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Abstract: ANFIS-type algorithms have been used in various modeling and simulation problems.
With the help of algorithms with more accuracy and adaptability, it is possible to obtain better real-life
emulating models. A critical environmental problem is the discharge of saline industrial effluents
in the form of buoyant jets into water bodies. Given the potentially harmful effects of the discharge
effluents from desalination plants on the marine environment and the coastal ecosystem, minimizing
such an effect is crucial. Hence, it is important to design the outfall system properly to reduce these
impacts. To the best of the authors’ knowledge, a study that formulates the effluent discharge to
find an optimum numerical model under the conditions considered here using AI methods has
not been completed before. In this study, submerged discharges, specifically, negatively buoyant
jets are modeled. The objective of this study is to compare various artificial intelligence algorithms
along with multivariate regression models to find the best fit model emulating effluent discharge
and determine the model with less computational time. This is achieved by training and testing the
Adaptive Neuro-Fuzzy Inference System (ANFIS), ANFIS-Genetic Algorithm (GA), ANFIS-Particle
Swarm Optimization (PSO) and ANFIS-Firefly Algorithm (FFA) models with input parameters, which
are obtained by using the realizable k-ε turbulence model, and simulated parameters, which are
obtained after modeling the turbulent jet using the OpenFOAM simulation platform. A comparison
of the realizable k-ε turbulence model outputs and AI algorithms’ outputs is conducted in this study.
Statistical parameters such as least error, coefficient of determination (R2), Mean Absolute Error
(MAE), and Average Absolute Deviation (AED) are measured to evaluate the performance of the
models. In this work, it is found that ANFIS-PSO performs better compared to the other four models
and the multivariate regression model. It is shown that this model provides better R2, MAE, and
AED, however, the non-hybrid ANFIS model provides reasonably acceptable results with lower
computational costs. The results of the study demonstrate an error of 6.908% as the best-case scenario
in the AI models.

Keywords: OpenFOAM; CFD; ANFIS; ANFIS (GA); ANFIS (PSO); ANFIS (FFA)

1. Introduction

Due to the increase in population growth and groundwater depletion, the demand for
fresh and potable water has led to rising growth in desalination plants, especially in arid
and semi-arid regions such as the Persian Gulf, Red Sea, and the Gulf of Oman [1]. It has
also been estimated that the percentage of water shortage will increase by 60% by the year
2025 [2]. Hence, since about 97.5% of the total volume of the hydrosphere is contained in
seas and oceans [3], desalination plants are the most viable solution for today’s drinking
water problems, however, these plants cause many negative impacts. The effluent from
desalination plants, called ‘brine’, is discharged into the seawater and contains concentrated
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salt, which is almost double the salinity of the receiving water and ends up adding this
salinity to the seawater [1]. Along with this, if a desalination plant is using a multistage
flash (MSF) technique, then the brine could also raise turbidity and temperature (Bleninger
and Jirka, 2008) [4]. This concentrated brine stream can deteriorate chemical, physical, and
biological attributes of the receiving water. Hence, the effect of brine is majorly evident on
the environment, especially on flora and fauna. Therefore, many countries like the USA
and Europe have made strict regulations for effluent standards [4].

To meet the existing regulations, a diffuser can be placed at the end of the outfall
system to dilute the concentrated brine—since in the absence of dilution—brine plume
extends its vicinity and will be harmful to the ecosystem [1]. It has also been reported
that the discharge of brine using inclined dense jets has been in use since the 1970s, in
which dilution and geometry are the major parameters to be considered [5]. Dilution of
brine occurs in two steps: (a) Primary dilution, which appears in the near field due to
density difference, between the seawater and effluent as well as due to momentum flux
and geometry of the outfall; and (b) Natural dilution in the far-field, due to diffusion and
mixing [6]. The impact can generally be seen in the range of 300 m from the point of
discharge, which is generally the near-field region [2]. Hence, it is important to focus on the
near-field region to design the outfall system for greater dilution [7]. Since effluent density
varies from the ambient water, which makes the jet rise or fall, when the dense effluent is
discharged upwards it is called the negatively buoyant jet. As the jet moves upwards its
momentum decreases, which then returns towards the bottom due to its high density after
attaining the maximum height. When the effluent’s density is lower than the receiving
water, and it is discharged downwards, a penetration depth is attained by the jet and the
effluent is therefore made to rise, this is known as a positively buoyant jet [8,9].

Extensive studies have been conducted on negatively buoyant jets. Marti et al.
(2010) [7] conducted research, in which an angle of 60 degrees was selected with three
different Froude number regimes (one-third, two-thirds, and full-flow capacity) and it was
found that the Froude numbers below 20 were giving higher dilution than the predicted
extrapolation. Zhang et al. (2016) [10] did the numerical investigation for inclined dense jets
at a 45◦ angle and for the study, a large eddy simulation (LES) method was applied along
with a Smagorinsky and Dynamic Smagorinsky sub-grid scale (SGS). Later, numerical
results including jet trajectory, geometry, and dilution were cross-validated with the experi-
mental results and it was found that LES was able to regenerate the outputs satisfactorily.
Shao and Law (2010) [11] studied the behavior of dense jet for angles of 30◦ and 45◦ with
different densiometric Froude numbers. For the measurement of velocity and concentration,
combined Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF)
were applied. Velocity and concentration profiles were used to find the mixing and diluting
parameters as well. It was found that return point dilution, the horizontal distance of
return point, terminal height, centerline peak location, and its dilution were correlated to
the Froude number. Oliver et al. (2008) [12] investigated the k-ε turbulence model in the
standard fluid dynamics package (CFX) and took two approaches, which included, one
with the standard form of the model, and another with a calibrated model achieved by
adjusting the Schmidt number. After comparing numerical data, experimental data, along
with the data obtained from the studies of previous integral models, concluded that the k-ε
model was providing better prediction for the trajectory data, except the data for the inte-
grated dilution at the centerline as they were over-predicting the density gradient, which
resulted in the under-estimation of the dilution. Palomar et al. (2012) [13] investigated the
performances of CORMIX, VISUAL PLUMES, and VISJET models for the inclined dense
studies and obtained some significant differences in the dilution prediction. Kikkert et al.
(2007) [14] investigated the behavior of negatively buoyant jets with angles ranging from
0◦ to 75◦ and Froude numbers ranging from 14 to 99. The results showed good predictions
for the outer spread and the maximum height of the outer edge. However, the inner spread
was under-estimated and the minimum dilution prediction was conservative. Along with
this, previous studies conducted with CorJet and VisJet models were compared with this
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study, and it was found that these numerical models had under-predicted the horizontal
and vertical locations of maximum jet height. Furthermore, CorJet and VisJet were not
accurate enough for an integrated dilution prediction compared to analytical solutions and
the data obtained in a study by Kikkert et al. (2007) [14]. Jirka (2008) [15] performed a study
with smaller angles, such as 30◦ and 45◦, based on laboratory experiments and numerical
modeling using the CorJet model. It was found that the lower angle resulted in higher
dilution when the bottom slope was taken into consideration, as it provided better offshore
transport of the mixed effluent. Kheirkhah Gildeh et al. (2015) [16] performed numerical
modeling with 30◦ and 45◦ inclined dense jets. Five CFD models including LRR, RNG k-ε,
Realizable k-ε, non-linear k-ε, and Launder Gibson were applied, and it was concluded
that LRR and realizable k-ε turbulence models resulted in better predictions for mixing and
dilution characteristics.

With the development of computing systems in recent years, the application of com-
bined Fuzzy and AI methods has been increasing in engineering problems. Neshat et al.
(2012) [17] used ANFIS models for the optimization of concrete mix designs. They found
that the ANFIS model can be better than traditional fuzzy systems and non-fuzzy systems.
In a study by Nadia et al. (2020) [18], ANFIS was applied for the prediction of the position
of the sun in single- and dual-axis solar tracking systems in an attempt to optimize their
performance. The results showed a clear advantage of ANFIS over traditional fuzzy meth-
ods with high prediction rates and low error values. Heydary et al. (2021) [19] adopted a
combined Fuzzy GMDH (i.e., Group Method of Data Handling) Neural Network and Grey
Wolf Optimization (GWO) Algorithm to predict the power produced by wind turbines
with consideration of supervisory control and data acquisition (SCADA) data. They first
applied a combination of K-means and density-based Local Outliers methods (hybrid
K-means-LOF) to remove data outliers and the Empirical Mode Decomposition (EMD)
method for the decomposition of SCADA data, and then used the GMDH method to predict
the future power generation of wind turbines. They found that the performance of a hybrid
EMD-FGMDH-GWO can lead to high accuracy, regardless of the time step applied.

Apart from conventional Computational Fluid Dynamics (CFD) and experimental
measurements, soft computing methods could be applied to minimize the computational
time for the simulation and investment of money on expensive laboratory equipment.
Pourtousi et al. (2015) [20] investigated the combination of the CFD and ANFIS methods
for the simulation of bubble column hydrodynamics. Previous experimental data were
used to validate the CFD model and later these data were used to train the ANFIS model.
It was concluded that ANFIS was a promising method for predicting the outputs of bubble
column hydrodynamics. Taghavifar et al. (2015) [21] worked on the assessment of heat
accumulation in a hydrogen engine, in which the experimental data were compared with
the data obtained after CFD modeling to determine the accuracy between the two. Later,
the CFD data were fed an ANFIS code to train the model and it was concluded that the
ANFIS model with a Triangular membership function had given the highest R-squared (R2)
and lowest root mean squared error (RMSE) value out of other membership functions, and
ANFIS was confirmed to be more accurate and simpler than CFD technique in the study.
Rezakazemi et al. (2017) [22] evaluated three models, namely ANFIS, ANFIS-PSO, and
ANFIS-GA, to determine the performance of hydrogen mixed membranes, in which input
parameters such as feed pressure and Nano filter contents were used to evaluate the output
parameter (hydrogen gas selectivity). The criteria for investigation of the better model
were R2 and RMSE values and ANFIS-PSO had given better predictability. Amirkhani et al.
(2015) [23] studied the performance of ANN and ANFIS models to estimate the inlet air
velocity of the chimney. Three days of experimental data were used to train the models and
it was found that the ANFIS model’s results were closer to the experimental results as its R2

was higher than ANN. Bonakdari and Zaji (2018) [24] worked on the modified triangular
side weir, in which they simulated its discharge coefficient. They studied three different
methods of ANFIS, namely ANFIS-GA, ANFIS-PSO, and ANFIS-DE, with combinations of
eight different input variables and it was found that ANFIS-DE performed better as it had
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given lowest the RMSE value compared to ANFIS-GA and ANFIS-PSO. Shabanian et al.
(2017) [25] studied the ANFIS model with eight types of membership functions to predict
the hydrogen yield of the jet fuel and efficiency of conversion for a non-catalytic filtration
combustion reactor. Later, an imperialist competitive algorithm (ICA) was applied to get
the optimized results for the hydrogen yield, which was found to be an efficient algorithm
for the combustion process optimization. Apart from a soft computing method, multi-gene
genetic programming (MCGP) is also a new approach to predict the output, as shown in
the study conducted by Yan and Mohammadian (2019) [26], where MCGP turned out to be
a promising method for the prediction of vertical buoyant jets.

Currently, there is a gap in the application of AI methods in the context of inclined
dense jets, which are among the most efficient mixing methods. In particular, to the
best of the authors’ knowledge, no previous study has used an ANFIS model and its
variants for negatively buoyant jets with an inclination. Such a method can bridge the
gap between AI methods and the simulation of inclined dense jets and can potentially
simulate these problems more efficiently than CFD methods. The aim of the current study
is to consider the application of new AI methods and the generation of data for the testing
and training of these models to find the optimum solutions. The main contribution of
this project is to apply new AI methods to simulate and predict the dilution of inclined
dense jets in the near-field zone. The proposed approach, as shown in this paper, can
accurately and efficiently simulate these jets and contribute towards mitigating the negative
environmental impacts of such jets. The discharged effluents can create irreversible damage
to the marine environment and aquatic life if the outfall systems are not designed properly.
The improper design of the system can also leave toxic contaminants in the coastal area.
Hence, it is important to design proper outfall systems with efficient mixing. Furthermore,
if the concentration of the effluents is determined before their discharge, then it would be
helpful in the implementation of the solutions. The salinity of the discharged effluents can
either be predicted by experimental or numerical methods, however, to avoid the cost of
experimental equipment and save computational time, artificial intelligence techniques
can be implemented in the coastal study. The aim of this research is to investigate the
application and performance of a soft computing method with ANFIS, ANFIS-GA, ANFIS-
PSO, ANFIS-FFA algorithms for negatively buoyant jets to predict the dilution and mixing
characteristics. This is the first study on this topic. Negatively buoyant jets are considered
for a wide range of Froude numbers, i.e., 5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35,
37.5, 40, 50 and 60 with angles ranging from 20 degrees to 72.5 degrees using realizable k-ε
model turbulence model in the OpenFOAM platform [27,28].

2. Materials and Methods
2.1. Dimensional Analysis and Numerical Model

As can be seen in Figure 1, negatively buoyant jets are discharged at an angle Θ and
velocity Uo, the density of the ambient water is represented by ρa, and density of the jet is
represented by ρo. It can be observed that ρo > ρa, which makes the jet rise. The diameter
of the jet is denoted by D. The terminal height is represented by yt, which hits the surface
at coordinate xi while the coordinates of peak centerline are represented by xm and ym with
peak salinity as Sm. Furthermore, jet concentration is represented by Co. The return point of
the jet is represented by xr and the return salinity value is Sr. For the dimensional analysis
a densiometric Froude number is used, which is denoted by the following equation:

Frd =
UO√
g′0D

(1)

g′0 =

(
∆ρ0

ρa

)
(2)

where ∆ρo = (ρo − ρa) and g0
′ is the reduced gravitational acceleration.
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Figure 1. Configuration for Negatively Buoyant Jet (Reprinted with permission from Ref. [16].
Copyright 2022 Springer Nature).

The centerline peak salinity is a function of the Froude number and angle, which can
be represented by the following equation:

Sm

Frd
= f (Frd, θ) (3)

For numerical modeling, the following equations were used by Kheirkhah Gildeh et al.
(2015) [16]:

• Continuity Equation:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (4)

• Momentum Equations:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −1
ρ

∂P
∂x

+
∂

∂x

(
veff

(
∂u
∂x

))
+

∂

∂y

(
veff

(
∂u
∂y

))
+

∂

∂z

(
veff

(
∂u
∂z

))
(5)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −1
ρ

∂P
∂y

+
∂

∂x

(
veff

(
∂v
∂x

))
+

∂

∂y

(
veff

(
∂v
∂y

))
+

∂

∂z

(
veff

(
∂v
∂z

))
− g

ρ− ρo

ρ
(6)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −1
ρ

∂P
∂z

+
∂

∂x

(
veff

(
∂w
∂x

))
+

∂

∂y

(
veff

(
∂w
∂y

))
+

∂

∂z

(
veff

(
∂w
∂z

))
(7)

where veff denotes the effective kinematic viscosity, ρ is the fluid density, ρo is the reference
fluid density and P represents the fluid pressure. Furthermore, the velocity components in
x, y, and z directions are represented by u, v, and w.

• Concentration Equation:

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

= D
(

∂2C
∂x2 +

∂2C
∂y2 +

∂2C
∂z2

)
(8)

where D is the diffusion coefficient and C denotes the concentration, which in this paper is
salinity. For inlet, boundary conditions for velocity in x, y, and z directions are defined as
u = U0 * cos (
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assumed for the flow and the initial concentration of salt was assumed to be zero in the 
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veloped pipe flow. The exit of the reservoir was modeled by a zero-gradient condition. 
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is salinity. For inlet, boundary conditions for velocity in x, y, and z directions are defined 
as u = U0 * cos (ɵ), v = U0 * sin (ɵ) and w = 0. While concentration C = C0 and Temperature T 
= T0 [16]. 

Initial conditions were assumed as follows: Zero velocity (stagnant) condition was 
assumed for the flow and the initial concentration of salt was assumed to be zero in the 
reservoir. As for boundary conditions, a wall function was used for the turbulent quan-
tities at the bottom and a zero-velocity condition (no-slip) was used for the velocity at the 
bottom wall. Zero shear stress was applied to the top surface and sidewalls, and we de-
veloped the condition as assumed for the inlet jet and the values of turbulent quantities 
such as turbulent kinetic energy and dissipations, which we set according to fully de-
veloped pipe flow. The exit of the reservoir was modeled by a zero-gradient condition. 

) and w = 0. While concentration C = C0 and Temperature
T = T0 [16].

Initial conditions were assumed as follows: Zero velocity (stagnant) condition was
assumed for the flow and the initial concentration of salt was assumed to be zero in the
reservoir. As for boundary conditions, a wall function was used for the turbulent quantities
at the bottom and a zero-velocity condition (no-slip) was used for the velocity at the bottom
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wall. Zero shear stress was applied to the top surface and sidewalls, and we developed
the condition as assumed for the inlet jet and the values of turbulent quantities such as
turbulent kinetic energy and dissipations, which we set according to fully developed pipe
flow. The exit of the reservoir was modeled by a zero-gradient condition.

2.2. Data

The data generated from the numerical modeling using the realizable k-ε model in
the OpenFOAM platform is used in this part, to train and test the ANFIS and hybrid
models. For the soft computing method, two input variables, Froude numbers ranging
from 5 to 60 and jet angles ranging from 20 degrees to 72.5, were employed. The aim is
to investigate input and output combinations (Table 1) to evaluate the performance of
ANFIS, ANFIS-GA, ANFIS-PSO, ANFIS-FFA, and Multivariate regression models. In the
present study, the programming language MATLAB is used to design ANFIS [29–31], and
the three hybrid models, ANFIS-GA [32,33], ANFIS-PSO [33,34], and, ANFIS-FFA [35–37].
These models are built on the fundamentals of training and testing, which can be seen in
Figure 2. The data are divided into two portions of 70% and 30% for training and model
validation, respectively, and various error estimates such as RMSE, R2, etc., are measured
for evaluation of the model’s accuracy.

Table 1. Input-Output combinations.

Combinations Input 1 Input 2 Output

1 Froude number Angle Sm

2 Froude number Angle Sr

3 Froude number Angle x

4 Froude number Angle xr

Figure 2. Training data and Test.

2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Adaptive Neuro-Fuzzy Inference System is an artificial intelligence method, applied
to solve nonlinear problems. The architecture for ANFIS containing two inputs, one output,
f, and five layers is illustrated in Figure 3. In the architecture, the Sugeno model with Fuzzy
IF-THEN rules is employed. The rules R1 and R2 are shown below:

• R1:

If x1 = U1 and x2 = V1 (9)

Then f1 = s1x1 + t1x2 + r1 (10)
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• R2:

If x1 = U2 and x2 = V2 (11)

Then f2 = s2x1 + t2x2 + r2 (12)

where U1, U2 and V1, V2 are the membership functions for inputs x1 and x2, while s1, s2, t1,
t2, r1, and r2 are the adjustable parameters determined during the training process.

Figure 3. ANFIS structure.

The first layer is the input layer, in which input variables are transferred to the next
layer and it is formed by the membership functions of the input variables.

O1,i = µUi (x1), i = 1, 2 (13)

O1,i = µVi(x2), i = 1, 2 (14)

The degree of membership functions is represented by µUi and µVi for the fuzzy sets
Ui and Vi, respectively.

In layer two, each node is fixed and non-adaptive, when each node input values are
multiplied by each other, weights (wi) are obtained.

O2i = wi = µUi(x1) ∗ µVi(x2), i = 1, 2 (15)

The third layer, which is non-adaptive in nature, is called the rule layer. In this layer,
the weight function is normalized as follows:

O3i = w∗i =
wi

∑i wi
(16)

The fourth layer, which is the layer where defuzzification takes place and the output
of the previous layer, is combined with the Sugeno fuzzy rule’s function. However, nodes
in this layer are adaptive and contain a node function:

O4i = w∗i fi = w∗i (six1 + tix2 + ri) (17)
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At layer five, which is the last layer and is called the output layer, the single node
will calculate the overall output and will be the summation of all the inputs from the
previous layers.

O5i = ∑
i

w∗i fi =
∑i wi fi

∑i wi
(18)

2.4. Genetic Algorithm (GA)

Genetic Algorithm [32] is the heuristic search algorithm, which can be classed as
an evolutionary algorithm (EA) and is based on the concept of natural selection and
genetics, where the idea of inheritance, selection, cross-over, and mutation are applied.
It is commonly used in various domains such as manufacturing, engineering, science,
etc. [38]. Evolutionary algorithms such as GA are applied in conjugation with ANFIS to
enhance the accuracy of the method by finding optimal solutions and lowering errors. The
genetic algorithm (GA) starts the process of optimization with a random initial population
(Figure 4). In GA, a population is a set of individuals, which are present in the workspace.
Each individual has a set of parameters (variables), which are called genes, and are joined
together to form a chromosome (solution), which could be mutated and altered. These
solutions could either be presented in the form of binary coding, i.e., zeros and ones, or in
other encoding forms. The criteria for determining the suitability of individuals are set by
an evaluation through fitness function as the population is initialized through randomly
generated individuals, hence, it is an iterative process [38]. The best suitable individual
with a higher fitness value will be chosen from the population to create the new generation
and the solutions of this new generation will be used for the next iteration in the same
algorithm. The algorithm will be terminated when the produced generations reach the
maximum limit, or a satisfactory fitness level is achieved [38]. In this paper, the GA code
has been run in MATLAB software and the ANFIS model has been trained to find the
mean salinity Sm, mean coordinates xm and ym, return salinity Sr and return coordinates xr
and yr.

2.5. Particle Swarm Optimization (PSO)

PSO begins with random particles in the search space, which looks for optimal solu-
tions, and each particle is associated with a fitness value, which is evaluated by a fitness
function. Each particle is influenced by its best achieved individual position and the best
position achieved among the group, and for every iteration, the updating of each particle
takes place by these two best values. In every iteration particles choose new velocities
based on their current velocity and the two mentioned best values. The new velocity and
new position can be evaluated by the following equations [24]:

vi[t + 1] = wvi[t] + c1r1

(
xPbest[t]− xi[t]

)
+ c2r2

(
xGbest[t]− xi[t]

)
(19)

xi[t + 1] = xi[t] + vi[t + 1] (20)

where, xi and vi are the position and velocity vector for particle i and xPbest and xGbest are
the best individual position and best position achieved in the group, respectively. c1 and c2
are the personal learning and global learning coefficients, respectively, and r1 and r2 are the
random coefficients. Furthermore, w represents the inertia weight. The PSO algorithm can
be seen in Figure 5.
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Figure 4. GA Flowchart.
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Figure 5. PSO Flowchart.

2.6. Firefly Algorithm (FFA)

The firefly algorithm (FFA) is built on the idea of a relationship between light and
fireflies [35]. Based on this relationship, the attractiveness value is directly proportional to
the luminosity, hence, it can be calculated by following equations [35,36]:

I = Ioe−γr2
(21)

w(r) = w0e−γr2
(22)

where w(r) denotes the attractiveness at distance r from the firefly, and I represents the light
intensity. Io and w0 are the light intensity and attractiveness at distance r = 0 and γ is the
coefficient of light absorption [35,36].

The distance between the fireflies i and j is represented by r, and can be calculated
from the following equation [35,36]:

rij =‖ xi + xj ‖=

√√√√ d

∑
k=1

(xi,k − xj,k ) (23)

where xi and xj are the locations of fireflies. As fireflies are attracted to one another,
the movement for a firefly from one position to another is represented by the following
equation [35]:

∆xi = β0e−γr2(
xj − xi

)
+ αεi (24)

where α denotes the randomization coefficient and εi represents the random number vector.
Furthermore, α varies from 0 and 1. β0e−γr2

is the attraction term [36]. Figure 6 illustrates
the FFA Flowchart.
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Figure 6. FFA Flowchart.

In this paper, the ANFIS model was integrated with the FFA in order to determine the
mean salinity Sm, mean coordinates xm and ym, return salinity Sr and return coordinates xr
and yr. By a trial-and-error method, the values of light absorption coefficient (γ), attraction
coefficient base (β0), and movement coefficient (α) are taken as 0.1, 4, and 0.3, respectively.

2.7. Multivariate Linear Regression Model (MLR)

Multivariate regression analysis is widely used to find a linear relationship between
the dependent and multiple independent variables. The data collected from numerical
modeling are non-linear, however, to determine the closeness of data with the linearity,
multivariate regression analysis has been conducted using Microsoft excel add-ins, which
helped to create a model based on least square methods [39]. The generalized equation for
MLR can be expressed in the following way [40,41]:

Y = βo + β1X1 + β2X2 (25)
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where, X1 and X2, are the independent variables, which are also called predictor variables.
Y is the dependent variable also known as the response variable and n is the number of
variables [41].

For multivariate regression, data collected from numerical modeling were divided
into training and test data. The equation obtained for the training data set after a regression
analysis has been used to generate the predicted test output. The statistical parameters to
evaluate the multivariate regression model are the same as the ones used for the ANFIS
and hybrid models. The equations mentioned in the statistical parameters section are used
for the calculation of the values for regression analysis.

3. Statistical Analysis

To determine the accuracy of ANFIS, ANFIS-GA, ANFIS-PSO, ANFIS-FFA, and mul-
tivariate regression models as discussed, statistical parameters of all the models are com-
pared, the statistical parameters taken into consideration are coefficient of determination
(R2), root mean squared error (RMSE), mean absolute error (MAE), and average absolute
deviation (δ%), i.e., error of the model in percentage [24]. The mentioned parameters can
be measured by the following equations:

RMSE =

√
∑N

i=1 (Oi − Pi)
2

N
(26)

R2 = 1− ∑N
i=1 (Oi − Pi)

2

∑N
i=1 (Oi −Om)2 (27)

MAE =
1
N

N

∑
i=1
| Oi − Pi | (28)

δ% =
∑N

i=1 | Oi − Pi |
∑N

i=1 Oi
∗ 100 (29)

where Pi is the predicted value obtained after training the models, Oi is the observed value
obtained after numerical modeling on OpenFOAM, Om is the mean of observed value and
N is the number of samples.

4. Results

Overall, 352 data points are obtained from numerical modeling for each of the Sm, Sr,
x, xr, and y outputs. The data are divided into two sections, training data and test data,
where training data contain 272 of the total data and test data contain 80 of the total data
test data. For the models, two input variables, i.e., the Froude number and the angle are
chosen to obtain one output. The targeted outputs are S, Sr, xm, ym, xr. Hence, five sets
with different outputs are prepared for all the models, as shown in Table 1.

4.1. Performance Evaluation for Peak Salinity

The performance of ANFIS-type models and the Multivariate regression model for
peak salinity (Sm) is determined in this section.

4.1.1. ANFIS-Type Models

It can be observed from Table 2 that all the models’ RMSE values for training and
test data are almost the same, which means none of them are trapped in over-fitting.
Furthermore, in Figure 7a–h, targets and outputs coincide reasonably with each other,
which confirms the accuracy of the data for the ANFIS and hybrid models. From Table 2, it
can be observed that out of all the models, ANFIS-PSO is giving the highest R2, and the
lowest RMSE, MAE, and δ%, which are 0.984, 0.589, 0.357, and 5.889% for the test data,
making it the most accurate of all.
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Table 2. Models’ performance evaluation for Sm.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS Sm 0.9505 0.959 0.726 12.160 0.964 0.890 0.709 11.680

ANFIS-GA Sm 0.947 1.019 0.834 13.974 0.935 1.187 0.866 14.249

ANFIS-PSO Sm 0.985 0.547 0.336 5.631 0.984 0.589 0.357 5.889

ANFIS-FFA Sm 0.979 0.643 0.409 6.866 0.975 0.739 0.447 7.367

Multi-variate
Regression Sm 0.594 2.909 2.118 35.482 0.582 3.009 2.245 36.948

4.1.2. Multi-Variate Regression Model

The equation obtained after training the regression model for salinity (Sm) is shown below:

Sm = 13.4212− (0.23703 ∗ Fr)− (0.01983∗Angle) (30)

The Sm equation was used to predict the test outputs and it can be seen from Table 2
that in the regression model there is no over-fitted data as the training and test data sets are
showing almost similar statistical parameters, however, overall the regression model had
the lowest R2 value and highest RMSE, MAE and δ %, i.e., in both training and test sets
as compared to other models, which made regression model incompatible for predicting
peak salinity.

4.2. Performance Evaluation for Return Salinity

The performance of ANFIS-type models and the Multivariate regression model for
return salinity (Sr) is determined in this section.

4.2.1. ANFIS-Type Models

Table 3 shows the statistical results for Sr and it can be observed that test data for
ANFIS-GA, ANFIS-PSO, and ANFIS-FFA are showing almost the same R2 value, i.e., 0.976,
0.973, and 0.975, yet the lowest RMSE was observed in ANFIS-GA, i.e., 0.471. Hence,
the ANFIS-GA model can be considered suitable for predicting the return salinity value.
Furthermore, the δ% and MAE are also not high for this model. Notably, the RMSE and
R2 values of the test sets are mainly considered in this thesis work for determining the
suitable model.

The graphs in Figure 8a–h shows that targets and outputs are following the same
pattern, which again shows that models are properly trained for output Sr.

4.2.2. Multi-Variate Regression Model

The equation obtained after training the regression model for return salinity (Sr) is
shown below:

Sr = 7.601744− (0.12495 ∗ Fr)− (0.02693 ∗Angle) (31)

It can be observed from Table 3 that the parameters for training and test data are
almost the same, however, the regression model’s performance compared to other models
is very poor, as it has the lowest R2 value, i.e., 0.441 and highest RMSE, MAE values, i.e.,
2.265 and 1.429 in the test set, respectively, which shows the model accuracy to predict
the data is very low and its test outputs are not near to the outputs obtained from the
numerical model.
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Figure 7. For output Sm, ANFIS Model (a) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (b) targets and outputs, RMSE, MSE values and frequency vs. errors
graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and frequency vs. errors
graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs. errors for train
data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test data set.
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Table 3. Models’ performance evaluation for output Sr.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS Sr 0.893 0.923 0.691 23.870 0.909 0.914 0.684 23.028

ANFIS-GA Sr 0.967 0.510 0.376 12.981 0.976 0.471 0.350 11.803

ANFIS-PSO Sr 0.958 0.579 0.404 13.946 0.973 0.503 0.395 13.304

ANFIS-FFA Sr 0.958 0.573 0.369 12.755 0.975 0.481 0.336 11.331

Multi-variate
Regression Sr 0.455 2.147 1.394 48.104 0.441 2.265 1.429 48.077

4.3. Performance Evaluation for Peak Coordinate

The performance of ANFIS-type models and Multivariate regression models for peak
coordinate (xm) is determined in this section.

4.3.1. ANFIS-Type Models

From Table 4, it can be observed that the statistical parameters for output xm, are
showing good accuracy between training and test, which shows none of the models are
over-fitted. The models are trained properly, which can be seen from Figure 9a–h. Even
though the percentage deviation for ANFIS-FFA’s test data is the smallest out of all the
models, the statistical parameters of ANFIS-PSO’s training data are better when compared
to its test data, which makes the model more reliable. Furthermore, the test sets for ANFIS-
GA and ANFIS-FFA have the highest R2, i.e., 0.987, 0.987 with RMSE values, 0.018 and
0.016, respectively. However, considering the RMSE and R2 values of the test set, it can be
seen that ANFIS-FFA is efficient in determining the output xm as it has the highest R2 and
lowest RMSE, though it also has the lowest MAE and δ%.

Table 4. Models’ performance evaluation for output xm.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS xm 0.985 0.018 0.013 5.409 0.983 0.018 0.013 5.433

ANFIS-GA xm 0.981 0.020 0.015 6.251 0.987 0.018 0.014 5.736

ANFIS-PSO xm 0.989 0.015 0.011 4.637 0.976 0.021 0.016 6.250

ANFIS-FFA xm 0.987 0.017 0.012 5.011 0.987 0.016 0.011 4.650

Multi-Variate
Regression xm 0.899 0.058 0.043 17.707 0.892 0.047 0.036 14.348
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Figure 8. For output Sr, ANFIS Model (a) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (b) targets and outputs, RMSE, MSE values and frequency vs. errors
graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and frequency vs. errors
graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs. errors for train
data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test data set.
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Figure 9. For output xm, ANFIS Model (a) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (b) targets and outputs, RMSE, MSE values and frequency vs. errors
graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and frequency vs. errors
graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs. errors for train
data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test data set.
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4.3.2. Multi-Variate Regression Model

To predict, the test output x, the following equation was obtained from the regression
analysis of the training set:

xm = 0.261093 + (0.00818 ∗ Fr)− (0.00515∗Angle) (32)

Table 4 shows that although the performance of the regression model was satisfactory,
it had the lowest R2 value and highest RMSE, MAE, and δ% in the test set compared to the
other models’ test sets, which show that the predicted outputs from MLR are not close to
the observed numerical outputs. The statistical parameters for the multivariate regression
model are calculated by Equations (26)–(29).

4.4. Performance Evaluation for Return Coordinate in x Direction

The performance of ANFIS-type models and the Multivariate regression model for the
return coordinate in the x-direction (xr) is determined in this section.

4.4.1. ANFIS-Type Models

For output xr, Table 5 shows all the models’ test data are close in performance to
the training data; in fact, the statistical parameters of the training sets are slightly higher
than the test sets, which again shows that models are not over-fitted, and they have good
predictability, which can be seen in Figure 10a–h. Out of all the models, ANFIS-PSO had
given better results as its test set had a higher R2 value i.e., 0.985, and lower RMSE, MAE,
and δ% i.e., 0.032, 0.021, and 4.639% in the test data, respectively.

Table 5. Performance Evaluation for all the models for output xr.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS xr 0.989 0.028 0.021 4.745 0.981 0.035 0.024 5.119

ANFIS-GA xr 0.966 0.051 0.039 8.827 0.953 0.056 0.041 8.832

ANFIS-PSO xr 0.993 0.022 0.016 3.634 0.985 0.032 0.021 4.639

ANFIS-FFA xr 0.986 0.031 0.023 5.258 0.980 0.035 0.026 5.717

Multi-variate
Regression xr 0.917 0.099 0.076 17.297 0.904 0.079 0.065 13.933

4.4.2. Multi-Variate Regression Model

For output xr, the multivariate regression model showed quite good results with R2 as
0.9044, and RMSE, MAE values as 0.079 and 0.065, respectively. The percentage deviation
between the observed and predicted test output was 13.93%. The equation used for the
predicted output was:

xr = 0.399753 + (0.015318 ∗ Fr)− (0.00804 ∗Angle) (33)

4.5. Performance Evaluation for Peak Coordinate in y Direction

The performance of ANFIS-type models and the Multivariate regression model for the
peak coordinate in the y-direction (ym) is determined in this section.
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Figure 10. For output xr, ANFIS Model (a) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (b) targets and outputs, RMSE, MSE values and frequency vs. errors
graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and frequency vs. errors
graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs. errors for train
data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test data set.
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4.5.1. ANFIS-Type Models

From Table 6 it can be seen that the percentage deviations for both the data sets in
ANFIS-GA are 6.093% and 7.472%, which are higher than all the ANFIS-type models.
However, ANFIS, ANFIS-PSO, and ANFIS-FFA had given similar R2 values, i.e., 0.989,
0.986, 0.986, respectively, for their test data sets, which are highest in the test data for all
the models. Also, their test sets R2 value is comparable to their respective training set,
which shows the models are trained properly. Along with this, the RMSE values for ANFIS,
ANFIS-PSO, ANFIS-FFA are 0.013, 0.014, 0.014, respectively, with the same MAE value of
0.010. Hence, they can be considered for the prediction of ym. Figure 11a–h shows that
models are not over-fitted as targets and outputs coincide with each other.

Table 6. Models’ performance evaluation for output ym.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS ym 0.985 0.014 0.010 5.014 0.989 0.013 0.010 5.157

ANFIS-GA ym 0.979 0.017 0.012 6.093 0.979 0.019 0.014 7.472

ANFIS-PSO ym 0.990 0.011 0.008 3.900 0.986 0.014 0.010 5.285

ANFIS-FFA ym 0.981 0.016 0.011 5.4363 0.986 0.014 0.010 5.475

Multivariate
Regression ym 0.855 0.040 0.030 15.016 0.846 0.049 0.038 19.735

4.5.2. Multivariate Regression

The equation obtained after the regression analysis on the training set to obtain the
predicted test outputs is:

ym = −0.13746 + (0.007027 ∗ Fr) + (0.003153∗Angle) (34)

It can be deduced from Table 6 that training and test sets show good similarity with
each other, which proves that the data is not over-fitted and that statistical parameters’
values are lower as compared to ANFIS and hybrid ANFIS models. The gap between
the predicted test output and observed test output is visible by the percentage deviation
of 19.735%.
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Figure 11. As in Figure 9 for ym. ANFIS Model (a) targets and outputs, RMSE, MSE values and
frequency vs. errors graphs for train data set (b) targets and outputs, RMSE, MSE values and
frequency vs. errors graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values
and frequency vs. errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and
frequency vs. errors graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values
and frequency vs. errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency
vs. errors for test data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set.

5. Discussion

In this paper, the ANFIS model was incorporated with three different algorithms,
namely, the Genetic Algorithm, Particle Swarm Optimization, and Firefly Algorithm. Also,
to check the linearity of the data, a multivariate linear regression (MLR) was conducted.
It was found that the coefficient of determination was too low for MLR, and root mean
squared error (RMSE) was too high compared to ANFIS and hybrid ANFIS models. Four
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statistical indices were measured to determine the efficient model, and they were the
coefficient of determination, root mean squared error, mean absolute error, and percentage
deviation. Furthermore, to determine the reliable model, the statistical indices of the test
set were compared for all the models. It could be seen that, for all the ANFIS-type models,
over-fitting was not observed, which showed the models were trained well.

For different outputs, different models showed accuracy. Hence, to evaluate the overall
model performance, the average of all the statistical parameters needs to be calculated. It
could be seen from Table 7 that ANFIS-PSO and ANFIS-FFA generated the same value
for R2, i.e., 0.980. Also, the RMSE values of these models are lower than the rest of the
models, i.e., 0.231 and 0.257, respectively. It could also be seen that the training data of
ANFIS-PSO is better compared to ANFIS-FFA as the training set of ANFIS-PSO’s R2 value
was 0.983. The model, which showed the poor performance, was MLR as it had the lowest
R2 value, i.e., 0.733, and highest RMSE value, i.e., 1.090. The present study will be helpful
in coastal research worldwide it is one of the first studies on artificial intelligence models
in negatively buoyant jets for predicting effluent discharges in less computational time as
the computational fluid dynamic model had taken approximately three and half days for
simulation compared to the ANFIS-type models, which had taken ten to fifteen minutes.

Table 7. Overall performance evaluation for all the test data outputs.

Model
Training Set Test Set

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS 0.960 0.388 0.292 10.239 0.965 0.374 0.288 10.083

ANFIS-GA 0.968 0.323 0.255 9.625 0.966 0.350 0.257 9.618

ANFIS-PSO 0.983 0.234 0.155 6.349 0.980 0.231 0.159 7.073

ANFIS-FFA 0.978 0.256 0.164 7.065 0.980 0.257 0.166 6.908

Multivariate
Regression 0.744 1.051 0.732 26.721 0.733 1.090 0.762 26.608

Additionally, as AI techniques are widely used in the majority of sectors worldwide, it
would be interesting to see their implementation in coastal studies. Most of the previous
studies have been conducted using computational fluid dynamics models, and this is
one of the first studies to have implemented artificial intelligence models in negatively
buoyant jets. The study is also an extension of the Kheirkhah Gildeh et al. (2015) [16]
study and it can be seen that the ANFIS-type models have performed as well as the CFD
model, with less computational time. Although, as mentioned earlier, the present study
is one of the first studies using AI models in coastal systems, there are some studies
conducted on different coastal topics such as the Bonakdari and Zaji (2018) [24] study on
the side weir discharge coefficient, which was modeled using ANFIS-type models. Yan and
Mohammadian (2019) [26] studied the Multi-Gene Genetic Programming (MGGP) method
for vertical buoyant jets to determine dilution properties. The approach, MGGP in this
study, was efficient and accurate, hence, it can also be used to examine the present study
on negatively buoyant jets for future work. Furthermore, in future work, several different
algorithms such as Differential Evolution (DE), Ant Colony (ACO), Cuckoo Optimization
Algorithm (COA) could also be merged with ANFIS to broaden the area of negatively
buoyant jet study.

Furthermore, parameters such as temperature, sloping bed, density current, rosette
diffuser, effects of stratification on various types of discharges with or without current,
effects of secondary flow, various types of jets under wave effect, or current effect can also
be considered. Other statistical parameters such as Scatter Index, BIAS, Nash, VAF can also
be checked for performance evaluation. Along with this, positive and negative jets can be
examined for crossflow using various AI methods such as ANFIS type procedures.
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As the errors and performance results in Table 7 show, hybrid models such as ANFIS-
PSO and ANFIS-FFA, in comparison with ANFIS, present lower error estimates and overall,
more accurate solutions. However, the hybrid models have a higher computational cost.
Therefore, the application of these models depends on the desired accuracy and the avail-
ability of computing systems. In other words, there is no single answer as to which model
is to be selected.

It should be noted that this project did not attempt to train the model and validate it
using real-time data, which is the subject of a subsequent study, in order to extend the use
of the model to more practical applications.

6. Conclusions

ANFIS model alone and different hybrid models such as ANFIS-GA, ANFIS-PSO,
and ANFIS-FFA along with multivariate regression were investigated for the prediction
of industrial outfall discharges. In this paper, negatively buoyant jets are focused. Proper
outfall design is one of the important factors to mitigate the environmental effects of
effluent discharge from desalination plants. With prior knowledge of effluents’ discharge
characteristics, it is easier to implement proper solutions. Though most of the studies have
been conducted using experimental and numerical methods, in this study, the ANFIS type
models are examined for lesser computational time and to avoid the cost of an experimental
setup. The results showed that ANFIS and hybrid models were trained properly, which
could be seen from targets and output graphs in Figures 2–11 as they almost coincided
with each other. However, the results showed that the multi-variate regression model
was not successful in interpreting the relationship between independent and dependent
variables, especially due to the non-linearity of the data. Hence, ANFIS and hybrid models
are suitable choices to predict the dilution characteristics of outfall discharges. To determine
the efficient model to predict all the outputs mentioned in the previous section, it can be
deduced from Table 7, which is generated by averaging all the outputs that ANFIS-PSO
has the highest R2 value, lowest RMSE, and lowest MAE. The other model which showed
the same R2 value to ANFIS-PSO is ANFIS-FFA, however, its RMSE value and MAE value
are 0.257 and 0.166, respectively, which are a little higher than ANFIS-PSO. Furthermore,
the difference observed between ANFIS-PSO and ANFIS-FFA was in their computational
time, which was more for ANFIS-FFA at around 3.5 h compared to ANFIS-PSO, which was
10–15 min. Although, the computational time for all the ANFIS-type models was much less
compared to the CFD model, which was approximately around 3.5 days. Overall, these two
models, ANFIS-FFA and ANFIS-PAO, can be considered suitable for predicting the effluent
discharge, although ANFIS-PSO would be preferable when one considers computational
cost as a deciding factor.

The results presented in Table 7 demonstrate that hybrid models (especially ANFIS-
PSO and ANFIS-FSA) overall, provide better results with lower errors than ANFIS. How-
ever, if one is looking for a quicker answer, ANFIS alone provides results within an
acceptable margin of error and can be used.

The use of real-time data for training and validation of the model can be examined in
a future study to enhance the practical applicability of the model.
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