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Abstract: Thermal simulations are an important part of the design process in many engineering disci-
plines. In simulation-based design approaches, a considerable amount of time is spent by repeated
simulations. An alternative, fast simulation tool would be a welcome addition to any automatized
and simulation-based optimisation workflow. In this work, we present a proof-of-concept study of
the application of convolutional neural networks to accelerate thermal simulations. We focus on the
thermal aspect of electronic systems. The goal of such a tool is to provide accurate approximations of
a full solution, in order to quickly select promising designs for more detailed investigations. Based
on a training set of randomly generated circuits with corresponding finite element solutions, the
full 3D steady-state temperature field is estimated using a fully convolutional neural network. A
custom network architecture is proposed which captures the long-range correlations present in heat
conduction problems. We test the network on a separate dataset and find that the mean relative
error is around 2% and the typical evaluation time is 35 ms per sample (2 ms for evaluation, 33 ms for
data transfer). The benefit of this neural-network-based approach is that, once training is completed,
the network can be applied to any system within the design space spanned by the randomized
training dataset (which includes different components, material properties, different positioning of
components on a PCB, etc.).

Keywords: physics simulations; neural networks; electronic design; heat equation

1. Introduction

Physics simulations are becoming an essential aspect in the design of electronic sys-
tems. For an optimally designed electronic system, the interplay of many different physical
domains has to be taken into account. For instance, electronic and thermal co-simulations
for the design of an efficient power converter have been studied in [1]. Such coupled
simulations lead, however, to large computational requirements. Often, the long simulation
time render automatic optimizations of designs impossible.

Machine learning (ML) techniques are possible candidates to increase the computational
speed. The application of ML techniques to the design of electronic systems focuses mainly
on two aspects [2]. The first aims at reducing the number of required design iterations [3,4].
For example, a genetic algorithms required around 1000–10,000 FEM simulations to find the
optimal placement of a chip in a system [5], which takes a considerable amount of computation
time. Alternatively, ML is used to accelerate the evaluation of individual designs, i.e., replace
the time consuming simulations by neural networks [6–9].

In addition to thermal simulations, NNs are successfully applied to perform many
types of physics simulations. For instance, NNs have been explored for fluid dynamics
problems [10–12], for electro-convection [13], transport problems [14,15], magnetic field
estimation [16], classical mechanics [17] and in replicating multi-particle evolutions by
learning the pair-wise interaction function [18].

Recent works aim at embedding prior physics knowledge in machine learning: For
physics-informed NNs (PINNs) the physics knowledge is used to guide the convergence
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of the NN towards physics conforming solutions [19]. Typically, the auto-gradient feature
of the NN is used to construct a loss term based on the underlying differential equation.
PINNs led to promising results in many areas of computational science [20–26]. A review
on the application of PINNs to heat transfer problems can be found here [27]. In this work
we follow an alternative way to include some physics knowledge: The NN architecture
is chosen such that it forces the output to satisfy physical constraints [19]. For instance,
purely convolutional networks automatically preserve translational invariance [28].

Although realistic systems are three-dimensional, ML-based physics simulations have
mostly focused on lower-dimensional approximations. Especially, the representation of
three-dimensional full-field solutions for complex geometries remains a challenge. One
technical difficulty when going from 2D to 3D systems is the limited memory of the
GPUs [29]. A way to ensure a low memory requirement could be to use a more suitable
representation of the geometry instead of a stack of images [30]. Although some alternatives,
like point clouds based on CAD geometries [31–33] or octrees were proposed [34], most
available NN architectures are still developed for images.

The main contribution of this paper is to explore, for the first time, the approximation
of the 3D temperature distribution in an electronic system with complex geometry using
NNs. Note that in [35] the thermal problem on a 3D chip was studied but in a much more
simplified setting than we consider in this work. In addition to the difficulties discussed
above related to memory limitations, another major obstacle when studying 3D systems is
the generation of enough high quality training data. We have developed an automatized
workflow that creates 3D CAD geometries representing electronic circuits and performs
meshing and FEM simulations on them. The workflow generates data in a form suitable
for ML requiring no human intervention. In this first proof-of-concept study, we focus on
FEM solutions for the steady-state, equilibrium thermal configuration of the systems.

The paper is organized as follows. In Section 2.1, we describe our workflow for the
data generation and discuss how the postprocessing of CAD geometries and FEM results
into ML training data is performed. The chosen NN architecture and the objective function
is discussed in Section 2.2. We present our results and conclusions in Sections 3 and 4,
respectively. Details on the generation of the training and evaluation datasets are given in
Appendix A. For completeness, the general aspects of NNs most relevant for the under-
standing of this work are discussed in the Appendix B.

2. Materials and Methods
2.1. Dataset Generation

In this work a fully-convolutional neural network (FCN) was trained to approximate,
on 3D electronic systems, the FEM solution of the time-independent heat equation

− ~∇ ·
(

k(x)~∇T(x)
)
= ρ(x)h(x) , (1)

where ρ is the density, k the heat conductivity and h a heat source. We use supervized learn-
ing, which requires a large dataset of random systems with corresponding FEM solutions.
The dataset needs to be representative of the design space. This entails that all properties
that one wants to change during the design process (component type/number/placement,
material properties, heat sink specifications, external temperature), were randomized in
the dataset. In total, 464 unique systems were generated using an automatized workflow in
python (see Figure 1 for a graphical summary) consisting of the following steps:

1. System generation: For each system the number and type of basic components were
randomly chosen and they were placed at random locations on a PCB. Material
parameters were assigned to the different parts of each component.

2. Generation of FEM solutions: A constant temperature was set at the bottom of the
PCB Text. A heat sink on top of the large IC was mimicked by a heat flux boundary
condition. All other outer surfaces were modelled as heat flux boundaries to air. For
each of the created systems, an external temperature Text and heat transfer coefficient
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to air α and for the sink αsink were randomly chosen. Heat sources (i.e., electric losses)
with random magnitude were assigned to some of the components. The systems were
meshed. FEM simulations were performed to obtain the temperature solutions.

3. Voxelization: During postprocessing the systems and the FEM solutions were con-
verted to a set of 3D images per system as input for the NN. Four 3D-images were
created per system, one for the distribution of a material property, the external tem-
perature, the heat sources and the heat transfer coefficient.

Figure 1. Illustration of the automatized workflow: Randomized systems are generated by randomly
choosing and placing basic components. After assigning randomized material properties and BC
values, the system is voxelized to create a stack of four 3D-images as input for the NN. Solutions for
the supervized training procedure are created using FE simulations.

Detailed information on the individual steps for generating the systems can be found
in Appendix A.

2.2. NN Architecture

A 3D fully-convolutional NN is used. The input of the NN consists of 4-channel 3D
images and the output is a single-channel 3D temperature image.

As discussed in Section 1, a major constraint for designing an appropriate NN architecture
comes from the limited GPU memory. A batch of the input images requires already a
significant amount of the available memory. Thus, a network with a relatively small number
of parameters is required to be trainable. Therefore, instead of applying a general-purpose
network, the NN architecture must be chosen to match the physical problem.

An initial rough design of the architecture was based on physical arguments and some
manual exploration, that we discuss next. Once the rough design was fixed, an automatic
exploration of the remaining free parameters was performed (e.g., kernel size, type of
activation, number of skip connections, etc.). The impact of this fine-tuning was not very
large (of the order of a percent in the relative L1 loss, see below).

2.2.1. Properties of Heat Propagation

During the design of the architecture, we found it instructive to explore exact analytical
solutions of the heat equation, even though they apply in very idealized situations only.
For example, the 1D heat kernel solution of the (time-dependent) heat equation reads

T(x, t) =
∫ t

0
dt′
∫ ∞

0
dy

h(y, t′)√
4πk(t− t′)

(
exp

(
− (x− y)2

4k(t− t′)

)
− exp

(
− (x + y)2

4k(t− t′)

))
. (2)

Inspecting the heat kernel solution, it is possible to anticipate (1) the presence of expo-
nentials as a general feature of solutions of the heat equation, and (2) the fact that the
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contributions from different spatial points are aggregated via an integral. These two fea-
tures are reflected in the NN architecture by means of the choice of activation functions
and what we refer to as fusion blocks, as described next.

2.2.2. Long-Range Correlations. Fusion Blocks

One of the most important aspects, that the NN must capture in order to successfully
approximate the steady-state temperature distribution is the presence of long-range effects.
Most of the convolutional NNs (CNNs) available in the literature have been developed
for the classification of images (in the case of 2D CNNs) or of video sequences (in the
case of 3D CNNs). The performance of several of the standard low-resource 3D CNNs
(e.g., SqueezeNet [36]) on the dataset described in Section 2.1 was analyzed but the tem-
perature fields obtained with such networks were very sharp, not resembling a realistic
situation where around a hot spot a temperature gradient is to be expected. Moreover, heat
propagation from a heat source to a distant but thermally connected point in the system
was absent.

To recover the long-range effects in the system, convolutional layers with large dila-
tions were applied. Dilations have been used previously, for example in [16], to capture
long-range correlations without increasing the convolutional kernel size. The maximum
dilations in the Fusions were chosen such that the receptive field of the NN spans the whole
system size (see Figure 2). This is required since in the steady-state case the temperature at
a point can depend on any (arbitrarily) far away point in the system. The kernel sizes were
chosen small (k = 3 or 4) since the NN parameters and the size of the backpropagation tree,
and, thus, the required GPU memory for training, increase quickly with the kernel sizes.

Moreover, as stressed in Section 2.2.1, the solution is an aggregation of long-range
effects (via an integration in the case of the heat kernel solution). To enable these ag-
gregations in the network we defined “Fusion blocks”: Each fusion block is composed
of N 3D convolutional layers with different dilations [d1, d2, . . . , dN ]. The result of those
convolutions is concatenated along the channel dimension. An illustration of a simple (2D)
fusion block is shown in Figure 3.

The fusion block turned out to be the decisive element to obtain realistic and accurate
enough predictions from the network.
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Figure 2. Architecture used in this work. In each block, k refers to the kernels size, s to the stride, d to
the dilations and C to the output channels of each layer (the same for all dimensions). See Section 2.2
for further details.
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Figure 3. Schematic representation of the action of a 2D fusion block consisting of two convolutional
layers with 3 × 3 kernels and dilations 3 and 1.

2.2.3. Choice of Activation Functions

From the heat kernel solution, it can be seen that general solutions contain exponential
functions. To approximate that feature, whilst keeping the network small, it is convenient
to use non-linearities (activation functions) that contain an exponential. Using too many
of them, however, turns out to be damaging for the performance of the network. The
reason is that, several consecutive layers containing an exponential function lead to a
exp(− exp(− exp(...)))-type functions acting on the input. After some exploration, a SELU
activation function [37] was chosen for one of the layers only (see Figure 2). For the rest of
the layers a LeakyReLU [38] was used.

The impact of using a SELU was not large and it mostly helped in achieving the
desired accuracy with less training epochs.

2.2.4. Input to the Network

The input of NNs is typically rescaled to be in the [0, 1] range since that makes
the training of the networks more stable numerically. In this work, a more physically
meaningful rescaling scheme was chosen. Characteristic values were introduced for each of
the relevant dimensional quantities: the maximum heat power Pmax = 20 W, the maximum
temperature Tmax = 1000 K, and a length scale l0 = 0.4 mm. Note, that the maximum
values defined here do not represent a hard limit at which the network will fail to work
since the network does not strictly require all values to be smaller than one.

The dimensionless channels are then defined as:

C0 = k
Tmaxl0
Pmax

(3)

C1 = hρVbody
1

Pmax
(4)

C2 = Text/Tmax (5)

C3 =
1

αAbody

Pmax

Tmax
, (6)

where Vbody is the total volume of the sub-part where the heat density is applied (e.g., the
die volume of an IC), and Abody is the total surface area over which the heat transfer is
specified (e.g., the surface area of the heat sink). The Dirichlet boundary condition is not
fed to the network as an input channel, but softly imposed via the loss (see Section 2.2.6).

2.2.5. Network Architecture

We performed a fairly thorough (manual and automatic) exploration of possible
network architectures containing the features discussed so far. We assessed manually the
impact of using Fusion layers or not. Furthermore, after several numerical experiments we
concluded that:
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• Too many downsampling layers had a damaging effect on the accuracy of the output.
Downsampling in CNNs is used to extract useful features from images. In our case,
the most relevant features are already part of the input, as discussed above. The main
reasons for downsampling in our case are to aggregate long-range effects in addition
to the dilation in the fusion blocks, and to reduce the memory requirements. Thus,
only two downsampling layers were used.

• As is well known in FCNs, skip connections help avoid the usual checkerboard artifacts
in the output. In this work we found that using three additive skip connections led
to the best results. We had skip connections from the output of the fusion blocks
to the input of the two upsampling layers (transpose convolutions) and the final
convolutional layer, respectively.

• An initial depthwise fusion block (depthwise means that channels are not mixed)
provides the necessary additional preprocessing of the input data.

This fixed the rough architecture. The optimal size of the kernels, dilation values and the
type of activations (except for the SELU unit) were found using an automatic optimisation.

As a result, we propose the architecture shown in Figure 2. In the figure, k refers to the
kernels size, s to the stride, d to the dilations and C to the output channels of each layer
(the same for all dimensions). This network has only ∼370 K trainable parameters, which
is a tiny number compared to standard architectures. For comparison, the 3D version of
SqueezeNet [36,39], which was designed to be a small network, has 2.15 M parameters).

2.2.6. Objective Function and Training Process

For the loss function a mean L1 relative loss term, L1 = mean(|(TNN − TFEM)/TFEM|),
was combined with a penalty term for the Dirichlet boundary condition at the bottom layer
of the PCB (LPCB). Here, TNN and TFEM are the temperature distributions predicted by the
NN and obtained from the FEM simulation, respectively. The air region was excluded from
the loss evaluation because no FEM solution is available there. A physics-informed loss as
proposed by [12] did not improve the solutions. In fact, it drove the system to a uniform
temperature distribution since in all parts of the system where no heat source is present, the
differential heat equation error can be minimized by minimizing the temperature gradient.
This is somewhat unexpected and further exploration on physics-informed losses for the
present problem will be the subject of future work.

We trained the network using the RMSProp optimiser [40] with a batch size of 7. The
network is trained in several steps. First a warm-up period of ∼10 epochs, with a learning
rate of 10−4. After that only the Fusion layers are trained (with all other layers frozen) for
10 more epochs at a learning rate of 10−5. Next the Fusions are frozen and everything else
is trained for 10 epochs at a learning rate of 10−5. Finally the network is trained for 100-200
epochs, with a decreasing learning rate from 10−5 down to 5× 10−6. Each epoch takes
approximately 10 min.

3. Results

The size of the dataset was increased by four without further computational effort via
three 90 degree in-plane rotations of each system, so that the total dataset consisted of 1856
systems. 75% of the generated dataset was used as training set and the remaining 25% as
test set. It is the accuracy in reproducing the latter that truly measures the quality of the
network solution. Thus, all results reported in this section are taken from the test set.

The mean relative L1 error per system is at the percent level, with values below 2% in
most systems in the test set: This can be seen in Figure 4, where a histogram of all systems
of the test set binned according to their corresponding L1 error is shown. Additionally,
the Dirichlet BC at the bottom of the PCB was fulfilled by the network with an average
relative error of LPCB = 0.1%. The present work was intended as a proof-of-principle for
an NN-based tool to evaluate the viability of potential system designs from a thermal point
of view. The obtained accuracies are judged good enough for that goal.
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The mean value of the relative error, however, does not fully represent the (in-)accuracy
of the NN results, as large but very localized error values can be smeared out when
averaging over the large number of voxels in a system. More insightful is thus to compare
FEM and NN solutions directly in their 3D representations. In Figure 4, a representative
collection of 3D solutions and 3D maps of the relative temperature differences is shown,
picking one sample from most of the bins in the histogram discussed above, as indicated
in the figure. For the majority of systems the NN solution reproduces the FEM solution
reasonably well. The main discrepancies appear in relation with the small chip and on the
surfaces of the components and the PCB.

Further details are shown in Figure 5, where a section of a selected system is presented.
There, on the surface of the PCB and also around the small chip, the L1 error is somewhat
larger. Furthermore, in the inner part of the large chip some localized discrepancies can be
seen, which are a reminiscence of the checkerboard artefacts of FCNs. However, these are
clearly localized and do not affect the overall temperature of the chip.

The second aspect to consider when judging whether the presented NN approach is
a valuable tool in the design workflow of electronic systems is the evaluation speed. In
Table 1, a comparison of the evaluation speeds between the NN and the FEM solutions is
shown. The NN was run on an NVIDIA Titan RTX GPU whilst the FEM solver was run on
a single thread of an Intel Xeon W-2145 CPU. This implies that the FEM evaluation time in
Table 1 does not correspond to the time a fully optimized and parallelized FEM simulation
would require. Nevertheless, we see that the NN provides a solution in ∼35 ms (with
most of the time, in fact, used in transferring the 3D system to the GPU memory), which is
certainly a significant speed-up over any conceivable full-field 3D FEM simulation.

Relative Temperature Difference
(0) (2) (3) (4)

(5) (7) (8) (9)

(10) (12) (14) (17)

NN Predicted Temperature
(0) (2) (3) (4)

(5) (7) (8) (9)

(10) (12) (14) (17)

Figure 4. Histogram of the average relative L1 error per test system (top). Below the temperature
distributions estimated by the NN (right) and the relative temperature difference (left) for selected
systems of the test dataset (the corresponding error bin of the histogram is indicated in brackets, from
0 indicating the lowest mean error to 19 for the worst mean error). The average relative L1 error (top)
is the mean of the absolute values of the relative temperature differences (bottom left) per sample.
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Figure 5. FE solution (left), NN prediction (center), and relative L1 error of the temperature distribu-
tion (right) on a horizontal cut of a selected system. High predictive errors are mostly found on the
surface of the system while the internal temperature distribution is well represented.

Table 1. Average evaluation time for a NN solution and a FEM solution (note that, the time for the
FEM simulation is not taken from a performance-optimized solver).

NN, GPU Transfer NN Inference Total NN FEM (Single Core)

0.033 s 0.002 s 0.035 s 160 s

This high evaluation speed comes at the cost of creating a training data set and training
the network. The time to create one system of the training/testing data set was about
17 min. The systems were created fully automatized, creating 8 systems in parallel, so that
in one day the full data set was created without requiring any manual intervention. Note,
that the workflow was not optimized for performance, 90% of the time was used for the
system creation in FreeCAD and preprocessing the system (meshing, identifying surfaces to
apply the BCs, etc.). The voxelization of the system took only fractions of a second. Thus,
approximating FEM simulations with NNs is clearly not the right approach if only the
result of one specific system is of interest. However, possible application scenarios could
lie in design applications, where the impact of design variations could be studied in real
time using pre-trained NNs.

It is worth discussing now some of the limitations of the FCN architecture suggested
in this work. The first limitation stems from the fact that the architecture sets the maximum
effective receptive field on the input images, which is determined by the combination of
maximum dilation and number of downsamplings. Thus, even though the architecture is
fully convolutional—which implies that it can immediately process larger systems than
those it has been trained on—it will not be able to capture any heat transfer effects over
larger distances than those covered in the original receptive field. We have not tested
what the implications of this limitation are. A second limitation arises from the typical
length scales in the system. A minimum length scale is implicitly set by choosing the voxel
resolution and, in principle, if a different voxel resolution has to be chosen the network
would have to be retrained. The voxelized representation of the systems has, however, the
advantage that no tedious and time consuming meshing and preprocessing is required for
the evaluation of the NN on a system.

The main advantage of the approach presented here is that, once the network has been
trained, it can approximate the temperature field of any system within the design space
spanned by the randomized training dataset. This means that the network can be applied
to systems with different number of components, different placement of those components,
different material properties and different BCs than those it has been trained on. Therefore,
the simulation time spent in generating the dataset is compensated by the gain in future
simulations, as long as many of them are needed for a certain design task.

Confidence Estimation

Finally, we would like to discuss a possible confidence estimator for the NN solutions.
The goal of a confidence estimator in this context is to assess the quality of the NN approxi-
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mation when no FE result exists to compare with, as would be the case in any realistic use
of our tool.

Our suggested confidence estimator is based on an integral form of the steady-state
heat equation ∫

∂V
k∂iTnidA +

∫
V

ρhdV = 0, (7)

where Gauss’ theorem was used to transform the integral over the system volume V to a
surface integral in the first term. Since the NN prediction is available at each voxel, the
equation is discretized to obtain an approximation per voxel e

6

∑
i=1

ek(∂iT)ni
e∆Ai +

eρehe∆V ≈ 0. (8)

For the temperature gradient (∂iT), the finite difference of the temperature (as predicted
by the NN) of the voxel under consideration and its adjacent voxel (in the direction of
the normal ni) is inserted. If the two voxels have differing k values a piece-wise linear
interpolation of the temperature was used. The bottom of the PCB is kept at a fixed
temperature. On all other outer surfaces the flux boundary condition is included by
evaluating the first term with:

− k
∂T
∂n

= α(T − Text) . (9)

This heat equation error should measure the local violation of the steady-state heat equation.
If the net heat flux of a voxel is non-zero this implies that the temperature obtained from
the NN does not represent a steady state.

The local L1 loss values are compared with the local heat equation error for a particular
sample (Figure 6) for different sections of the system in the z-direction. The proposed
estimator appears to qualitatively identify many of the regions where the error of the
NN estimation of the temperature map is high compared to the FEM solution. It is also
apparent, however, that not all voxels with high error values are identified.

Moreover, the estimator does not provide a clear quantitative measure of the error.
The absolute values of the heat equation error are much larger in regions with high k
than in regions with lower k. This could indicate that the piece-wise linear interpolation
used for the approximation of the temperature is not a good estimation of the actual
temperature distribution. However, at the current state, it is not possible to use higher
order approximations since they would require more voxels per uniform-k region, which
in turn conflicts with the limited RAM available on the GPU.

More research in the direction of finding a confidence estimator is clearly needed.
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Slice 24
(last layer

within PCB)

Slice 28
(near bottom of

large chip)

Slice 69
(layer within

large chip)

Slice 89
(near top of
large chip)

Figure 6. Comparison of the heat equation error (top row), which can be used as error predictor if no
FE solution is available, and the L1 error (bottom row) on selected slices from bottom to top (left to
right). The heat equation error is able to indicate most of the regions with high error. It illustrates the
checkerboard pattern expected from purely convolutional networks. Since the heat equation error is
defined via the local imbalance of heat fluxes and sources, the detected errors can be slightly more
localized compared to the actual error (e.g., orange points in slice 69, top compared to bottom).

4. Conclusions

An approach to quickly approximate the full-field temperature distribution of 3D
electronic system using neural networks was proposed. The range of validity of the
developed network spans a realistically wide range of material parameters and heat sources.
Additionally, the network was trained to work with systems built with any number of the
basic components at any position in the system.

The network proposed is able to provide a simulation result in an evaluation time
of the order of milliseconds. The relative error achieved, when compared to a standard
FEM simulation, is around 2% averaged over the whole system, with larger errors localized
mostly on the surfaces of the components.

Finally we motivated a possible criterion for estimating the confidence of a prediction
based on an integral version of the heat equation. Even though the criterion proposed does
not allow for a quantitative estimate of the error of a given prediction, it may be used to
identify regions with large estimation errors.
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Appendix A. System Generation Details

Appendix A.1. System Generation

The main challenge we faced in generating systems was to obtain sufficiently diverse
3D geometries, and achieve enough variation of material properties and heat sources while
ensuring that the resulting temperature fields stay within a physically plausible range. To
simplify this task, we built the systems based on six different components. The components
were designed manually (once) using FreeCAD (one large and one small IC, one large and
one small capacitor, and copper layers of different shapes and sizes, see Figure 1a).

To generate a system, the components were randomly placed on a fixed-size PCB
of dimensions 25 mm× 25 mm× 2 mm (Figure 1b). Such a random placing procedure
does not produce functional electronic circuits. However, as long as the training dataset
captures the impact that different component placements have on the heat transfer, the NN
is expected to generalise also to (unseen) functional electronic circuits.

Most components (e.g., the ICs) have an internal structure (e.g., legs, die). Each of
these sub-parts was assigned a typical material (e.g., copper for the legs). To account for
variations in the material properties, a physically plausible range was specified for each
material type as the average value given in Table A1 ±25%. For each system, the material
properties of each part were chosen from a uniform distribution within those ranges.

Table A1. Average material properties : the actual values are chosen randomly from a range of
[0.75 Avg, 1.25 Avg].

Property Unit Avg. k (W/(m K)) Avg. cP (J/(kg K)) Avg. ρ (kg/m3)

Silicon 148 705 2330
Copper 384 385 8930
Epoxy 0.881 952 1682

FR4 0.25 1200 1900
Al2O3 35 880 3890

Aluminum 148 128 1930

Appendix A.2. Finite Element Simulations

Once the systems were generated, the correct temperature distributions were obtained
from FE simulations. Note, however, that instead of FE simulations any adequate simu-
lation methods could have been used. In this proof-of-concept study we focused on the
steady-state equation. Assuming that the material properties in the system do not change
with temperature, the thermal behavior of the system is determined by the heat equation

− ~∇ ·
(

k(x)~∇T(x)
)
= ρ(x)h(x) , (A1)

where ρ is the density, k the heat conductivity and h a heat source. ρ, k and h are assumed to
be constant over time, i.e., independent of the current temperature. Three types of boundary
conditions (BCs) were imposed on the systems for the Finite Element (FE) simulations:
(1) a Dirichlet-type BC at the bottom of the PCB, which was set to a constant external
temperature Text. The value of Text was assigned randomly to each of the systems we
generated, from the range 300 K± 25%. (2) a Neumann-type BC represented by a heat sink
on the top of the large IC, modelled via a heat transfer coefficient αsink (see Equation (9)).
For each system, αsink was randomly chosen from the range 2538.72 W/(Km2)± 25%. (3)
on all other outer exposed surfaces a heat transfer coefficient α was prescribed, taken
randomly from the range 14 W/(Km2)± 25%. Electronic losses were modelled as constant
heat sources. The magnitudes of the volumetric heat sources, located at the silicon die of
the ICs and at the core of the capacitors, were chosen randomly from the ranges specified
in Table A2.

The material properties ρ and k depend on the position x, although in the generated
systems they are constant over the different sub-parts of each component. ρ and h do not
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appear separately in Equation (A1), but rather as the product ρh. This implies that any
solution of the equation will depend on this product only and, thus, it is sensible to use the
product as input to the NN as explained below.

Next in the automatic workflow, a conformal mesh was generated using gmsh [41],
which consisted on average of 3 million elements. Steady-state solutions were obtained with
the open-source FEM solver ElmerSolver [42,43]. The main advantage of ElmerSolver
is that a scriptable interface between FreeCAD (for automatic geometry generation), to
ElmerGrid/gmsh (for automatic tetrahedral mesh generation) and ElmerSolver exists
which enables an automatized workflow for the system generation.

Table A2. Range of applied heat sources for the different components of the systems (in W).

Component Min Max

Center of large capacitor 0.1 0.3
Silicon die of large chip 10 19
Silicon die of small chip 0.1 0.5

Appendix A.3. Voxelization

For the NN, the 3D-systems were represented as a stack of 3D-images. This enabled
us to adapt NN methods previously developed for vision tasks to our problem (Figure 1d).
During postprocessing, each system was converted to four 3D-images. One 3D-image for
each of the physical properties (k, Text, ρh, α).

To create these 3D-images, the geometries of the basic components were voxelized
once using a custom FreeCAD-python script. The voxel size was 0.19× 0.19× 0.05 mm3

so that a batch of ten images fits in the GPU memory for training, while the voxel size
still resolves sufficient structural detail. The smaller resolution in z-direction was chosen
in order to resolve the thin copper layers. During the system generation workflow, each
component in the original system was then simply replaced by the previously voxelized
representation. To create the four different images, the voxelized geometry was replaced
part-by-part by the corresponding material parameter used in the FEM simulation. For our
systems, this procedure led to images with 128× 128× 128 voxels. The four 3D-images
were then stacked to create a four channel input for the network.

As labels for the supervized learning procedure the temperature solution obtained
by the FEM solver was used. The 3D temperature field was directly voxelized during
post-processing by Elmer. The FEM solution is only available and of interest within the
geometry (where a mesh is available). The outer image regions (we call them “air” regions)
were excluded in the loss definition (see Section 2.2.6).

Appendix B. Introduction to ANNs

In this section, we give an overview of neural networks, highlighting the aspects that
are most relevant to understand the rest of the paper; see, e.g., [44] for a detailed treatment.
In this work, NNs are used as highly versatile and non-linear function approximators.
Generally speaking, a neural network can be visualized as a stack of layers, each of them
computing a set of linear operations on their input data, subsequently applying a fixed
non-linear operation and passing the result to the next layer. The input to the network in
this work is a voxelized representation of a 3D electronic system (i.e., a 3D image), where
the different properties of the system are passed as different channels (in analogy to the
RGB channels of a standard 2D image). Convolutional neural networks (CNNs), consisting
of a special type of layer called convolutional layer, are used for processing images.

The most important feature in a convolutional layer of a CNN is that not every pixel in
the input image of a layer is connected to every pixel in the output, but rather each output
pixel is determined by a small set of input pixels (the receptive field), the number of them is
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given by the size of the so-called convolutional kernel (or filter). To be specific, the equation
defining the action of a 3D convolutional layer is:

zijk;C = bC +
kh

∑
α=0

kw

∑
β=0

kd

∑
γ=0

nc′

∑
F=0

xi′ j′k′F × wαβγ;CF , (A2)

with
i′ = i× sh + dh × α
j′ = j× sw + dw × β
k′ = k× sd + dd × γ

. (A3)

where zijk;C represents the value of the voxel at position i, j, k of the output 3D image, C
labels the channel (or feature map) of the output image, sh, sw and sd are natural numbers
called strides and dh, dw and dh are naturals called dilations (their meaning is explained in
Section 2.2), kh, kw and kd are the height, width and depth of the 3D convolutional kernels
applied to the input image x, with nc′ channels, bC is a bias parameter for each feature map
C and w are the weight parameters.

The next ideas to be presented are downsampling and upsampling. It is not necessarily
the case that the size of the output and input images of a convolutional layer coincide. It can
be inferred from Equation (A3), the output image size can be reduced by tuning the values
of the stride parameters. For example, choosing sh = sw = sd = 2, the size of the output
image will be halved. One refers to this process as downsampling. In image processing, the
purpose of downsampling is to force the CNN to extract relevant features from an image
(e.g., edges)but, in this work, extracting features is not so relevant since they are, to some
extent, manually implemented. Nevertheless, some degree of downsampling is necessary
to reduce the memory requirements of the network. The inverse action to downsampling
is upsampling. One can think of it as an interpolation procedure, where from one input
pixel a higher number of pixels are generated as output. In practice, this is achieved by
an operation called transposed convolution, which is mathematically very similar to the
standard convolution in Equation (A2), with different weights and biases to be learned.
Upsampling is necessary if downsampling is used in some of the layers of the network but
the output of a CNN must be another image of the same size of the input image, as is our
case. CNNs of this type are called fully-convolutional neural networks (FCNs).

Finally there is a different type of layer called pooling layer. They are parameter-free
layers (non-learnable) that apply a fixed operation on their receptive field. Typical pooling
layers include max-pooling and average-pooling layers, which give as output the maximum
or the average value, respectively, of the pixel (resp. voxel) values in their receptive field.

The training of a CNN consists of finding the optimal values of the parameters w
and b of each of the layers. This is achieved by minimising a certain objective function
(loss) on a labelled dataset. For this work, as discuss in the main text, the dataset consists
of a collection of simplified 3D circuits, each labelled by the result of a standard thermal
simulation. The training is performed on a subset of the whole dataset (training set), whilst
the rest are used to test the network (test set).
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