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Abstract: This discussion intends to scrutinize the Darcy–Forchheimer flow of Casson–Williamson
nanofluid in a stretching surface with non-linear thermal radiation, suction and heat consumption.
In addition, this investigation assimilates the influence of the Brownian motion, thermophoresis,
activation energy and binary chemical reaction effects. Cattaneo–Christov heat-mass flux theory is
used to frame the energy and nanoparticle concentration equations. The suitable transformation is
used to remodel the governing PDE model into an ODE model. The remodeled flow problems are
numerically solved via the BVP4C scheme. The effects of various material characteristics on nanofluid
velocity, nanofluid temperature and nanofluid concentration, as well as connected engineering aspects
such as drag force, heat, and mass transfer gradients, are also calculated and displayed through
tables, charts and figures. It is noticed that the nanofluid velocity upsurges when improving the
quantity of Richardson number, and it downfalls for larger magnitudes of magnetic field and porosity
parameters. The nanofluid temperature grows when enhancing the radiation parameter and Eckert
number. The nanoparticle concentration upgrades for larger values of activation energy parameter
while it slumps against the reaction rate parameter. The surface shear stress for the Williamson
nanofluid is greater than the Casson nanofluid. There are more heat transfer gradient losses the
greater the heat generation/absorption parameter and Eckert number. In addition, the local Sherwood
number grows when strengthening the Forchheimer number and fitted rate parameter.

Keywords: Casson and Williamson fluid; MHD; Cattaneo–Christov dual flux; non-linear thermal
radiation; binary chemical reaction

1. Introduction

Nowadays, heat transfer enrichment is a fascinating topic because of its numerous
applications in engineering and industry. In many industrial processes, regular fluids
(water, oil and ethylene glycol) are often employed. However, these fluids have a low
heat transfer phenomenon because of their low thermal conductivity. To address this
shortcoming, the nanometer-sized particle was mixed with regular fluids and enriches the
regular fluid thermal conductivity; see [1–3]. This is the way of preparing the nanofluid,
and this fluid has played an essential role in many fields such as solar water heating, heat
exchangers, transformer cooling, cancer therapy, etc. Choi [4] was the first to publish the
characteristics of nanoparticles, which were coupled with experimental evidence data. The
nanofluid flow over a cylinder with suction was explored by Sheikholeslami [5]. It was
uncovered that the local Nusselt number elevates when mounting the nanoparticle volume
fraction values. Ramana Reddy et al. [6] addressed the time-dependent MHD flow of
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nanofluid past a slendering surface. It was detected that the fluid temperature progressed
when enhancing the Brownian motion parameter. Makinde et al. [7] employed the impact
of Brownian motion and thermophoresis effects of MHD flow of nanofluid past a heated
surface. It was noted that the heat transfer rate decays when upturning the quantity of the
Brownian motion parameter. The consequences of Brownian motion and thermophoresis
of stagnation point flow of nanofluid past a non-uniform cylinder were presented by
Shafey et al. [8]. It was noticed that the heat transfer gradient slumps when rising the
thermophoresis quantity. Rasheed et al. [9] addressed the MHD flow of water-based
nanofluids with convective heating conditions. It was seen that the thermophoretic
parameter improves the thickness of the thermal boundary layer.

The non-Newtonian fluid has stimulated various scientists to investigate the events of
heat-mass transport because of its necessary part in industrial and engineering processes,
such as drilling muds, polymer extrusion, optical fibers, polymer production, etc. The
non-Newtonian fluid defies the Newton’s viscosity law. To deal with the huge nature of
the rheological behavior of such fluids, several non-Newtonian models have been devised.
Casson fluid is one of the non-Newtonian type models, and at the infinite non-linear
shear rate, the fluid material’s yield stress does not push flow, and it has zero viscosity.
The MHD flow of Casson nanofluid past a heated surface with viscous dissipation was
analyzed by Alotaibi et al. [10]. It was found that the drag force coefficient decays when
strengthening the Casson parameter. Nayak et al. [11] provide the impact of the triple
diffusive bioconvective flow of Casson nanofluid past a sheet. It was observed that the
wall motile micro-organism decimates when developing the Casson parameter. Entropy
optimization of MHD flow of Casson nanofluid over a stretching surface with convective
heating and mass conditions was illustrated by Butt et al. [12]. It was proved that the
Casson fluid parameter leads to a slow down of the entropy production. Ibrahim et al. [13]
discovered the chemically reactive MHD flow of Casson nanofluid past a stretching
surface with viscous dissipation. It was noticed that the nanoparticle concentration
profile decreases when raising the Casson parameter. The multiple slip effects of a
Casson nanofluid on a stretching surface were numerically performed by Afify [14],
and he proved that the mass transfer gradient enriches when enhancing the Casson
parameter. Varun Kumar et al. [15] scrutinized the MHD chemically reactive flow of Casson
nanoliquid past a curved stretching sheet. It was noted that liquid velocity depresses when
enhancing the Casson parameter. The 2D flow of Casson nanofluid on a thin moving needle
was examined by Naveen Kumar et al. [16], and they proved that the thermophoresis
parameter improves the mass transfer rate. Gohar et al. [17] studied the Darcy–Forchheimer
flow of Casson hybrid nanofluid on a curved surface. It was detected that the Casson
parameter suppresses the hybrid nanofluid motion.

Williamson fluid is also the non-Newtonian division model, which exhibits the shear
thinning property; that is, the fluid viscosity decays when rising the shear stress rate.
Waqas et al. [18] examined the MHD flow of Williamson nanofluid past a heated wedge.
It was revealed that the wall shear stress downfalls when mounting the Weissenberg
number. The MHD flow of Williamson nanofluid past a porous stretching surface with
suction was presented by Li et al. [19]. It was noted that the Williamson parameter leads
to depromoting the friction drag. Ahmed et al. [20] presented the consequences of MHD
Williamson nanofluid flow on an exponentially porous stretching surface. It was uncovered
that the fluid speed depresses when escalating the Williamson parameter. The 2D flow of
Williamson fluid over a cylinder was addressed by Iqbal et al. [21], and it was acknowledged
that the skin friction coefficient decreases as the Weissenberg number increases. Gorla
and Gireesha [22] demonstrated the convective heat transport analysis of a Williamson
nanofluid past the stretching surface. It was noticed that the nanofluid volume fraction
intensifies when heightening the Williamson parameter. The MHD flow of Williamson
nanofluid past a heated stretching surface was examined by Srinivasulu and Goud [23]. It
was concluded that the heat transfer gradient downfalls when promoting the quantity of
the Williamson parameter.
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In the last few decades, many researchers have focused on studying the thermal
radiation effect because the consequences of thermal radiation in flow structures are
helpful in atomic reactors, spacecraft, ship compressors, and solar radiation. Most of the
investigation is based on linearized Rosseland approximation; however, this concept is
applicative when the temperature distinction between ambient and fluid is small. However,
on many industrial occasions, this difference is enormous. So, a non-linearized Rosseland
approximation is introduced to overcome this restriction. MHD Casson nanofluid in
a bi-directional heated stretching surface with non-linear radiation was deliberated by
Mahanta et al. [24]. It was detected that the temperature ratio parameter leads to enriching
the entropy generation profile. Humane et al. [25] scrutinized the thermally radiative MHD
Casson–Williamson nanofluid flow on a porous stretching surface with a chemical reaction.
MHD heat-generating Casson nanofluid through a thin needle with non-linear thermal
radiation was examined by Akinshilo et al. [26]. Ghasemi et al.[27] numerically solved
the non-linear thermal radiative flow of nanofluid with a magnetic field via the spectral
relaxation method. It was noted that the nanofluid concentration upsurges when enhancing
the thermal radiation parameter. The bio-convective flow of Carreau nanofluid with
non-linear thermal radiation with a magnetic dipole was presented by Imran et al. [28]. It
was shown that the thermal boundary layer thickens when the temperature ratio parameter
is large. Bhatti et al. [29] demonstrated the impact of MHD flow of Williamson nanofluid
through a shrinking porous sheet. The problem of non-linear radiative flow of nanofluid
with the inclined magnetic field was numerically solved via the finite difference method
by Mahanthesh and Thriveni [30]. Their results clearly explain that the fluid temperature
ascends when upgrading the quantity of the thermal radiation parameter. Cao et al. [31]
investigated the non-linear thermal radiative flow of a ternary-hybrid nanofluid with partial
slip. The 3D radiative flow of Cu/Ag-water-based nanofluid with entropy optimization
was illustrated by Eswaramoorthi et al. [32], and they detected that the Bejan number rises
as the radiation parameter enhances.

The smallest amount of energy necessary to start a chemical reaction is known as
activation energy. This conception was initiated by Arrhenius in 1889, and this incident has
plentiful appliances in geothermal engineering, water emulsions, oil emulsion and food
processing. Shah et al. [33] addressed the chemically reactive flow of Casson nanofluid with
activation energy and radiation, and they found that activation energy leads to magnifying
the nanoparticle concentration. The 3D time-dependent flow of Williamson nanofluid with
heat generation and the activation energy was inspected by Aziz et al. [34]. Their findings
show that the higher chemical reaction parameter suppresses the nanofluid concentration.
Kalaivanan et al. [35] discussed the Arrhenius activation energy and non-linear thermal
impacts of second-grade nanofluid past a stretching surface. It was exposed that the heat
transfer gradient weakens when strengthening the exponential fitted rate. The MHD
flow of Casson nanofluid over a stretching cylinder with Arrhenius activation energy
was examined by Zeeshan et al. [36]. It was seen that the nanoparticle concentration
enhances for strengthening the activation energy parameter. Tayyab et al. [37] securitized
the consequences of Darcy–Forchheimer flow of 3D nanofluid on a sheet with activation
energy. The 3D Darcy–Forchheimer flow past a porous space with the presence of Arrhenius
activation energy was presented by Rashid et al. [38]. It was revealed that the reaction rate
leads to a decline in the nanoparticle concentration profile. Alsaadi et al. [39] elucidated
the flow of MHD WNF with the influence of Arrhenius activation energy. The impact of
activation energy of a second-grade nanofluid on a surface with heat source/sink was
analyzed by Punith Gowda et al. [40]. Varun Kumar et al. [41] studied the impact of
Arrhenius activation energy on a hybrid nanofluid past a curved surface. It was proved
that the nanofluid concentration improves when escalating the activation energy parameter.
The MHD flow of Williamson nanofluid with activation energy was investigated by
Tamilzharasan et al. [42], and they found that the activation energy parameter improves
the heat transfer rate.
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In light of the above analysis, no research articles provide the impact of the non-linear
thermal radiative flow of Casson–Williamson nanofluid over a heated stretchy plate
with activation energy. In addition, zero nanoparticle mass flux and Cattaneo–Christov
heat-mass flux conditions are included in our study. This research has implications for
thermal sciences, food processing, chemical engineering, polymer extrusion, and many
other fields in which heat conduction and convection are improved. In the limiting
scenarios, the calculated values derived from specified parameters are consistent with
existing findings in the literature, while tables and graphs have been built and explained to
spread the responses of dimensionless quantities. This type of flow model is used in food
processing, heavy mechanical apparatus, enzymes, ceramic processing, heating/cooling
processes, etc.

2. Mathematical Formulation

Let us consider the chemically reactive 2D Darcy–Forchheimer flow of Casson–Williamson
nanofluid past a stretchy plate. The x-axis is in the stretching direction and the y-axis is
perpendicular to it. The uniform magnetic field of strength B0 is applied in the y-direction,
and the induced magnetic effect is neglected because of the small quantity of Reynolds
number. Moreover, the flow is disclosed under the consequences of Arrhenius activation
energy; suction/injection, viscous dissipation and non-linear thermal radiation are all taken
into our account. The zero nanoparticle mass flux condition is assumed on the surface
of the sheet. Let Tw and Cw represent the temperature and nanoparticle concentration,
which are higher than the free-stream temperature (T∞) and nanoparticle concentration
(C∞), see Figure 1.

Figure 1. Physical model of flow.

The Cauchy stress tensor of Williamson fluid is expressed as S = −pI + τ1, where
τ1 =

[
µ∞ + (µ0−µ∞)

1−Γ1γ∗1

]
A1; here, τ1 is the extra stress tensor, µ0 is the limiting viscosity

at zero shear rate, µ∞ is the limiting viscosity at infinity shear rate, Γ1 > 0 is the time
constant and A1 is the Rivlin–Ericson tensor. The simplified form of the extra stress tensor
is τ1 =

[
+ µ0

1−Γ1γ∗1

]
A1; see [43].
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Similarly, Casson fluid flow is

τij =


2
(

µn f +
Qy√
2π

)
kij, π > πc

2
(

µn f +
Qy√
2πc

)
kij, π < πc

here, Qy is the yield stress of fluid, kij is the (i, j)th laceration direction component rate,
π = kijkij is the product of the component of rate of deformation with itself and πc is the
critical value of the product of the component of the strain tensor rate with itself; see [44].

The flow model may be described as follows using the given assumptions; see
Mustafa et al. [45].

ux + vy = 0 (1)

uux + vuy = ν

(
1 +

1
β

)
uyy +

√
2Γνuyuyy −

ν

k1
u− Cb

x
√

k1
u2 − σB0

2u
ρ f

+
1
ρ f

[
(1− C∞)ρ f∞ β(T − T∞)− (ρp − ρ f∞)(C− C∞)

]
g, (2)

uTx + vTy + λTΩT = αTyy (3)

+
1

ρCp

16σ∗

3k∗
∂

∂y

(
T3Ty

)
+

Q
ρ f Cp

(T − T∞) + τ

[
DBTyCy +

DT

T∞
T2

y

]
+

µ

ρCp

(
1 +

1
β

)
u2

y

uCx + vCy + λCΩC = DBCyy +
DT

T∞
Cyy − k2

r (C− C∞)

(
T

T∞

)n

exp
(
−Ea

κT

)
(4)

where

ΩT = uuxTx + vvyTy + u2Txx + v2Tyy + 2uvTxy + uvxTy + vuyTx

ΩC = uuxCx + vvyCy + u2Cxx + v2Cyy + 2uvCxy + uvxCy + vuyCx

The boundary conditions are

u = Uω + L
(

1 +
1
β
+ Γuy

)
uy; v = −VωT = Tω, DBCy +

DT

T∞
Ty = 0 as y = 0

u→ 0, T → T∞, C → C∞ as y→ ∞ (5)

From the above Equations (Equations (2) and (5)), β → ∞ & Γ 6= 0 is treated as a
Williamson fluid model and β 6= ∞ & Γ = 0 is treated as a Casson fluid model.

The dimensionless parameters are

v =

√
a
ν

y; u = axυ′1; v = −
√

aνυ1(v)

υ2(v) =
T − T∞

Tω − T∞
; υ3(v) =

C− C∞

C∞
(6)

Substituting Equation (6) into Equations (2)–(4), we obtain
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(
1 +

1
β

)
υ′′′1 (v)− υ′21 (v) + υ1(v)υ′′1 (v) + Weυ′′1 (v)υ′′′1 (v)− λυ′1(v)− Frυ′21 (v)−Mυ′1(v)

+Ri(υ2(v)− Nrυ3(v)) = 0 (7)
1

Pr
υ′′2 (v) +

1
Pr

4
3

R[(θw − 1)3{υ′′2 (v)υ3
2(v) + 3υ2

2(v)υ′22 (v)}+ 3(θw − 1)2{υ′′2 (v)υ2
2(v)

+2υ2(v)υ′2(v)2}+ 3(θw − 1){υ′′2 (v)υ2(v) + υ′22 (v)}+ υ′′2 (v)] + υ1(v)υ′2(v)

−ΓT{υ1(v)υ′1(v)υ′2(v) + υ2
1(v)υ′′2 (v)}+ Hgυ2 +

(
1 +

1
β

)
Ecυ′′21 + Nbυ′2υ′3 + Ntυ′22 = 0 (8)

1
Sc

υ′′3 (v) + υ1(v)υ′3(v)− ΓC{υ1(v)υ′1(v)υ′3(v) + υ2
1(v)υ′′3 (v)}+ 1

Sc

(
Nt
Nb

)
υ′′2 (v)

−σ∗∗(1 + δυ2(v))nυ3(v)exp
(

−E
1 + δυ2(v)

)
= 0 (9)

The covered boundary conditions are

υ1(0) = f w, υ′1(0) = 1 + K
[

1 +
1
β
+

We√
2

υ′′1 (0)
]

υ′′1 (0), υ2(0) = 1, Nbυ′3(0) + Ntυ′2(0) = 0

υ′1(∞)→ 0, υ2(∞)→ 0, υ3(∞)→ 0 (10)

The non-dimensional form of skin friction coefficient, local Nusselt number and local
Sherwood number are expressed as

1
2

C f
√

Re = −
[(

1 +
1
β

)
υ′′1 (0) +

We
2

υ′′21 (0)
]

;
Nu√

Re
= −

[
1 +

4
3

R{1 + (θw − 1)υ2(0)}3
]

υ′2(0)

Sh√
Re

=
Nb
Nt

υ′2(0)

3. Numerical Solution

The derived ODE models (7)–(9) along with the conditions (10) are numerically solved
by applying the MATLAB bvp4c scheme. Initially, the higher-order terms are converted
into first-order terms, see [46,47].

Let υ1 = y1, υ′1 = y2, υ′′1 = y3, υ′′′1 = y′3, υ2 = y4, υ′2 = y5, υ′′2 = y′5, υ3 = y6, υ′3 = y7,
υ′′3 = y′7.

y′1 = y2

y′2 = y3

y′3 =
y2

2 − y1y3 + λy2 + Fry2
2 + My2 − Ri[y4 − Nry6]

(1 + 1
β ) + Wey3

y′4 = y5

A = −y1y5 + ΓTy1y2y5 −
1

Pr
4
3

R[(3θn − 1)3y2
4y2

5 + 6(θn − 1)2y4y2
5 + 3(θn − 1)y2

5]
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B = −Hgy4 − Nby5y7 − Nty2
5 −

(
1 +

1
β

)
Ecy2

3

y′5 =
A + B

1
Pr [1 +

4
3 R[1 + (θn − 1)3y3

4 + 3(θn − 1)2y2
4 + 3(θn − 1)y4]]− ΓTy2

1

y′6 = y7

C = −y1y5 + ΓTy1y2y5 −
1

Pr
4
3

R[(3θn − 1)3y2
4y2

5 + 6(θn − 1)2y4y2
5 + 3(θn − 1)y2

5]

D = −Hgy4 − Nby5y7 − Nty2
5 −

(
1 +

1
β

)
Ecy2

3

E =
1

Pr
[1 +

4
3

R[1 + (θn − 1)3y3
4 + 3(θn − 1)2y2

4 + 3(θn − 1)y4]]− ΓTy2
1

y′7 =
−y1y7 + ΓCy1y2y7 −

(
1
Sc

)(
Nt
Nb

)(
C+D

E

)
+ σ∗∗(1 + δy4)

ny6exp
(
−E

1+δy4

)
1
Sc − ΓCy2

1

With the conditions

y1(0) = f w, y2(0) = 1 + K
[

1 +
1
β
+

We√
2

y3(0)
]

y3(0), y2(∞) = 0,

y4(0) = 1, Nby7(0) + Nty5(0) = 0, y4(∞) = 0, y6(∞) = 0 (11)

We implemented the MATLAB bvp4c scheme to find the numerical solution for the
above problem with maximum error is 105 and step size is 0.05.

4. Results and Discussion

This segment provides the details about the changes of velocity, temperature, naofluid
concentration, skin friction coefficient (SFC), local Nusselt number (LNN) and local Sherwood
number (LSN) for different flow parameters through graphs and tables. The consequences
of f w, λ, Fr, M, Ri and Nr (Table 1), R, Hg, Ec, ΓT, Nb, Nt and θn (Table 2) and Γc, σ∗∗, δ, n
and E (Table 3) on SFC, LNN and LSN for Casson–Williamson nanofluid are deliberated in
Tables 1–3. Table 4 provides the comparison of our numerical results to Mustafa et al. [45]
and found excellent agreement. It is detected that there is SFC shrinkage when boosting the
f w, λ, Fr, M, Nr, ΓT, Nt ΓC and E, and it upturns when enriching the Ri R, Hg, Ec, Nb, θn,
σ∗∗, δ and n. The heat transfer gradient (HTG) loses when strengthening the quantity of λ,
Fr, M, Nr, Hg, Ec, Nt, ΓC, δ, n and E, and it upturns when enhancing the amount of f w, Ri,
R, ΓT, Nb, θn and σ∗∗. The LSN proliferate when mounting the quantity of λ, Fr, M, Nr, R,
Hg, Nb, θn, Γc and δ. The quite opposite trend is obtained when changing the presence of
f w, Ri, Ec, ΓT, Nt, σ∗∗, n and E.

Table 1. The skin friction coefficient, local Nusselt number and local Sherwood number for f w, λ, Fr,
M, Ri and Nr for both fluids.

fw λ Fr M Ri Nr
1
2 C f
√

Re Nu/
√

Re Sh/
√

Re
Casson Williamson Casson Williamson Casson Williamson

−0.6 0.2 0.4 0.5 0.5 0.5 −0.509450 −0.391709 0.579321 0.583070 −0.325537 −0.327817
−0.3 −0.540008 −0.427964 0.641809 0.642974 −0.363858 −0.364580
0.0 −0.571635 −0.468255 0.708673 0.706679 −0.405644 −0.404386
0.3 −0.603205 −0.511666 0.779139 0.773945 −0.450585 −0.447240
0.6 −0.633606 −0.556634 0.852262 0.844421 −0.498239 −0.493078
0.4 0.0 0.4 0.5 0.5 0.5 −0.594642 −0.508055 0.806499 0.800459 −0.468292 −0.464370

0.4 −0.629919 −0.543188 0.800562 0.794198 −0.464437 −0.460312
0.8 −0.657162 −0.571883 0.796283 0.789413 −0.461663 −0.457217
1.2 −0.679033 −0.595949 0.793056 0.785643 −0.459573 −0.454781

0.4 0.2 0.0 0.5 0.5 0.5 −0.603953 −0.514606 0.804272 0.798227 −0.466845 −0.462923
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Table 1. Cont.

fw λ Fr M Ri Nr
1
2 C f
√

Re Nu/
√

Re Sh/
√

Re
Casson Williamson Casson Williamson Casson Williamson

0.6 −0.617898 −0.532082 0.802808 0.796584 −0.465894 −0.461858
1.2 −0.629722 −0.547022 0.801560 0.795165 −0.465084 −0.460939
1.8 −0.639957 −0.560048 0.800480 0.737920 −0.464384 −0.460133

0.4 0.2 0.4 0.0 0.5 0.5 −0.560068 −0.475720 0.812721 0.806599 −0.472339 −0.468357
0.5 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.0 −0.650934 −0.565199 0.797237 0.790500 −0.462281 −0.457920
1.5 −0.679033 −0.595949 0.793786 0.785643 −0.459573 −0.454781

0.4 0.2 0.4 0.5 0.0 0.5 −0.660336 −0.580349 0.798424 0.788312 −0.463051 −0.456505
0.4 −0.622571 −0.536848 0.802412 0.795557 −0.465637 −0.461193
0.7 −0.595805 −0.506627 0.804836 0.799939 −0.467212 −0.464033
1.0 −0.570084 −0.477980 0.806865 0.803636 −0.468530 −0.466432

0.4 0.2 0.4 0.5 0.5 −1.0 −0.606275 −0.522759 0.808362 0.804310 −0.469503 −0.466870
−0.5 −0.608591 −0.523896 0.806752 0.802074 −0.468456 −0.465418
0.0 −0.611002 −0.525165 0.805055 0.799680 −0.467353 −0.463865
0.5 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.0 −0.616151 −0.528155 0.801381 0.794318 −0.464969 −0.460390

Table 2. The skin friction coefficient, local Nusselt number and local Sherwood number for R, Hg, Ec,
ΓT , Nb, Nt and θn for both fluids.

R Hg Ec ΓT Nb Nt θn
1
2 C f
√

Re Nu/
√

Re Sh/
√

Re
Casson Williamson Casson Williamson Casson Williamson

0.0 −0.5 0.4 0.1 0.5 0.5 1.2 −0.629685 −0.5443759 0.552386 0.545982 −0.552386 −0.545982
0.4 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
0.8 −0.600650 −0.513580 1.023377 1.017386 −0.411036 −0.408267
1.2 −0.590235 −0.503470 1.221039 1.215175 −0.372078 −0.370007
0.4 −0.4 0.4 0.1 0.5 0.5 1.2 −0.609973 −0.522867 0.776546 0.770393 −0.448914 −0.444955

−0.2 −0.600663 −0.513212 0.708901 0.702637 −0.405788 −0.401838
0.0 −0.586188 −0.498333 0.608328 0.600989 −0.343240 −0.338747
0.2 −0.560224 −0.471686 0.431109 0.417147 −0.237329 −0.229206
0.4 −0.548398 −0.443644 0.248746 0.158094 −0.133635 −0.083938

0.4 −0.5 0.0 0.1 0.5 0.5 1.2 −0.616797 −0.530165 0.828958 0.830200 −0.482937 −0.483750
0.5 −0.612698 −0.525686 0.796834 0.788861 −0.462020 −0.456860
1.0 −0.608584 −0.521271 0.764598 0.747832 −0.441233 −0.430502
1.5 −0.604457 −0.516918 0.732266 0.707121 −0.420586 −0.404665

0.4 −0.5 0.4 0.0 0.5 0.5 1.2 −0.612511 −0.525620 0.799275 0.793245 −0.463602 −0.459696
0.2 −0.614542 −0.527555 0.807356 0.801051 −0.468849 −0.464754
0.4 −0.616637 −0.529576 0.815834 0.809232 −0.474367 −0.470068
0.6 −0.618798 −0.531690 0.824758 0.817834 −0.480190 −0.475670

0.4 −0.5 0.4 0.1 0.1 0.5 1.2 −0.624871 −0.534266 0.795002 0.784238 −2.304167 −2.269369
0.5 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.0 −0.612246 −0.525851 0.804174 0.798416 −0.233391 −0.231523
1.5 −0.611828 −0.525618 0.804470 0.798843 −0.155658 −0.154441
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Table 2. Cont.

R Hg Ec ΓT Nb Nt θn
1
2 C f
√

Re Nu/
√

Re Sh/
√

Re
Casson Williamson Casson Williamson Casson Williamson

0.4 −0.5 0.4 0.1 0.5 0.5 1.2 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.46295
1.0 −0.614246 −0.526134 0.790345 0.783132 −0.915639 −0.906320
1.5 −0.614786 −0.525509 0.777196 0.768887 −1.347998 −1.331962
2.0 −0.615136 −0.524713 0.763870 0.754421 −1.763066 −1.738850

0.4 −0.5 0.4 0.1 0.5 0.5 1.0 −0.617049 −0.530398 0.748078 0.741525 −0.487877 −0.483603
1.2 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.4 −0.609177 −0.521923 0.871668 0.865948 −0.440864 −0.437192
1.6 −0.603889 −0.516328 0.956034 0.950777 −0.412023 −0.408740

Table 3. The skin friction coefficient, local Nusselt number and local Sherwood number for Γc, σ∗∗, δ,
n and E for both fluids.

ΓC σ∗∗ δ n E
1
2 C f
√

Re Nu/
√

Re Sh/
√

Re
Casson Williamson Casson Williamson Casson Williamson

0.0 1.0 1.0 0.5 1.0 −0.613044 −0.526039 0.803508 0.797397 −0.466349 −0.462385
0.1 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
0.2 −0.613985 −0.527112 0.803024 0.796807 −0.466035 −0.462003
0.3 −0.614443 −0.528172 0.802775 0.796199 −0.465873 −0.461608
0.1 0.0 1.0 0.5 1.0 −0.621718 −0.537316 0.802043 0.793644 −0.465398 −0.459954

0.4 −0.616422 −0.529896 0.803344 0.796616 −0.466243 −0.461879
0.8 −0.614204 −0.527324 0.803393 0.797110 −0.466274 −0.462199
1.2 −0.612990 −0.526016 0.803097 0.797019 −0.466082 −0.462140

0.1 1.0 0.0 0.5 1.0 −0.613684 −0.526784 0.803713 0.797484 −0.466482 −0.462441
0.3 −0.613634 −0.526719 0.803572 0.797365 −0.466391 −0.462364
0.6 −0.613585 −0.526657 0.803438 0.797250 −0.466303 −0.462290
1.0 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195

0.1 1.0 1.0 0.0 1.0 −0.613558 −0.526629 0.803468 0.797283 −0.466323 −0.462311
0.5 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.0 −0.613492 −0.526540 0.803029 0.796883 −0.466038 −0.462052
1.5 −0.613478 −0.526520 0.802745 0.796615 −0.465854 −0.461878

0.1 1.0 1.0 0.5 0.0 −0.611041 −0.524071 0.802264 0.796452 −0.465541 −0.461773
1.0 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
2.0 −0.616499 −0.529962 0.803240 0.796521 −0.466175 −0.461817
3.0 −0.618951 −0.533118 0.802802 0.795459 −0.465891 −0.461129

Table 4. Comparison of local Nusselt number when We = λ = Fr = R = ΓT = Hg = ΓC = 0 and
M = Nr = 0 : 5, Sc = 5 and δ = 1 with Mustafa et al. [45].

Pr Nt E σ∗∗ n Ri Nu/
√

Re
Ref. [45] Present

2.0 0.5 1.0 1.0 0.5 0.5 0.706605 0.706604
4.0 0.935952 0.935955
7.0 1.132787 1.132788
10.0 1.257476 1.257482
5.0 0.1 1.0 1.0 0.5 0.5 1.426267 1.426269

0.5 1.013939 1.013938
0.7 0.846943 0.846928
1.0 0.649940 0.649939

5.0 0.5 0.0 1.0 0.5 0.5 0.941201 0.941209
1.0 1.013939 1.013943
2.0 1.064551 1.064563
4.0 1.114549 1.114191
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Table 4. Cont.

Pr Nt E σ∗∗ n Ri Nu/
√

Re
Ref. [45] Present

5.0 0.5 1.0 0.0 0.5 0.5 1.145304 1.145301
1.0 1.013939 1.013938
2.0 0.926282 0.926281
5.0 0.798671 0.798669

5.0 0.5 1.0 2.0 −1.0 0.5 1.030805 1.030804
−0.5 0.999470 0.999468
0.0 0.964286 0.964285
1.0 0.886830 0.886830

10.0 0.5 1.0 2.0 0.5 0.0 1.032281 1.032280
0.5 1.056704 1.056706
3.0 1.154539 1.154538
5.0 1.215937 1.215938

Figure 2a–d display the variances of fluid velocity versus Ri(a), f w(b), λ(c) and M
(d). It is clearly shown that the fluid speed enhances when heightening the quantity of Ri
and it depresses when mounting the quantity of f w, λ and M for both fluids. In addition,
the velocity of the Casson nanofluid is low near the plate and high away from the plate
compared to Williamson nanofluid. Physically, a larger quantity of M generates a drag
force named the Lorentz force. This force leads to suppressing the fluid movement on a
plate surface, and this causes a decline in the fluid speed and thinner momentum boundary
layer. The fluid temperature variations on R(a), Hg(b), ΓT(c) and Ec(d) for both fluids
are illustrated in Figure 3a–d. It is acknowledged that the fluid warmness escalates when
enhancing the R and Hg values, and it suppresses when the ΓT and Ec values are rising.
Physically, the presence of a radiation parameter has enriched the fluid thermal state,
thereby strengthening the fluid warmness and thicker thermal boundary layer thickness. In
addition, the greater availability of Eckert number creates a more robust viscous dissipation
effect, which enriches the fluid warmness. Figure 4a–d show the consequences of σ∗∗(a),
f w(b), E(c) and Nt(d) on nanoparticle concentration profile. It is seen that the nanoparticle
concentration reduces when raising the values σ∗∗. A opposite behavior occurs for varying
the values of f w, E and Nt. The skin friction coefficient for a distinct combination of M, λ
and f w is presented in Figure 5a–d. It is found that the surface shear stress decays when
enhancing the magnetic field and porosity parameter for both f w values. In addition, the
Williamson nanofluid has a greater skin friction coefficient value than the Casson nanofluid.
Figure 6a–d portrayed the changes of local Nusselt number for a distinct combination of
values of M, λ and f w. It is concluded that the heat transfer gradient slowly depresses
when increasing the magnetic field and porosity parameters for both f w values. The
local Sherwood number for various combination of values of M, λ and f w is shown in
Figure 7a–d. It is seen from these figures that the local Sherwood number slowly depresses
when increasing the magnetic field and porosity parameters for both f w values.
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Figure 2. The nanofluid velocity for various values Ri (a), f w (b), λ (c) and M (d).
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Figure 3. The nanofluid temperature profile for various vales of R (a), Hg (b), ΓT (c) and Ec (d).
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Figure 4. The nanoparticle concentration for various values of σ∗∗ (a), f w (b), E (c) and Nt (d).
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Figure 5. The skin friction coefficient (SFC) for different values of M with f w = −0.6 (a), M with
f w = 0.6 (b), λ with f w = −0.6 (c) and λ with f w = 0.6 (d) for Casson nanofluid (CF) and Williamson
nanofluid (WF).
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Figure 6. The local Nusselt number (LNN) for different values of M with f w = −0.6 (a), M with
f w = 0.6 (b), λ with f w = −0.6 (c) and λ with f w = 0.6 (d) for Casson nanofluid (CF) and Williamson
nanofluid (WF).
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Figure 7. The local Sherwood number (LSN) for different values of M with f w = −0.6 (a), M with
f w = 0.6 (b), λ with f w = −0.6 (c) and λ with f w = 0.6 (d) for Casson nanofluid (CF) and Williamson
nanofluid (WF).

5. Conclusions

Here, Brownian motion and the thermophoresis impact of the non-linear radiative
flow of C-WNF in a Darcy–Forchheimer porous space with suction and heat consumption
is investigated. The present investigation includes the consequences of activation energy
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and binary chemical reaction. The governing mathematical models are numerically solved
by the bvp4c algorithm with MATLAB. The main outcomes of our discussion are as follows:

• The fluid speed enhances for Richardson number but it slows against porosity, suction
/injection and magnetic field parameters.

• The fluid becomes more warmed as the radiation, heat generation parameters and
Eckert number increase.

• The nanoparticle concentration enhances upon strengthening the suction/injection
and thermophoresis parameters and it downfalls upon escalating the reaction rate.

• The skin friction reduces after enriching the Forchheimer number, porosity and
magnetic field parameters.

• The heat transfer gradient increases when escalating the values of radiation parameter
and it downturns against radiation and heat generation parameters.

• The mass transfer gradient enhances upon heightening the Brownian motion parameter
and it weakens against the thermophoresis parameter.

• In the future, we extend this flow model through the Riga plate with the convective
heating condition.
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Abbreviations
The following abbreviations are used in this manuscript:

Nomenclature
Symbols Description
a,b Positive constants
B0 Magnetic field strength (T)
C Fluid concentration (mol L−1)

Cb Drag coefficient
Cp Specific heat (Jkg−1K−1)
C∞ Ambient fluid concentration
DB Brownian diffusion coefficient (m2s−1)

DT Thermophoretic diffusion coefficient
E(= Ea/kT∞) Activation energy parameter
Ea Activation energy
Fr(= Cb/

√
k1) Forchheimer number

f Dimensionless velocity
g Acceleration due to gravity (ms−2)

Grx(= (gβ(1− C∞)(Tω − T∞)x3/ν2) Local Grashof number
Hg(= Q

ρ f Cp a ) Heat generation/absorption parameter

k Thermal conductive (Wm−1K−1)

k1 Permeability of porous medium (m2)

k∗ Mean absorption coefficient
kr Reaction rate

M(=
σB2

0
ρ f a ) Magnetic parameter

n Fitted rate or stretching sheet index parameter
Ec Eckert number
Nb(= τDB(Cw−C∞)

ν ) Brownian diffusion parameter
Nt(= τDT(Tω−T∞)

T∞ν ) Thermophoresis parameter
Pr(= ν

α = m2s−1

m2s−1 = 1) Prandtl number

Q
Heat generation/absorption coefficient
(JM−1m−3s−1)
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R(= 4σ∗T3
∞

kk∗ ) Thermal radiation
Rex(=

Uω x
ν ) Local Reynolds number

Ri(= Grx
Re2

x
=

gβ(1−C∞)(Tω−T∞)
a2x ) Richardson number

Sc(= ν
DB

) Schmith number
T Fluid temperature (K)
T∞ Ambient temperature (K)
u, v Velocity components (ms−1)
Uω Stretching surface velocity (ms−1)

We(= Γx
√

2a3/ν) = sm
√

2s−3

m2s−1 = constant
)

Weissenberg number

x, y Direction coordinates (m)
Greek Symbols Description
α Thermal diffusivity (m2s−1)
β Casson parameter
δ(= Tω−T∞

T∞
) Temperature difference parameter

Γ Williamson parameter or time constant
ΓT(= aλT) Thermal relaxation parameter
ΓC(= aλC) Solute relaxation parameter
λ Local porosity parameter
λC Relaxation time of mass flux
λT Relaxation time of heat flux
ν Kinetic viscosity (m2s−1)

φ Non-dimensional nanofluid concentration
ρ f Fluid density (kgm−2)
σ Electrical conductivity (Sm−1)

σ∗ Stefan–Boltzmann constant (Wm−2K−4)
σ∗∗(= kr2

a ) Dimensionless reaction rate
τ Heat capacity ratio
θ Non-dimensional temperature
θn Temperature ratio parameter
η Similarity variable
µ Dynamic viscosity (Kgm−1s−1)

p Dust phase
∞ Fluid properties at ambient condition
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