networks are used to solve different types of large data-related problems and solve
the Navier–Stokes equations for turbulence by using the Bayesian cluster. The combination
of ANN and gene expression programming compares the local Nusselt number with
their numerical results [43–45]. The investigation of bifurcating fluid phenomena using a
reduced-order modeling setting was aided by artificial neural networks, ANNs, to study
the flow and thermal fields of the onset of convection in a rectangular channel. From
their results, they found that the ANN can precisely predict the Nusselt number with less
computational time and cost compared to the DNS [46–51].

The purpose of this article is to explore the magnetic effect, the Coriolis effect, and
chemical reaction effects on the onset of convection in a porous medium. To the best of our
knowledge, linear stability theory and ANN prediction of threshold Rayleigh number for
the onset of magneto-rotating convection in a porous medium with first-order chemical
reaction have not been studied so far. The plan for this article is as follows: Section 2
describes the mathematical modeling under consideration, Section 3 presents the ANN
methodology, and Section 4 discusses the results. The paper ends with a conclusion in
Section 5.

2. Mathematical Modeling
2.1. Basic Equations

Consider an electrically conducting fluid-saturated porous layer of thickness d that is
salted from below and confined between two parallel horizontal planes at z = 0 and z = d.
The horizontal coordinate x and vertical coordinate z increase upwards in a Cartesian
coordinate with the origin at the bottom of the porous medium. The surfaces are extended
infinitely in x and y directions and a constant salinity gradient C is maintained across
the porous layer. Let Ω = Ωêz be the constant angular velocity of the layer. To make
the Boussinesq approximation valid, the physical properties of the fluid are assumed to
be constant, except for density in the buoyancy term. The porous medium is considered
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homogeneous and isotropic. Based on [15,19,39,40], with the physical configuration recalled
in Figure 1, the governing equations are

∇ · u = 0, (1)

ρ0Ca
∂u
∂t

+
µ

K
u = −∇p + ρ0gβc(C− C0)êz + σ1(u× B0 êz)× B0 êz −

2ρ0Ω
δ

êz × u, (2)

ε
∂C
∂t

+ (u · ∇)C = εDv∇2C− βC, (3)

subject to the following boundary conditions

u = 0, C = C + ∆C on z = 0,

u = 0, C = C0, on z = d. (4)

Here, Ca, µ, K, p, ρ, βc, g, t, ε, Dv, and β are the acceleration coefficient, dynamic
viscosity, permeability, dynamic pressure, reference density, solute expansion coefficient,
gravity acceleration, time, porosity, solute diffusion coefficient, and reaction rate of the
solute, respectively. The dimensionless quantities are given as follows:

x = x∗d, y = y∗d, z = z∗d,

u =
φDv

d
u∗, v =

φDv

d
v∗, w =

φDv

d
w∗,

t =
d2

Dv
t∗, C = C0C∗, (5)

as well as the non-dimensional quantities

Ra =
gρ0βc∆CKdn

φnµDn
v

, Dm =
βd2

φDv
, Ha =

σ1B2
0K

µ
,

Ta =
2ρ0Ωκ f

µφ
, Va =

µd2

ρFCaKDv
, (6)

where Ra, Ta, Ha, Dm, and Va are the Rayleigh number, Taylor number, Hartmann number,
Damkohler number, and Vadasz number, respectively. The non-dimensional form of the
governing Equations (1)–(3) and the corresponding boundary conditions (4) are given by

∇.u = 0, (7)
1

Va
∂u
∂t

+ u = −∇p + RaCêz + Ha2[(u× êz)× êz]− Taêz × u, (8)

∂C
∂t

+ (u.∇)C = ∇2C− DmC, (9)

subject to the boundary conditions

u = 0, C = 1 on z = 0,

u = 0, C = 0 on z = 1. (10)
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Figure 1. Physical configuration.

2.2. Basic Flow

The basic stationary flow of Equations (7)–(10) is as follows:

ub = 0, (11)

Cb = 1− z. (12)

2.3. Linear Stability Analysis

The perturbation of the basic state for the Equations (7)–(10) is

u = ub + U′, C = Cb + C′, p = Pb + P′. (13)

By substituting Equation (13) into Equations (7)–(10), one obtains

∇U′ = 0 (14)

1
Va

∂U′

∂t
+ U′ = −∇P′ + RaC′ êz + Ha2[(U′ × êz)× êz]− Taêz ×U′, (15)

∂C′

∂t
= w′ +∇2C′ − DmC′, (16)

subject to the boundary conditions

U′ = 0, C′ = 0 on z = 0,

U′ = 0, C′ = 0 on z = 1. (17)

By taking the third component of the curl of Equation (15) and curl of curl of Equation (15),
one obtains (

1 +
1

Va
∂

∂t
− Ha2

)
wz − Ta1/2 ∂w′

∂z
= 0, (18)(

1
Va
∇2 ∂

∂t
+∇2 + Ha2 ∂2

∂z2

)
− Ra∇2

hC′ + Ta1/2 ∂wZ
∂z

= 0. (19)

From Equations (16), (18) and (19), we obtain[
D2

(
D1D3 + Ta

∂2

∂z2

)
− Ra∇2

hD1

]
w′ = 0, (20)
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where

D1 = 1 +
1

Va
∂

∂t
− Ha2, (21)

D2 =
∂

∂t
−∇2 + Dm, (22)

D3 =
1

Va
∇2 ∂

∂t
+∇2 + Ha2 ∂2

∂z2 . (23)

Let us introduce the normal mode by writing that the perturbation is in the form of

w′ = ei(lx+my)+σt sin(πz), (24)

where l and m are the wave numbers along x and y directions and σ is a complex parameter.
Substituting Equation (24) into Equation (20), one obtains

Ra =
σ + δ2 + Dm

q2

(
1

Va
σδ2 + δ2 + Ha2π2

)
+

Taπ2(σ + δ2 + Dm
)

q2
(
1 + σ

Va − Ha2
) , (25)

where q2 = l2 + m2 and δ2 = π2 + q2.

2.4. Stationary Mode

To study the stationary stability, take σ = 0 in the Rayleigh number for the exchange
of the stabilities at the onset of stationary convection, say Rasc. It is given as

Rasc =
δ2 + Dm

q2

(
δ2 + Ha2π2

)
+

Taπ2(δ2 + Dm
)

q2(1− Ha2)
. (26)

The critical Rayleigh number at the onset of stationary convection Rasc
c is

Rasc
c = Dm + 2π

√
(Dm + π2)(−1 + Ha4 − Ta)

Ha2 − 1
+

π(−2 + Ha2 + Ha4 − Ta)
Ha2 − 1

. (27)

The above stationary Rayleigh number reduces to Rasc =
δ4

q2 with the critical values

Rasc
c = 4π2, qsc

c = π in the absence of a magnetic field, Coriolis effect, and chemical
reaction effect, which agrees with the results of Horton and Rogers [41] and Lapwood [42]
for the onset of convection in a porous layer.

2.5. Oscillatory Mode

To study the oscillatory stability, take σ = iω. The Rayleigh number at the onset of
oscillatory convection is

Raoc =
δ4ω4 + α1ω2 + α2

q2Va[(−1 + Ha2)2Va2 + ω2]
, (28)

where

α1 =Vaπ2(DmHa2 + TaVa) + (Dm + Ha2π2)δ2 − (−1 + Ha2)2Vaδ4, (29)

α2 =− Da4 + (−1 + Ha2)(Dm + Ha2π2)− π2Ta)δ2+

(−1 + Ha2)Va3
[

Dmπ2(−Ha2 + Ha4 − Ta)
]
δ4 +−δ6, (30)

ω2 =− (−1 + Ha2)2Va2 +
π2Ta

[
Dm + (−1 + Ha2)Va + δ2]

Ha2π2Va + δ2(Dm + Va + δ2)
. (31)
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3. Artificial Neural Network Modeling

Let us now present some basis for the ANN modeling. An ANN is a computing
system based on biological neural networks (which are interconnected) that resemble a
brain. In general, ANN can be used to predict data. In this study, we used a network with
three layers: input, hidden, and output, as well as other components, such as feed-forward
propagation, an optimal number of neurons, and backpropagation (update weights and
biases) (see Figures 2 and 3). To train the suggested network, we use the Levenberg–
Marquardt backpropagation algorithm, as proposed by Yu and Wilamowski [46]. To
prepare the organization, data are first divided into three groups. A total of 650 datasets
were utilized to train, test, and validate the ANN model, with 70%, 15%, and 15% of
the data being randomly allocated for preparing and assessing. The optimal number of
neurons (Nn) for the best performing artificial neural network architecture is determined
by examining three different statistical values: coefficient of determination (R2), root mean
square error (RMSE), and root mean relative error (RMRE), which are defined by

R2 = 1− ∑N
i (Rac,s − Rac,a)

2

∑N
i
(

Rac,s − Rac,a
)2 ,

RMSE =

√
∑N

i (Rac,s − Rac,a)
2

N

RMRE =

√√√√ 1
N

N

∑
i

∣∣∣∣ (Rac,s − Rac,a)

Rac,s

∣∣∣∣. (32)

Here, Rac,s is the simulated critical Rayleigh number, Rac,a is the ANN critical Rayleigh
number, the index i refers to the i-th experiment, bar denotes average value, and N is data
size or number. See Seo et al. [45] for further details on these measures. The regression
plots of training, testing, and validation for these three different sets are illustrated in
Figure 4. The values of R2, RMSE, and RMRE for different values of Va, Ha, Ta, and Dm
are illustrated in Tables 1 and 2. From these tables, it is clear that the present ANN model
can predict the critical Ra for linear stability analysis for different Va, Ha, Ta, and Dm.

Vadasz Number

Critical Ra for
stationary convection

Input  
Layer

Hidden 
Layer

 
 

Output 
Layer

 
 

Hartmann Number

Damkohler Number

Taylor Number Critical Ra for
oscillatory convection

Figure 2. Schematic representation of a multilayer feed-forward network consisting of two inputs,
one hidden layer, and two outputs.
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Figure 3. Flow chart of the artificial neural network.

1000 2000 3000 4000 5000 6000

1000

2000

3000

4000

5000

6000

Target

O
ut

pu
t ~

= 
1*

T
ar

ge
t +

 0
.0

02
4

Training: R=0.99999

 

 
Data
Fit
Y = T

1000 2000 3000 4000 5000

1000

2000

3000

4000

5000

Target

O
ut

pu
t ~

= 
1*

T
ar

ge
t +

 0
.2

6

Validation: R=0.99999

 

 
Data
Fit
Y = T

500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

3000

Target

O
ut

pu
t ~

= 
1*

T
ar

ge
t +

 −
0.

75

Test: R=0.99998

 

 
Data
Fit
Y = T

1000 2000 3000 4000 5000 6000

1000

2000

3000

4000

5000

6000

Target

O
ut

pu
t ~

= 
1*

T
ar

ge
t +

 0
.0

04

All: R=0.99999

 

 
Data
Fit
Y = T

Figure 4. Regression plots for training, validation, and testing; the targets are simulated data and the
outputs are ANN-predicted data.
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Table 1. Calculated stationary values of R2, RMSE, and RMRE at various values of Ta, Dm, and Ha.

Stationary
Values R2 RMSE RMRE

Ta = 0, 5, 10, . . . , 50 Va = 0.5, Ha = 0.5, Dm = 2 0.999992 0.301510 0.549099

Dm = 0.5, 1, 1.5, . . . , 5 Va = 0.5, Ha = 0.5, Ta = 20 0.999991 0.316226 0.562340

Ha = 0.1, 0.2, 0.3, . . . , 0.9 Va = 0.5, Dm = 2, Ta = 20 0.999996 0.333332 0.5773497

Table 2. Calculated oscillatory values of R2, RMSE, and RMRE at various values of Ta, Dm, and Ha.

Oscillatory
Values R2 RMSE RMRE

Ta = 0, 5, 10, . . . , 50 Va = 0.5, Ha = 0.5, Dm = 2 0.999999 0.447213 0.668740

Dm = 0.5, 1, 1.5, . . . , 5 Va = 0.5, Ha = 0.5, Ta = 20 0.999994 0.316226 0.562340

Ha = 0.1, 0.2, 0.3, . . . , 0.9 Va = 0.5, Dm = 2, Ta = 20 0.999966 0.333327 0.577345

4. Discussion

The numerical results and discussion are presented in this section. In this results
part, we evaluated a numerical study of the effect of the magnetic field and rotation on the
onset of dissolution-driven convection saturated porous layer with ANN prediction. The
critical Rayleigh number at the onset of stationary (Rasc

c ) and oscillatory (Raoc
c ) convection

is obtained for the prescribed values of the other parameters. The investigations are
performed for various values of the Hartmann number, Taylor number, Vadasz number,
and Damkohler number. In Figures 5–10, solid and dotted lines represent the stationary
and oscillatory convection, respectively. The following physically realistic range of these
parameters is considered: 0 ≤ Va ≤ 20 [37], 0 ≤ Ta ≤ 50 [22], 0 ≤ Ha ≤ 0.9 [40], and
0 ≤ Dm ≤ 20 [23].

First, we shall discuss the theory of bifurcation points in Figures 5–7, the results
obtained numerically by linear and weakly nonlinear stability analysis. Takens–Bogdanov
and codimension two bifurcation points are identified in these figures. Takens–Bogdanov
bifurcation point is the point at which the oscillatory neutral curve intersects the stationary
neutral curve and approaches zero as the intersection point is approached. At the Takens–
Bogdanov bifurcation point, we have

Rs(qs) = Ro(qo) and qs = qo. (33)

The codimension two bifurcation point is the intersection between a Hopf and Pitch-
fork bifurcation with distinct wave numbers. At the codimension two bifurcation point,
we have

Rs(qs) = Ro(qo) and qs 6= qo. (34)

The effect of the Vadasz number Va on the neutral curves is presented in Figure 8. We
find that the Rasc

c is independent of the Vadasz number Va, whereas the Raoc
c decreases

with a decrease in the value of the Vadasz number Va. This reports the porosity effects on
driven convection in a Newtonian-fluid-saturated porous layer. Furthermore, from this
figure, one can notice that for Va = 1, there exists a threshold Ta∗ ∈ (1.9, 2) such that for
Ta < Ta∗, stationary convection sets in, while for Ta∗ ∈ (1.9, 2), there is a switch from
stationary to oscillatory convection. Similar behavior can be observed for the other values
of Va.
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Figure 5. Neutral curves (solid lines represent the stationary convection and dotted lines represent
the oscillatory convection) for Dm = 20, Ta = 3.1, Va = 20: (a) Ha = 0.5, (b) Ha = 0.6, (c) Ha = 0.7.
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Figure 6. Neutral curves (solid lines represent the stationary convection and dotted lines represent
the oscillatory convection) for Dm = 20, Ha = 0.6, Va = 20: (a) Ta = 2.5, (b) Ta = 3.1, (c) Ta = 5.
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Figure 7. Neutral curves (solid lines represent the stationary convection and dotted lines represent
the oscillatory convection) for Dm = 20, Ha = 0.5, Ta = 10.
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2 1 0
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  V a = 1 0
  V a = 1 5

 

 

Ra

T a
Figure 8. Plots of the critical Ra as the function of Ta for Va = 1, 5, 10, 15.

Figure 9 illustrates the effect of the magnetic field on the onset of convection. From
this figure, one can observe that the Hartmann number has a stabilizing effect on stationary
convection. On the contrary, the Hartmann number has a stabilizing effect on oscillatory
convection. We find that the minimum value of the stationary Rayleigh number for
stationary mode increases with increasing Hartmann number Ha. On the other hand,
the minimum value of the oscillatory Rayleigh number decreases with an increase in the
value of the Hartmann number Ha. Thus, Ha has a contrasting effect on the stability of
the system in the case of stationary and oscillatory modes. From this figure, we notice
that for Ha = 0.2, there exists a threshold Ta∗ ∈ (1.9, 2) such that for Ta < Ta∗, oscillatory
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convection sets in, while for Ta∗ ∈ (1.9, 2), there is a switch from oscillatory to stationary
convection. Similar behavior can be observed for the other values of Va.
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1 8 0

2 1 0

2 4 0

2 7 0
 H a = 0 . 2
 H a = 0 . 2
 H a = 0 . 3
 H a = 0 . 3
 H a = 0 . 4
 H a = 0 . 4
 H a = 0 . 5

 -  -  -  -  H a = 0 . 5

 

 Ra

T a
Figure 9. Plots of critical Ra as the function of Ta for Dm = 5, Va = 5, Ha = 0.2, 0.3, 0.4, 0.5.
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1 8 0

2 4 0

3 0 0  D m = 1
 D m = 1
 D m = 5
 D m = 5
 D m = 1 0
 D m = 1 0
 D m = 1 5
 D m = 1 5

 

 

R a c

T a
Figure 10. Plots of critical Ra as the function of Ta for Va = 15, Ha = 0.5, Dm = 1, 5, 10, 15.

Similarly, Figure 10 depicts the effect of Dm on the system. From this figure, we see
that the effect of increasing Dm is to increase the Rasc

c and Raoc
c , implying that Dm has a

stabilizing effect on the onset of dissolution-driven convection in a porous medium. This
can be explained as follows. An increase in the value of Dm promotes the dissolution
reaction to absorb some of the heat energy, causing the surrounding environment to feel
cold. Hence, a larger solute gradient is required for the onset of convection so that the
system is stabilized. We find that for fixed values of other physical parameters, there exists
a critical Taylor number Tac such that when Ta < Tac, convection begins as an oscillatory
type, and when Ta > Tac, the convection switches to stationary. Further, when Ta = Tac,
the stationary and oscillatory modes occur simultaneously.
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Furthermore, Figures 8–10 demonstrate the Coriolis effect on the onset of convection.
All of these figures show that the Rasc

c and Raoc
c increase as the Taylor number increases.

Hence, the Taylor number has a stabilizing effect on the system. This can be explained as
follows: in the fluid, the rotation creates vorticity. As a result, the fluid has a faster velocity
in horizontal planes. Hence, the perpendicular velocity of the fluid decreases. Therefore,
the convection does not start right away.

The comparison of numerical and predicted ANN data of the critical Ra with different
values of Va, Ha, Ta, and Dm is shown in Figures 11 and 12. From all these figures, it
is obvious to see that the trained predictive ANN model holds well with the numerical
results.

1 2 3 4
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620
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0.1 0.2 0.3 0.4 0.5
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90

180
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Figure 11. Comparison of the simulated and ANN-predicted critical Rayleigh number values for
(a) Dm, (b) Ha, and (c) Ta.
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Figure 12. Comparison of the simulated and ANN-predicted critical Rayleigh number values for
(a) Dm, (b) Ha, and (c) Ta.

5. Conclusions

In the present analysis, the onset of dissolution-driven convection in a porous layer
with the effect of the magnetic field and rotation is studied. The behavior of various physical
parameters is investigated. The results can be summarized as follows: Takens–Bogdanov
and codimension two bifurcation points are identified. The Vadasz number does not show
any effect on stationary convection, whereas it has a destabilizing effect on oscillatory
convection. The Hartmann number has destabilizing and stabilizing effects on stationary
and oscillatory convection, respectively. The Damkohler number has a stabilizing effect on
the system. Furthermore, an artificial neural network (ANN) is used to model and predict
the critical Rayleigh numbers. The simulated and predicted values of the proposed ANN
model were found to be highly close, indicating that the expected critical Rayleigh number
and the observed critical Rayleigh number are quite similar.

In future work, we plan to study linear instability and nonlinear stability. Another
interesting problem is to investigate the stationary or oscillatory convection at the onset of
instability using Brinkmann’s law.
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