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Abstract: Four discrete models, using the exact spectral derivative discretization finite difference
(ESDDFD) method, are proposed for a chaotic five-dimensional, conformable fractional derivative
financial system incorporating ethics and market confidence. Since the system considered was re-
cently studied using the conformable Euler finite difference (CEFD) method and found to be hyper-
chaotic, and the CEFD method was recently shown to be valid only at fractional index a = 1, the
source of the hyperchaos is in question. Through numerical experiments, illustration is presented
that the hyperchaos previously detected is, in part, an artifact of the CEFD method, as it is absent
from the ESDDFD models.

Keywords: conformable calculus; fractional-order financial system; ESDDFD and NSFD methods;
hyperchaotic attractor; market confidence; ethics risk

1. Introduction

Hyperchaotic systems [1,2] —typically defined as systems with at least two positive
Lyapunov exponents [3-5]—of a fractional-order have been investigated in many con-
texts, such as systems of Rossler [6] or Lorenz [7] type, those with flux controlled memris-
tors [8] or realized in circuits [9-11], those arising from cellular neural networks [12], and
financial systems [13]. As recounted in [13], a nonlinear financial system depicting the
relationship among interest rates, investments, prices, and savings was first introduced
by Huang and Li [14]. It was extended to fractional-order in Chen [15], to uncertain frac-
tional-order form in Wang et al. [16], to delayed form in Mircea et al. [17], and to discrete
form in Xin et al. [18]. The average profit margin was added as a variable in Yu et al. [19],
while investment incentive and market confidence were introduced in Xin et al. [20,21].
Xin and Zhang [21] updated the 3-dimensional Huang and Li [8] model to a 4-dimensional
one by accounting for market confidence and [13] incorporated ethics risk to obtain a 5-
dimensional system, which was then fractionalized to obtain the following fractional-or-
der financial system considered in [13]:

T 'x =z+ (y — a)x + k(w — pu)

T2y =1 —by — x? + k(w — pu)

T2z = —x — cz + k(w — pu) (1)
T 4w = —dxyz

T 5u = k(w — pu)

where a = (ay, &y, a3, a4, as) is subject to a;,a,, a3 a4,as5 € (0,1), and T,,1<i <5,
denotes the conformable fractional derivative of order «;. The variables x, y, z, w, and u
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are the interest rate, investment demand, price index, market confidence, and ethics risk,
respectively; the parameters 4, b, and ¢ are the saving amount, cost per investment, and
demand elasticity of commercial markets, respectively, and 4, b, ¢ > 0; k, p, d are impact
factors associated with ethics risk.

Since analytic solutions do not exist, suitable numerical schemes to obtain solutions
of the conformable derivative financial system are needed. Though there are several meth-
ods to solve a conformable derivative system [22—47], these are too complex for many
people. Inspired by the discretization process for the Caputo derivative for Ricatti equa-
tions [45] and Chua systems [46], the conformable Euler’s finite difference (CEFD) method
[47] for the 5-dimensional fractional-order financial system is proposed in [13]. Numerical
experiments with the resulting discrete model were conducted to detect a hyperchaotic
attractor of the system. However, the standard Euler discretization of integer-order sys-
tems, such as studied in [13], is known to induce (see, e.g., [48,49]) numerical instabilities
and spurious behavior where none exist in the continuous system. Moreover, the CEFD
method has recently been shown [50] to be valid only for @« = 1 and is, therefore, not a
valid fractional method. Nonstandard finite difference (NSFD) models have extensively
[48] been shown to eliminate induced chaos; the exact spectral derivative discretization
finite difference (ESDDFD) methodology is a novel extension, developed in the context of
advection-reaction-diffusion equations [51], of the NSFD method to non-integer deriva-
tives [52].

It is, therefore, natural to ask whether some of the hyperchaotic behavior detected in
the fractional financial system is an artifact of the method and whether ESDDFD models
can be constructed to eliminate such induced hyperchaos. The purpose of the present
study is to investigate this question—in particular, the effects of the discretization of the
derivative and that of non-linear terms. To this end, the following four discrete models
using the ESDDFD method are constructed for the system (1) and the bifurcation experi-
ments of [13] are repeated with the new models.

};(;'Jr(lh—'_agc = F¥ (X, Yie» Zie» Uier Wi)

3;;:’(1}1—’_“3‘ = F) (X, Vi Zio» Uper Wi

% = —xj, — ¢z + k(w, — puy) @)
% = k(wy — puy)

% = F" (X, Yi» Zi» Z1)

i=1,2 and j = 1,2, where:

Fi Cor Yior Zio Wio Wie) = Zge + (Virr — @) + k(wye — puy)
FY (%ies Vi Zio Uy Wie) = 1 = by — X0 + k(wy, — puy)

d
FY (X, Yior Zks 21) = _Exkyk(zk + zx)
F3* = F{ (X Yier 1) Zioo Uir Wie)
Fzy = Fly(xk'Yk+1'Zk'uk'Wk)
F3' = F (X, Yicr1r Zior Zies1)

The remainder of this article is organized as follows. In Section 2, the ESDDFD fun-
damentals, a description of the model (1), and the CEFD model from [3] are presented.
Section 3 presents the construction of the denominator functions, ¢;(h,a,),1<m <5,
for the ESDDFD model (2) and compares sub-models of (2) with corresponding CEFD
sub-models. In Section 4, experimental results of hyperchaotic attractor detection from the
proposed financial system using both methods are presented. Concluding remarks in Sec-
tion 5 close the paper.
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2. Preliminaries
2.1. The Conformable Derivative ESDDFD Discrete Model Construction Fundamentals

While the Riemann-Liouville, Caputo, Atangana-Baleanu, and Griinwald-Letnikov
fractional derivatives [53-60] are widely used in various applications, their definitions
lack the chain rule, a classical derivative property satisfied by the conformable fractional
derivative (CFD) [61-63] and its various extensions (see e.g., [64]). A financial system with
a market confidence and ethics risk model was recently [13] added to the many existing
applications of the CFD in various scientific fields [22,65-74].

2.2. The Conformable Derivative Hyperchaotic Financial System and Its CEFD Model

The conformable fractional derivative financial system model (1) is based on a suc-
cessive addition of various factors, starting with the Huang and Li [8] nonlinear financial
system model:

X=z+@y—a)x

y'=1-by—x? ®)

7'=—x—cz
modeling the interaction of interest rate (x), investment demand (y), and price index (z);
the variables and parameters are the same as in (1). Model (3) was extended, by Xin and
Zhang [15], to account for market confidence:

xX'=z+ @y —a)x+mw
y' =1-by—x%+m,w
z'=—x—cz+myw

w' = —dxyz

4)

where m,, m,, m3 are the impact factors associated with market confidence (w); the re-
maining variables and parameters are the same as in (3). Model (1) is the fractionalization,
predicated on the practice that fractional-order economic systems [15,75-79] can general-
ize their integer-order forms [14,80,81], of the following extension of (4) in [13] to account
for both market confidence and ethics risk (u):

X'=z+@—-a)x+k(w—pu
y =1—-by—x2+k(w—pu)

zZ'=—x—cz+k(w—pu) (5)
w' = —dxyz
u' =k(w—pu)

When a=(1,1,1, 1, 1), system (1) degenerates to system (5); in the absence of ethics
risk, (5) reduces to (4); in the absence of market confidence, (4) reduces to (3). In these
three cases, therefore, any discrete method developed for (1) must reduce to that of the
three respective reduced systems. Chaotic behavior for both the CEFD and ESDDFD mod-
els will be numerically investigated in Section 4 for (1) as well as the reduced fractional
counterpart of system (3).

The following discrete model was obtained in [13] from the CEFD method and used
to numerically investigate hyperchaos of the system (1):
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h*
X1 = X + o (Zk + (Y — a)xy + k(wy — Puk))
1

he2
Yi+1 = Vi T a_(l = by — xpxp + k(wy, — Puk))
2

has

Zgy1 = Zx — a_(xk + ¢z — k(wy — Puk)) (6)
&

U1 = U +—— k(W — puy)
as
h%

Wiy1 = Wi — 2. dxYizi
4

3. ESDDFD Discretization of the Conformable Derivative System and Its Reductions

In the ESDDFD and NSFD discretization methodologies, the first step is to consider
a linear sub-system whose exact or best scheme can be constructed. Such a sub-system, in
this case, is the following:

Tfx = —ax,
thlzy = —by,
T3z = —cz, 7)
Tta“w =0,
T,%u = —kpu,

which has only positive solutions for any positive initial data. The exact discretization of
(7), which has a solution identical to that of (7), is as follows:

Xk+1— Xk __

galnay) M

kt1 =V _ _

91(nay) by
kt1=Zk _ _

Prhaz) | Pk (®)
Wk+1—Wk —

" ¢11(lh.054) !

k+1~ Uk

Yt U — oy

br(has) Pl

where the nonstandard denominators ¢;(h, «;),1 < i <5, are given by:

_9 @,
¢ (h,a;) = Ql<1 —e a L (Hm =t ]>,
with Q1 =a,Q; =b,03 =¢,04 = 0,05 = kp.

Since (1) reduces to (7), any valid discrete model for (1) must be reducible to one
consistent with its exact discretization—that is, (8). By comparison, a reduction of the
CEFD model (6) to the sub-system (7) yields the following discrete sub-system:

h*1
Xp+1 = X — a_axk'

1
h92

Yier1 =Yk — by,
2
ha3
Zk+1 = Zk — a_3CZk/ )
ha

Wigr = W + Q4 an Wier
RS
Ug+1 = Uk — e kpuy,

which is positive only if the following condition is satisfied: (1 - %Qi) =20,1<i<5,

with the Q; as in (8); such conditional positivity is known to induce chaotic behavior. All
of the sub-equations (8) are of the form:
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TSP = —P,
whose CEFD scheme is:
th
Peyy = P —— APy,

which has been conclusively shown in [50] to be valid only for a = 1.

It is shown in [50] that a modified CEFD (MCEFD) may be obtained from the follow-
ing alternate CFD definition, which is equivalent to the fractional change of variables in
the integer-valued derivative (see also [82]):

Definition 1. Given a real-valued function on [0, o), the conformable fractional derivative has
the following alternative definition:

- . fE+h)—f ()
STEIF (O] = lim FRALIF (9] = alim L0 LC),

where STE[f(0)] is understood to mean §TE[f(0)] = tllr(g;r STEF(D].

Therefore, the Euler scheme, resulting from the MCFED, is the same as that given in
Equation (8), only with the denominator of:

L e
¢(h, o) = _<1 —e alermi-t ]>
Q;
replaced by:
b(ha;) = —[(t +h)% —t%], 1<i<5,

which is equivalent to replacing h* by a;$,(h, a;) in the CEFD scheme (9).
To enable the assessment of the effect of the denominators ¢;(h, «;),j = 1,2, the fol-
lowing schemes are compared:

Xk+1 — Xk
Xet1 — Xk _ N _ ,
¢;(h, ay) Zk Ve — a)xg
Vi Vk — 4 e Nz
bjhaz) 1 - by, — (x)?, o
Zk+1"Zk _ .. _ _
¢j(has) X =€z, j = 1,2.

To enable the assessment of the effect of the non-local discretization of nonlinear
terms, the following schemes are compared:

X, =X

W =2z + (Vi+1 — Xy,

Yh+17Vk _ 1 _ _

9y LT Ve T XX (11)
Zk+17%k _ _ P

—¢j(h'a3) X —CZg, ] =1,2.

The terms (y — a)x, and x?are discretized non-locally as, respectively, (Y41 — @)X
and xj,x;, while discretization of the terms z (in the first Equation of (10)) and x (in
the third as z, and x;) ensures respective consistency with the terms cz in the third and
ax in the first Equation of (11) in the cases where ¢ =1 and a = 1.

By comparison, the scheme obtained through a reduction of the CEFD model (6) to
its 3-dimensional sub-system (3) yields the following discrete sub-system:

ay
Xiar = X +—(2z + (Vi — )xx)
L (12)
az

Yi+1 = Yk +— (1 — by, — xx;)
[4%]
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he3
Zpy1 =2 t a_3(_xk —czp).

Since system (12) reduces to the x —y — z sub-system of (9), which suffers from in-
duced chaos, it is to be expected that it too suffers the same, which will be numerically
investigated in the next section.

The ESDDFD models (2) are then obtained by discretizing k(w —pu) as k(wy —
puy) to ensure consistency with (8) and then discretizing xyz non-locally as either
éxkyk(zk +z;,) or éxkykﬂ(zk + Z41), where the form x;,y;,, is used to match the xy
term in the x-equation.

Xe+1 — Xk
—¢j(h: @) Z + O —

Vi+1 — Vi

== =1-by, — (x3)%> + k(w, —puy)
qu(h,az) Yk k k — PUg
Zr+1 — Zk _
¢j(h!a3)
Ug+1 — Ug
—— = k(wy, — puy)
¢, (h,as) kTPt

Wi — Wi d )
—_ = ——x Zr + Zp), =1,2.
ij; %) 2 Vi (Zi ) ]

a)xy + k(wy, — pwy)

—x3 — ¢z + k(wy, — puy) (13)

and

Xk+1 — Xk
¢} (h' al)
Y1 ~ Vi _
¢;(h, az)
Zit1 ~ Zk _
¢] (h! (13)
Upt+1 — U
———=k(w, —pu
¢j(h, as) (W, — puy)
Wk+1 — Wk d .
m = =5 %Ven1 (@t 2Zgin), J =12

The schemes (13) are explicit and can be explicitly solved for each j = 1,2, in the or-

der Xpi1,Vk+1) Zkt+1 Uk+1, Wie1 to obtain the following:

=7z + Vr+1 — DX + k(Wi — puy)
1= by — Xpy1x, + k(W — puy)

=Xy — €z + k(W — puy) (14)

X1 = X + @i aq) [z + (Vi — a)x + k(W — puy)]

Vierr = Vi + @ (h, az)[1 = by, — (x3)* + k(wy, — puy)]

Zerr = 2z — P (h, az)[xy + ez — k(wy — puy)] (15)
U1 = Uy + Pj(h, as) [k(wy — puy)]

d
Wigp1 = Wy — E(»bj(h: a)x ye(zp + z),  j=1.2.

While implicit, the schemes (14) can be explicitly solved for each j = 1,2 in the order
Upt1) Zie+1) Xk+ 1 Yier1» Wi+1 to obtain the following:

Upr1 = Uy + P (h, as)[k(wy, — puy)]
Zr = 2z — Pj(h, az)[xy + ¢z — k(wy, — puy)]

%t = (5 g, (b et (b am]
+ ¢;(h, al)xk{yk + ¢j(h, az)[1 = by, + k(wy, — Puk)]})

¢j(h, a)[z, — axy + k(w — pw)]

T+ ot a)med(h ap)xe]

W1 = Wi — @(h, a4)§xk3’k+1(zk + Zy41)
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4. Numerical Experiments

In this section, hyperchaos detection experiments are conducted, parallel to those of
[13], by varying the parameters related to ethics risk, such as as, the confidence factor k,
and the risk factor p, in the CEFD and ESDDFD models and their reductions. The follow-
ing parameters and initial point values are fixed following [1]: h = 0.002,a = 0.8,b =
0.6,c=1,d=2,a, =03, a, =0.5,a;3 =0.6,a, = 0.24, xy = 0.4,y, = 0.6,zy = 0.8, wy, =
0.3, uy = 0.4.

4.1. Three-Dimensional Systems Comparison

There were no experiments performed in [13] for this case. Simulations for both the
ESDDFD model (11) and the CEFD model (12) are performed with the same parameters.
The following models (16)—(19), obtained through the ESDDFD method,

Xk+1~Xk _ _
i1—(3%[(”!1)0-3—5"3] =2z + (x — 0.8)x,
0.8
Yk+1~Vk _ 1 _ 2
i[l—e%[(wh)o-i‘—to's] =1-0.6y, — (x)% 16)
0.6
_ ZR17%k .
[1_6%[(”)1)0-6—5’-6]] = "Xk T Zgs
— Mketa Xk _
%[(t+h)°-3—t°-3] Ze + (k — 0.8)xy,
_ Ykt Vk 1 _ _ 2
L[(t+h)05-105] 1-0.6y, — (xi)% an
TemTme
rls[(t+h)°-5—t0-6] X = 2k
Xk+1~Xk _
L[l_e%[mh)o.s_to.a]] =2k + Vks1 — 0.8)x,
0.8
Yk+1~ Yk 1 _
i[1—e%[(t+h)°-5—t°'5] =1- 0.6y — X1 % (18)
0.6
_ ZR+17Zk .
[1_6%[(174.}1)0.6_,;0.6]] Xk = Zs
Xk+1~Xk _
Tempa-ron) ~ 2+ Ok = 08)xi
_ YkniVk  _q _ _
ﬁ[(t+h)°-5—t°-5] 1-0.6y, — Xp41Xk, 19)
Zky1 — Zg -
1 06 06 k
0.6 Lt + h)6 —10¢]
are compared to (20), obtained through the CEFD method:
h0.3
Xierr = X+ (2 + (0 — 08)x),
hO.S
Vis1 = Vi + E(l — 0.6y, — X X1), (20)

- (X — 2p).

ho
Zgyr = Z t o

While bifurcations can be seen in Figure 1a for the CEFD model, they are absent from the
results of the ESDDFD models, Figure 1b-e.
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CEFD Model 20
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04
N 02
o
0.2
0.4
15
-
1% 5
# e 1
0.5 . - e ; 0
y o 2 %
(a)
Model 16 Model 17
08- 08 -
06 - 06 -
04
X -0.0049 X -0.00779
N 02 eesr N 02y 16687
% Z 0.00502 Z0.008
0
02-
04 4. o
15 - i ; T
= LiE:]
1 05 o2 04 0.6
¥ x
Model 18 Model 19
0.8 - 0.8 -
0.6 - 06 -
04 4 04 - i‘\‘
X -0.01156
N 02- ¥ 1.6657 N 02- :f:snﬁer‘s
Z001184 20.00861
0 * oo ¥
02- )
0.4 - 0.4 - 1
- ——— 1 15 Sl |
e ——— R a6
! 05 o % ! 0s g w2 M o
¥ x ¥ X
(d) (e)
Figure 1. Phase portraits (a) CEFD model (20) (b) MCEFD Model (16) (c) Model 17 (d) Model 18 (e)
Model (19).

4.2. Five-Dimensional Systems Comparison: Varying as, k, and p

For this case, experiments performed in [13] are performed with the same parameters
for models obtained through the ESDDFD method, for the various cases and values of
(as, k,p) used in [13]. Model (21) from the CEFD method,

0.3

X1 = X + 3 (21 + e — 0.8)x;, + k(W — puy))
05
Yi+1 = Yr T 05 (1 = 0.6y, — xpxy + k(wy, — Puk))
0.6
Zp41 = Z — R(xk + 2 — k(W — puy)) (21)
}'10.24
Wgy1 = Wi — @Zxkykzk
5

U1 = U + —— k(W — puy)
as
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is compared to the following four models—respectively, MCEFD (22), ESDDFD1 (23),
ESDDEFD?2 (24), ESDDFD3 (25)—obtained through the ESDDFD and NSFD methods:

Xpp1 — X
T k+1 k =Z + (yk - 0.8)xk + k(Wk - puk)
o [(t + h)03 — £03]
Vi+1 — Vi _
- =1— 0.6y — xpx + k(W — puy)
ﬁ [(t + h)o.s — tO.S]
' Zk+1 — Zk
T = —xp — 2z + k(W — puy) (22)
0 [(t + h)06 — £06]
Wipg — W
I et k = —x, Yk (2 + 2i)
o [(t + h)024 — 024]
Uprq — U
T k+1 k — k(Wk _ Puk)
- [+ RS — ¢95]
x x
- At ——— =2 + (O — 0.8)x, + k(Wi — pwy)
_[1 I ]]
0.8
- Yit1 — y"os — = 1-0.6y; — XXy + k(Wi — puy)
L[} _ g oiemes— ]]
0.6
Zhea1 2k = —x; — 7 + k(W — puy)
A R @)
Wgy1 — Wi
- +
[1 eo. 24[(t+h)° 24 ¢0. 24]] T F 2)
Uy — Uy
- _J;; —— = k(wy, — puy)
A [, SPrerns-cas)
kp 1—e®s
Xpp1 — X
1 = . =2z + Y1 — 0.8)xp + k(W — puy)
0—[(t + h)03 — ¢03]
YVi+1 — Vi
1 =1- 06yk — Xk+1 Xk + k(Wk - puk)
—5[(t + h)OS — tOS]
Zpy1 — Z
- k+1 ~ Zk = —xy — 2z + k(wy, — puy) (24)
ﬁ[(t + h)06 — £06]
Wg — Wy
I 1 = =X Vi+1(Zk + Zg41)
= [(t + h)024 — £024]
Up1 — U

= k(wy — puy)

le—k .O

(¢ + ) — £s]
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Xk+1 — Xk
1 =08 1103 _103] =z + (Yr+1 — 0.8)xy + k(wy, — puy)
——|1—¢e03 st
0.8 [ ]
Ve+1 — Yk
—+0.6 =1- 0.6y — X412, + k(Wi — puy)
1 [1 _ eﬁ[(ﬂ'h)o's—to's]]
0.6 ’
Zrp+1 — 2 _
[1 eg—é[(mh)o.e_to.e]] = =X = 2z + k(W — pu) -
Wi — Wi
-1 021 oza] = —XVie+1(Zk + Zir1)
[1 — ooal(t+h)024—t0 ]]
Ug+1 — Ug
1 ZkPr e n)as —tas = k(wy —puwe)
_[1 _ ea—s[(t+ )¥5 -t ]]
kp

4.2.1. Varying as with Fixed k=2 and p =1 and as € [0.232, 0.328]

In this case, Ref. [13] concluded that system (6) is hyperchaotic with as € [0.232, 0.328];
fixing as = 0.24, a set of two positive Lyapunov exponents and three negative Lyapunov
exponents were found. Profiles for x,y,z,w and u, when as = 0.232 for model (21), are
given below. Chaos can be clearly seen in Figure 2 which gives the phase portraits for the
CEFD model. For each model (22) through (25). Figure 3 shows phase portraits using the
same step size and parameter values. These models produce identical graphs, which differ
significantly from the graphs for model (21). The bifurcation tests for the ESDDFD model
are performed with the same parameters. The bifurcation diagrams for x,z and u for
model (21) are in Figure 4. These again show clear signs of chaos while the bifurcation
diagrams for models (22) through (25), which are given in Figures 5-8, do not.

CEFD Model 21 x-y-z g = 0.232 CEFD Model 21 x-w-z = 0.232

3 )

CEFD Model 21 x-u-z ag= 0.232

08 -

06 -

04 --

52

05

T

(©)

Figure 2. CEFD model (21) profilesof (a) x —y —z, (b) x —u—2z, (¢) x —w —z, at h = 0.002,k =
2,p=1a5=0.232.
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Figure 3. Phase portraits (a) x—y—2z, (b) x—u—2z (c) x—z—w, at h=0.002,k =2,p =

1, a5 = 0.232 for models (22) through (25).
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For step sizes above 0.003, CEFD, (21), fails. MCEFD, (22) fails for step sizes above
0.573. The graphs in Figure 9 were produced using the same parameter values as before,
except h = 0.1. The graphs in Figure 10 were done with /1 = 1.0. These show the effect of
larger step sizes on methods (23), (24), and (25). The ESDDFD methods preserve the end
behavior at much larger step sizes than CEFD and MCEFD. Note the differences in the
early behavior between the methods, especially when compared with i = 0.002.
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0.232 for models (22) through (25). h = 1.0, a5 = 0.232 for (23) through (25).
4.2.2. Varying p with Fixed k = 2,a5 = 0.3, and p € [1,2]

In this case, Ref. [13] concluded that system 6 is hyperchaotic with p € [1, 2]. Fixing p
=1, a set of two positive Lyapunov exponents and three negative Lyapunov exponents
was determined. Bifurcation tests for the ESDDFD models are performed with the same
parameters for the full discrete model (2). Figure 11 shows the bifurcation diagrams for
u,x and z for the CEFD model (21). Figures 12-15 show the bifurcation diagrams for the
models (22) through (25). As in Section 4.2.1, the CEFD diagrams show evidence of chaos
while the other models do not.
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Figure 11. CEFD model (21); (a) uvsp, (b) xvsp, (c) zvsp,at k =2,a5 = 0.3,p € [1,2].
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Figure 13. ESDDFD1 model (23); (a) uvsp, (b) xvsp, (c) zvsp,at k =2,a5 = 0.3,p € [1,2].
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Figure 15. ESDDFD2 model (25); (a) uvsp, (b) xvsp, (c) zvsp,at k=2,a5 = 0.3,p € [1,2].

Setting p = 1.94, phase portraits are given for models (22) through (25) in Figure 16.
Figure 17 shows the phase portraits for model (21). There are clear signs of chaos in the
phase portraits for model (21) and no chaos in those for the other models.
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Figure 16. Phase portraits (a) x—y—2z (b) x—u—2 (¢) x—z—w, at h =0.002,k =2,p =
1.94, a5 = 0.3 for models (22) through (25).

GEFD Model 21 p=1.94 CEFD Model 21 p = 1.94 x-z-u
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(c)

Figure 17. Model (21) phase portraits (a) x —y —z, (b) x—z—u, and (¢) x —z—w at k=2,p =
1.94, a5 = 0.3.

4.2.3. Varying k with Fixed p =1 and a5 = 0.3, with k € [1.5, 2.5]

In this case, Ref. [13] concluded that system (6) is hyperchaotic with k € [1.5, 2.5].
Fixing k = 1.5, a set of two positive Lyapunov exponents and three negative Lyapunov
exponents were determined. Bifurcation tests for the ESDDFD models are performed with
the same parameters for the full discrete model (2). Figure 18 gives the bifurcation dia-
grams for CEFD, model (21). Figures 19-22 give the bifurcation diagrams for x,u and z,
for models (22) through (25). Once again there is chaos evident in the CEFD diagrams but
no chaos in the diagrams for the other models.
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Figure 18. CEFD model (21); (a) uvsk, (b) xvsk, (c) zvsk, at p =1,a5 = 0.3,k € [1.5,2.5].
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Setting k = 2.45, phase portraits are given for models (22) through (25) in Figure 23.
The phase portraits for CEFD, model (21), are given in Figure 24. Again, while the phase
portraits for CEFD show chaos, it is lacking in the phase portraits for models (22) through
(25).
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Figure 23. Phase portraits (a) x —y—2z, (b) x —u—z,
1,5 = 0.3 for models (22) through (25).
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Figure 24. Model (21) phase portraits; (a) x—y—2, (b) x—z—u, and () x —z—w at k=
245, p=1,a5 =0.3.
424 . With Fixedk=2,p=1and as = 0.24

In this case, Ref. [13] concluded that system (6) has a hyperchaotic attractor in the
y—z—u and x —y —w planes. Two phase portraits for model (21) are given in Figure
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25 while the corresponding phase portraits for models (22) through (25) are given in Fig-

ure 26. While the results for model (21) show chaos, the results for models (22) through
(25) do not.
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Figure 25. Phase portraits (a)y—z—u,(b)x —y—w, at h=0.002,k =2,p =1,a5 = 0.24 for

model (21) CEFD.
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Figure 26. Phase portraits (a) y—z—u, (b) x—y—w,at h=0.002,k =2,p=1,a5 = 0.24 for
models (22) through (25).

5. Discussion

A discrete model using the conformable Euler finite difference (CEFD) model, (6),
was constructed in [13] and used to detect hyperchaotic behavior of the system (1). In this
paper, a discrete model (2) has been constructed for the system (1), and the parameters
from [13] were used to study hyperchaos using bifurcation techniques. The discrete model
(2) is constructed using the exact spectral derivative discretization finite difference
(ESDDFD) method, a universal extension of the nonstandard finite difference method to
fractional derivatives, which is designed to eliminate contrived chaos. Various cases are
considered in parallel to those considered in [13] as well as for sub-systems relevant to the
construction of the discrete model (2). While the proposed ESDDFD models produce sim-
ilar results to each other, those results are significantly different from those obtained in
[13] and exhibit no hyperchaotic behavior.

In view of the results obtained, it is reasonable to question the validity of the conclu-
sions of hyperchaotic behavior previously reported for related models, which the authors
intend to pursue in the future. While the conformable derivative is a local derivative and
has neither memory nor nonlocality, it is a multiple of the Caputo FD [83], and therefore
related to those with these properties. It will, therefore, be interesting to explore what, if
any, properties of the conformable system are inherited by the Caputo and Riemann-Li-
ouville FDs through these relationships. Further, as suggested in [13], studies incorporat-
ing real economic data with parameter estimation for the financial system with market
confidence and ethics for all these derivatives are also necessary. Finally, as can be easily
seen from Theorem 4.1 of [50], the discretization methods presented here for CFD systems
are easy to implement and are equally applicable to all Caputo type derivatives, and hence,
to Riemann-Liouville derivatives through their relationship; hence, they have potential to impact a
wide range of fractional derivative applications.
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