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Abstract: SEIR models are typically conjured for populations in open environments; however, there
seems to be a lack of these types of models that deal with infection rates amongst enclosed spaces. We
have also seen certain age groups struggle to deal with COVID-19 more than others, and to this end,
we have constructed an age-structured SEIR model that incorporates the Gammaitoni–Nucci model,
which is used for infective material in an enclosed space with ventilation. We apply some sensitivity
analysis to better understand which parameters have the biggest impact on overall infection rates,
as well as create a realistic scenario in which we apply our model to see the comparison in sickness
rates amongst four different age groups with different ventilation filtration systems (UVGI, HEPA)
and differing quanta production rates.

Keywords: COVID-19; Gammaitoni–Nucci; SEIR; applied modeling; modeling for infectious disease
spread; COVID filtration

1. Introduction

As we enter another phase of what, as of 22 February 2021, was already one of the
top ten deadliest diseases in human history [1], it is imperative humanity has all the tools
necessary to prevent its most vulnerable, the suffering that many have already had to
endure. COVID-19, the novel coronavirus that struck its first victim in Wuhan, China, on
17 November 2019 [2], has exacted a devastating toll throughout both years 2020 and 2021.
Currently, the WHO statistics record over 192 million cases of COVID-19, and over four
million deaths worldwide, as can be seen in Figure A1 [3].

There has been widespread understanding that some communities have had more dire
consequences with regard to COVID-19 than other communities [4–6]. Unfortunately, there
are so many of these marginalized groups that there is no way to analyze them all in the
scope of this study. This leads us to look for which group might be the most vulnerable,
which brought us to Figure A2 [3]. We can see that deaths resulting from COVID-19 are
heavily skewed towards the elderly and that those aged 65 and older account for 79.3% of the
COVID-19 deaths in the USA [7], while only accounting for 16.5% of the population [8]. When
compared to the death proportion overall (including COVID-19) of 73.9% for the 65+ group,
there is reason to believe that the elderly are more adversely affected than other age groups.

By assuming that different age groups are affected with varying degrees of severity [6,9],
it is our goal to ferret out how different these adversities are when applied to situations
where we know the elderly are in more compromising positions; specifically in places, such
as nursing homes and hospitals and other enclosed spaces where, especially, many elderly
are cared for. First, we must quantify the spread of transmission in an enclosed space, for
which,we will use the idea proposed by Gammaitoni and Nucci [10].

2. Materials and Methods
2.1. Gammaitoni and Nucci Model

Though we will be referencing the work performed by Gammaitoni and Nucci (G–N
model), it is of great importance to briefly examine the governing equation that lead to the
success of their model.
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Wells–Riley Equation

It was the seminal work of Wells [11] and later, its extension by Riley [12], that led
to the model by Gammaitoni and Nucci (G–N Model) [10]. Wells developed a method of
estimating how much contagion is expelled into the air based on the size of the evaporated
droplet and came up with the “quantum” theory for infections. Wells defined a “quantum”
of infection as “the number of infectious droplet nuclei required to infect 1 − 1

e of susceptible
persons” [10,11]. This is from the fact that there is a relationship between the dosage of
infection and the initial response that reasonably follows a Poisson distribution. Later,
Riley et al. [12] extended the concept and produced the Wells–Riley equation, namely

C = S(1 − e
−Ipqt

AV )

where we have that C is the number of new cases, S is the number of susceptible, I is the
number of infected, A is the ventilation rate in air changes per hour (ACH), V is the volume
of the occupied space measured in meters (m3), p is the pulmonary ventilation rate of the
susceptibles

(
m3

h

)
, and finally, q is the amount of quanta produced per hour by an infector.

2.2. G–N Extension

The challenge then became to discover how the amount of quanta in the air relates to
the infection rate of individuals in an enclosed area and how we can best mitigate the risks
of being in a closed area, if possible at all. Gammaitoni and Nucci came up with a clever
set of differential equations that are built completely from the Wells–Riley equation but
would relate quanta to infection rate. The equations are

dS
dt

= − p
V

QS (1)

dQ
dt

= −AQ + qI (2)

where we have Q as the total amount of quanta in the space. Using these equations, Gam-
maitoni and Nucci would test preventable countermeasures against outbreaks occurring in
areas assumed to be previously infection-free, such as operating rooms and sterile hospital
rooms. Since our purpose lies in resolving enclosed situations such as this, we can use this
as a base to understand how COVID-19 might spread amongst a susceptible population.
However, the G–N model is limited in scope to understanding only how quanta and infec-
tions relate, and one cannot truly get a complete picture of the dynamics of an outbreak
using solely this model.

2.3. SEIR Model

To overcome the limitations of the G–N model, we can look to using the well-known
SEIR model that has been a mainstay for decades in studying infectious disease dynamics.
The SIR model, also known as the Susceptible-Infected-Removed model, is the basis for the
SEIR model. In the SIR model, there are three linked categories, the number of susceptible,
S, the number of infected, I, and the number of people removed through death or immunity,
R. The interactions between these categories are described by the differential equations
following [13,14]

dS
dt

= −βSI (3)

dI
dt

= βSI − γI (4)

dR
dt

= γI (5)
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and N = S + I + R. Here, N is the total population, β is the infection transmission rate
between susceptible and infected people, and γ is the recovery rate which is the reciprocal
of average days required to become removed [15]. We can then normalize the variables as:
s = S

N , i = I
N , r = R

N , R0 = βN
γ .

R0, the basic reproduction number, is defined to be the expected number of infections
that a singular infector will produce amongst a totally susceptible population. In the
literature, authors will often refer to these as generations of infection, where the first infector
will be generation zero, or generation one, depending on the author. Here we will refer to
the first generation as zero.

Substituting back into our original differential equation gives us the normalized
versions

ds
dt

= −Nβsi (6)

di
dt

= Nβsi − γi (7)

dr
dt

= γi (8)

and s + i + r = 1.

2.4. Incubation Period

The basic SIR model lacks realism, in that it does not take into account the transition
time between becoming infected and having the ability to infect others. We can solve this
problem by adding an “(E)xposed” state that is a link between the susceptible and infected
states, the incubation period here being the time it takes the average individual to start
showing symptoms. We can then extend the SIR model with this consideration by adding
in an “exposed” state before they become an infector. This gives us the SEIR model

dS
dt

= −βSI (9)

dE
dt

= βSI − αE (10)

dI
dt

= αE − γI (11)

dR
dt

= γI (12)

where now S + E + I + R = N. Normalizing yields s = S
N , e = E

N , i = I
N , and r = R

N to
give us

ds
dt

= −Nβsi (13)

de
dt

= Nβsi − αe (14)

di
dt

= αe − γi (15)

dr
dt

= γi (16)

with s + e + i + r = 1. The newly minted parameter α is the rate of progression from
the exposed to the infected state. This is the reciprocal of the number of days it takes on
average to develop symptoms. The basic reproduction number R0 does not change with
the addition of an exposed state, as none of the infectors nor the infection is lost, only
translated further out in time.
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2.5. Combining Gammaitoni–Nucci and SEIR

As stated previously, to overcome the weaknesses in each of the SEIR and G–N models
we will combine them to gather information on population dynamics in an enclosed space.
To do this we notice that Equation (1) from the G–N model and Equation (3) from the SIR
model are similar, and under the assumption that ventilation and quanta generation are
constant. Because the time scale differences between susceptibles and quanta levels from
equations of the G–N model work on such different time scales, as quanta generation is
performed on small time scales and sickness on a much larger time scale, for practical
purposes, we can assume that quanta levels are in a pseudo-steady-state. Thus, we will
allow dQ

dt = 0, we can find Q = qI
A and can express Equation (1) as

dS
dt

=
−pq
VA

SI

which is Equation (3) where β = −pq
VA . We can then combine and normalize, as performed

previously, to obtain the first combined model

ds
dt

= −Npq
VA

si (17)

de
dt

=
Npq
VA

si − αe (18)

di
dt

= αe − γi (19)

dr
dt

= γi (20)

This model with its transition rates can be visualized in Figure 1.

Figure 1. SEIR-GN flowchart.

2.6. Multi-Age SIR Model

One can expand the use of the SIR model to compare sickness rates of different groups.
In [16], such an expansion was performed to handle different age groups with different
infectious classes (symptomatic and asymptomatic, denoted by Is

i and Ia
i , respectively).

The expanded model is given by

dSi
dt

= −βSi

n

∑
j=1

(
ηCa

ij I
a
j

Nj
+

Cs
ij I

s
j

Nj

)
(21)

dIa
i

dt
= kβSi

n

∑
j=1

(
ηCa

ij I
a
j

Nj
+

Cs
ij I

s
j

Nj

)
− γIa

i (22)

dIs
i

dt
= (1 − k)βSi

n

∑
j=1

(
ηCa

ij I
a
j

Nj
+

Cs
ij I

s
j

Nj

)
− γIs

i (23)

dRi
dt

= γIa
i + γIs

i (24)

where ∑i Ni = ∑i(Si + Is
i + Ia

i +Ri) = N. It is the assumption that the recovery rates are the
same for both infectious classes. β is the transmission rate on contact, η is the transmission
modifier for asymptomatics, which is the rate at which asymptomatic infectors will spread
the disease as a proportion of symptomatic spread rate. There are many instances, where
due to lack of symptoms, a contagion is less likely to transmit from an asymptomatic
person. Finally, k is the proportion of infectors that become asymptomatic [16].
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2.7. General Contact Matrix

In Equations (21)–(23), we also find a Cij term, which is the contact matrix for the
system. The contact matrices are the average number of contacts per day by someone in
category i interacting with someone in category j, where we have that the person who is in
class j being designated as asymptomatic or symptomatic [16]. In this model, since there are
two different classes of contact matrices, one for symptomatic and one for asymptomatic,
then they must be equated in some way. To do this we chose to let w be the proportion of
contacts made by a symptomatic infected person compared to an asymptomatic person. We
assume that if someone is sick with symptoms that they will try and reduce their contacts,
thus we will say that Cs

ij = wCa
ij, where 0 ≤ w ≤ 1. Thus, Equations (21)–(23) will change

such that

n

∑
j=1

(
ηCa

ij I
a
j

Nj
+

Cs
ij I

s
j

Nj

)

becomes

n

∑
j=1

(
ηCa

ij I
a
j

Nj
+

wCa
ij I

s
j

Nj

)

and then we will just let Ca
ij = Cij to finally obtain

n

∑
j=1

(
ηCij Ia

j

Nj
+

wCij Is
j

Nj

)
.

2.8. Combining G–N and Age-Structured SEIR

Now that we have the combined Gammaitoni–Nucci and SEIR models, we can com-
bine this with the multi-age model to better see how each age group gets affected during a
disease outbreak. We first notice that in the multi-age model Equations (21)–(23), we have
the term

n

∑
j=1

(
ηCij Ia

j

Nj
+

wCij Is
j

Nj

)

which is the sum of all the different age groups contacting each other and spreading the
disease. This is effectively the combined number of infectors, or the I in the original SIR
model. If we use this idea, then we can say that this is the number of people that have
transitioned from the susceptible to the infected stage. We can then interject an intermediate
stage, as is done in the SEIR model, which more realistically approximates the situation
that we model as with any droplet diseases that take time before symptoms show. Thus,
if we say that first, the susceptibles have to go through the exposed phase E, then we can
combine these two models to obtain
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dSi
dt

= −βSi

n

∑
j=1

(
ηCij Ia

j

Nj
+

wCij Is
j

Nj

)
(25)

dEi
dt

= βSi

n

∑
j=1

(
ηCij Ia

j

Nj
+

wCij Is
j

Nj

)
− αEi (26)

dIa
i

dt
= kαEi − γIa

i (27)

dIs
i

dt
= (1 − k)αEi − γIs

i (28)

dRi
dt

= γIa
i + γIs

i (29)

where k is the proportion of those that become asymptomatic infectors, α is the exposure
time or the reciprocal of the time it takes on average to develop symptoms, γ is the
reciprocal of the average recovery time in days, and i = 1, 2, 3 . . . are the age groups. Since
we are under the assumption that the rate at which quanta is generated is matched by
the pseudo-steady-state ventilation, then we can also assume that β can be substituted for
pq
VA , as was done in the SIR and G–N combination. Thus, we have the overall combined
multi-age ventilated space SEIR model. Normalizing then gives us

dsi
dt

= − pq
VA

Nsi

n

∑
j=1

(
ηCijia

j

mj
+

wCijis
j

mj

)
(30)

dei
dt

=
pq
VA

Nsi

n

∑
j=1

(
ηCijia

j

mj
+

wCijis
j

mj

)
− αei (31)

dia
i

dt
= kαei − γia

i (32)

dis
i

dt
= (1 − k)αei − γis

i (33)

dri
dt

= γia
i + γis

i (34)

which we will use in our later computations. The flowchart for the final model with rates
of transition is given in Figure 2.

Figure 2. Combined Model flowchart.

2.9. Next Generation Matrix

Oftentimes the most important question to ask is how an infection can propagate
amongst the populace. This information paves the way for researchers to find ways to
combat the spread itself, and is summed up in the basic reproduction number R0 that
we briefly touched on earlier. The R0 from the normalized SIR model is a dimensionless
value found when using values of di

dt at time t = 0. Thus, when we have Nβsi − γi > 0 an
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epidemic situation occurs, as more people are becoming infected, and when Nβsi − γi < 0
an epidemic is stemmed, as infections are being removed. We can reduce this equation
to Nβ

γ = R0 as we have assumed at t = 0 the entire population is susceptible and hence
s = 1. Thus, R0 < 1 means an epidemic is stemmed, and R0 > 1 means we have an
epidemic situation. For our model, we have more than one age group and thus discovering
R0 is made trickier but is still just an extension of what was performed above. The main
difference is that there are now several infected classes, and they may have different rates
of contact between them, as well as infections. Our goal should then be to average the
expected number of new infections over all of the infected states. The end result of these
calculations will become a square matrix called the Next Generation Matrix (NGM). In an
NGM H, the entry hij is equal to the R0 between the completely susceptible group i, and
the infected person in group j. Creating H is not extremely hard, and there are recipes to
construct it [17]. However, the key is to break them down into smaller parts so that they
can then be combined to create the full matrix.

2.10. Transmission and Transition Matrices

Extensive work has been performed in the field of creating NGMs. Specifically,
Diekmann et al. [17] go into great depth about how to construct one of these matrices and
how to use them for many different biological purposes. For our work we will let our
NGM be H, as above, and we will construct H following the guidelines in the stated paper.
From Diekmann’s previous work, we know, by definition, that the dominant eigenvalue of H
will be the basic reproduction number R0; thus, it will be our goal to first construct H.

To create H we must first have a linearized system of ordinary differential equations,
and thus we must make an assumption regarding Equation (31). If we assume that we
start at the disease-free steady-state, where we have si = mi where mi is the proportion of
people in the group i, then we can simplify the equations down to the linear system

dei
dt

=
pq
VA

Nmi

n

∑
j=1

(
ηCijia

j

mj
+

wCijis
j

mj

)
− aei (35)

dia
i

dt
= kαei − γia

i (36)

dis
i

dt
= (1 − k)αei − γis

i (37)

which are going to be the basis of our transmission and transition matrices. To create the
matrices, we will want the transmission matrix T to correspond to all the cases where an
infected births a new infection. The transition matrix M will then correspond to all the state
changes from the exposed state to one of the infected states or from the infected to the
removed state. Now, we have three infected categories and four age groups, and we know
that each age group will have all three infected categories; thus, for our purposes, we know
that both T and M will be 12 × 12 matrices. Then, given the indices i and j to mean age
groups i and j, T is constructed as Tij being the rate at which people in age group j infect
people in age group i. Now for condensation purposes, let z1 = −ηBN and z2 = wBN.
This gives rise to the matrix T (see Appendix B Transmission matrix). Similarly, we have
the transition matrix M (see Appendix B Transition matrix) being constructed using the
rate at which exposed people in group j progress to an infected group i. Now, we can fit
these two matrices into the form given in [17]

Ẋ = (T + M)X

where X is the transpose of
(
ei, ia

i , is
i
)
, a 12 × 1 vector. Using the software Matlab we then

calculated H = −TM−1, which is the NGM we were hoping to obtain. We can then reduce
to a 4 × 4 matrix using the recipe from [17]. If we call this new matrix K, then
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K = −αγ


(k − 1)T1,5 + kT1,9 (k − 1)T1,6 + kT1,10 (k − 1)T1,7 + kT1,11 (k − 1)T1,8 + kT1,12
(k − 1)T2,5 + kT2,9 (k − 1)T2,6 + kT2,10 (k − 1)T2,7 + kT2,11 (k − 1)T2,8 + kT2,12
(k − 1)T3,5 + kT3,9 (k − 1)T3,6 + kT3,10 (k − 1)T3,7 + kT3,11 (k − 1)T3,8 + kT3,12
(k − 1)T4,5 + kT4,9 (k − 1)T4,6 + kT4,10 (k − 1)T4,7 + kT4,11 (k − 1)T4,8 + kT4,12


then we find ρ(K) = R0, where the ρ(K) is the spectral radius of K [17]. However, de-
termining the exact eigenvalues is a tedious endeavor and thus we will use the software
Matlab to do the calculation for us.

3. Results

Since we are specifically discussing COVID-19, we will make appropriate assumptions
on some of the parameters used in the model that will be static throughout all of the trials.
As [18] estimated, we will be using a pulmonary ventilation rate of 0.48 m3/h. We will also
be assuming that people in the exposed category have no risk of spreading the disease,
and the average person will have an incubation period of 5 days, thus α = 1/5 [19]. As
various sources report a recovery time of one to two weeks [20–22], we will then assume
that the average infectious period is 10 days, and hence the recovery rate is γ = 1

10 . We
have from [23] that at least 50% of COVID-19 spread was due to asymptomatic individuals,
hence k = 0.5.

We will also be assuming that the air will be completely mixed immediately upon
having quanta enter it, and that the population will stay static throughout the entire trial.
There will also be the quantity A, the number of air changes per hour. This is defined as
the rate at which particles are removed from the space and is expressed in air changes
per hour (ACH), which is the ratio of the volume of air being pumped into the room over
an hour and the volume of the room. As per [10] we will be using A = 6 for standard
ventilation, A = 18 for the addition of a HEPA filter on top of general ventilation, and
A = 45 for the addition of a UVGI filter on top of general ventilation. We will assume
that all of these systems are properly installed and that they will continuously provide the
same amount of ACH. In this manuscript, our goal is to better understand how ventilation
affects a population that is constantly subjected to it, and thus we will be keeping a static
population for the trials below.

3.1. Creating Cij for Proposed Model

Our model heavily relies on the data garnered by Mossong et al. [24]; the key to our
work was that the diaries kept a record of ages. The data was split into 15 categories
ranging from 0 to 4 years of age to 70+ years of age for each country. We then averaged
each of the categories contacts over all of the countries which can be seen in Table A1 for
the 15 age groups as we are trying to eliminate as many biases as possible coming from
the culture and other factors. We then paired the number of age categories from 15 to 4
[Table A2], consisting of ages 0–19, 20–39, 40–59, and 60+, which we will call Dij. Finally,
since the data itself is not closed, we apply a reciprocity condition to ensure that there
are equally as many interactions between i and j as there are between j and i. This is
given below

Cij =
Dijni + Djinj

ni + nj

This four-category table is what we use throughout the findings as our contact matrix
Cij. In our model, it is not required to have only four age groups, as with the right data
set to create a contact matrix, any number of age groups can be made to fit the data on
hand. However, for the sake of simplicity, we have chosen to only survey the four age
group range.
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3.2. Parameter Sensitivity Analysis

As the main goal of our research is to better understand how to mitigate viral spread
based on the proposed model, we first want to see the effect filtration has on the basic
reproduction number for differing quanta production rates q. In [18], the estimated values
for q were 15–128 per hour for influenza, depending on how q was calculated, and 1–10 per
hour for rhinovirus. Owing to the fact that data for quanta production is scarce and mostly
related to only a few papers [10,15,18] that have discussed their values. We have chosen
the ancestral strain to have q = 10 for our model, and based on [25], we can approximate
the delta variant as having q = 25 when we are considering the best-case scenario. We
provide a contour and table of important values below.

From Figure 3, we can see that filtration has a strong effect on the R0; however, only
with a UVGI filter do we have a chance at containing an outbreak, and even then, only for
roughly q = 20. Through this, we can see that unless the production amount of quanta
is low, there will need to be other strong measures taken to stop the spread of COVID-19
in an enclosed space, and that general filtration corresponding to A = 6 is almost never
going to be enough to contain the spread. These findings would suggest that most, if not
all, enclosed spaces should have some kind of ventilation system to neutralize some of the
infectious material that is being expelled from infected individuals.

Next, we want to inspect what happens as the parameters are shifted for w the
symptomatic contact rate and η the asymptomatic infection rate.

Figure 4 shows us that both infection rates for asymptomatics and the contact per-
centage for symptomatics affect the system in roughly the same way, and thus provides
evidence to show how much of an effect stopping the spread of symptoms are, and that re-
ducing the number of contacts that an infected individual has with susceptible individuals
can play a large role in containing an outbreak.

Finally, we wanted to test how sensitive our matrix is to changes in the number of
people per group against R0 and infectivity rate of the eldest group, which is done below.
For the data below, we paired down the four age groups into three age groups, so that we
can obtain a better understanding of how having extreme proportions in the age groups
will affect our overall model.

We achieved the results in Figures 5 and 6 by allowing two different age group
proportions to vary; we have that m1 is the proportion of the youngest age group, and m3
is the proportion of our oldest age group. We then analyze the overall sickness rate of the
eldest age group by looking at the total number of infected in that group (Figure 5). This
allows us to better understand how one might mitigate interactions between age groups
to help contain the spread of COVID-19. We can see in (Figure 6) that the change in R0
due to having differing amounts of age groups is negligible. However, we can see that our
model does have sensitivity towards contacts, as evidenced by Figure 5. We can see that
the proportion of the eldest group that gets sick increases almost linearly with the change
in having more younger people. As the eldest group had the least contacts, this leads us to
determine that contacts play more than a negligible role in determining overall sickness
rates, though still overall, it is a minor change in terms of overall population sickness. This
means that, according to our model, one of the best ways to combat the eldest age group
sickness is by limiting their contact with younger groups of people that are more likely to
interact with more people each day.



Math. Comput. Appl. 2021, 26, 79 10 of 16

q A R0

10 6 3.229
10 18 1.3076
10 45 0.5230
25 6 9.8072
25 18 3.2691
25 45 1.3076
19 45 0.9938
20 45 1.0461

Figure 3. Quanta production and filtration against R0.

Figure 4. Infection rate for asymptomatic vs. symptomatic contact percentage on overall sickness rate.

Figure 5. Change in overall infected of oldest age group based on the proportion of age group.
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Figure 6. Change in R0 based on the proportion of age group.

3.3. Stability Analysis

As our system is closed and has no births, we do not have an endemic point; thus the
only place to look for stability is around the infection-free steady-state. As we are using
an expanded SIER model with the NGM recipe, Diekmann et al. [17] inform us that R0
controls the stability of the disease-free steady-state.

Elderly Care Facility

Our example will take place in an elderly care facility. Suppose there are 109 residents
of the facility, in which if we say that the average room size is 20 square meters with 3 m
ceilings, we then have an average of 60 m3 per room. Then multiply this by 109 residents,
and we obtain 6540 m3. If we allow an extra 3460 m3 for things such as dining rooms,
kitchens, and any other miscellaneous rooms, then we estimate V = 10,000 m3 of space in
the facility. We will also assume that there will be roughly two out of three people in the
facility will be elderly residents, and the other one-third will be in-care attendants, family,
and other visiting guests. Thus, we will say there are 66 other people in the facility that are
not residents, which will give us a total population of N = 175. From this, we will assume
that all of the residents that reside there are in the 60+ age category. A fairly arbitrary age
breakdown of the facility (and what we will be using) is: 4% aged 0–19, 20% aged 20–39,
13% aged 40–59, and 63% aged 60+. All graphs below will pertain to these age ranges. We
justify these age breakdowns as a scenario before lockdown, and thus there will be those of
all age groups within the building.

3.4. Initial Infector and Contact Rate

We have arbitrarily chosen one initial asymptomatic infector in the 20–39 age range to
find the results below, though this could easily be changed for different data trials. We will
also arbitrarily assume that the asymptomatic contact rate is four times the symptomatic
contact rate, hence w = 0.25. We will also be using, from [23], those who never develop
symptoms still spread the disease at 75% of the rate symptomatic individuals would, thus
η = 0.75 for the proportion of infected that become symptomatic and the infection rate of
those asymptomatic, respectively. Below we will see the overall infection rate amongst all of
the age groups for the idealized delta variant and both HEPA and UVGI filtration systems.

We can see that, in general according to our model, the elderly are the least impacted
proportionally to the other groups. This is most likely due to the lower contact rate that
the elderly have in general with each other and other age groups. We believe that based
on [25], if we allow q = 10 to be the best-case scenario for the ancestral strain of COVID-19
and delta has a little over twice the R0 that the ancestral strain does, then q = 25 should
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affect R0 in a similar way. Viewed in this light, Figure 7 shows us that HEPA filtration
would not stop between roughly 60% and 100% of susceptibles will become infected, and
from Figure 8 we see that even with UVGI filtration, an outbreak will still occur with the
delta variant.
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Figure 7. Total number of recovered by age group with HEPA filtration A = 18, q = 25.
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Figure 8. Total number of recovered by age group with UVGI filtration A = 45, q = 25.
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4. Conclusions

Our mathematical model indicates what we saw in the news headlines in real life, in
that when applied to a nursing home-like setting, the outcome, even with the best filtration
systems, is unlikely to be enough to prevent the spread of COVID-19, whether it be the
ancestral strain or the delta strain. We can see that the youngest amongst the groups was
always the quickest to get the infection, and we believe that is due to the Mossong data
showing that younger people contact others more often throughout their day. We also
found that according to our model, the amount of quanta has a stronger impact on the
overall health of the population compared to adding filtration systems to airflow, and that
without, what we consider an idealized scenario (ancestral strain have q = 10), there are
still many complications that can arise in a small enclosed setting, as can be seen in Figure 3.
Our model indicates that the infection rate for asymptomatic infectors and the rate at which
symptomatic infectors restrict their contacts are roughly equal in terms of their impact on
the overall sickness rate, as seen in Figure 4. Finally, we found that our model is sensitive
to the amount of contacts an age group has. By shifting the proportions of the youngest
and eldest groups, we found that we can alter the overall number of infected by several
percentage points, as seen in Figure 5.

Further Research

Pertinent further research would be to look into how a specialized model could be
used to determine whether being closer or further from ventilation would help in any
meaningful way. We also believe it would be useful to examine what would happen if we
were to add vaccine information, as well as other uses of personal protective equipment
(PPE), such as masks. In terms of real-world differences, we believe that because this is
the first stage of this model, there are several dynamics that could be added to increase
the robustness of the model overall. We realize that it is not comprehensive to have the
population static; however, for simplicity, we decided to keep our population constant to
better understand the dynamics at play in terms of only those that are inside of a ventilated
space. The next step of this research will be to allow for the mixing of the ventilated
population with the non-ventilated population to see how outside sources impact the
sickness rate rather than just the residents of a ventilated zone.
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Appendix A. Mossong Data Tables

Table A1. Mossong data with 15 age groups.

All Reported Contacts (Physical and Non-Physical Contacts)

Age Group of Participant

Age of Contact 00-04 05–09 10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59 60–64 65–69 70+

00–04 2.375 0.89875 0.27 0.18125 0.27 0.50375 0.82375 0.65625 0.68375 0.3225 0.2425 0.2775 0.32875 0.1875 0.15875
05–09 1.1975 6.65625 1.1275 0.365 0.21875 0.45375 0.92625 0.97125 0.7 0.34625 0.46875 0.3525 0.25875 0.315 0.2175
10–14 0.44875 1.31625 9.3 1.3725 0.2875 0.2675 0.66 0.75125 0.91125 0.55625 0.64125 0.37125 0.31 0.22125 0.4
15–19 0.26375 0.33 1.62 9.05875 1.56625 0.62375 0.53875 0.53 0.99 1.225 0.77125 0.49875 0.31125 0.20625 0.42375
20–24 0.38125 0.27125 0.4 1.45625 3.71375 1.68875 0.79625 0.7075 1.0225 0.89625 1.01 0.65125 0.4475 0.305 0.2475
25–29 0.7725 0.6525 0.3875 0.67 1.89875 2.47625 1.59125 1.16625 1.00375 1.03875 1.29125 0.91875 0.7125 0.5825 0.40375
30–34 1.15375 0.96625 0.58625 0.52 1.31875 1.65875 2.36625 1.54875 1.37375 1.18 1.06 1.075 1.0075 0.6875 0.4325
35–39 1.03 1.19875 0.9925 0.8025 0.945 1.2 2.03875 2.4175 1.5475 1.33875 1.06875 0.93125 0.97375 0.86375 0.5025
40–44 0.6375 1.1225 1.31125 0.995 0.855 0.995 1.4875 2.0125 2.13125 1.5275 1.215 1.12 0.9275 0.86 0.67625
45–49 0.40625 0.5175 0.84875 1.2 1.0675 0.925 1.00625 1.25625 1.545 1.86375 1.34125 1.00125 0.73375 0.5625 0.7
50–54 0.43 0.40625 0.46875 0.6175 0.87125 1.01875 0.87375 0.98625 1.1425 1.31 1.46125 1.23 0.76125 0.59375 0.5325
55–59 0.39625 0.3175 0.26875 0.335 0.4725 0.66625 0.6325 0.56 0.4525 0.6975 1.0775 1.55125 1.06875 0.65375 0.4675
60–64 0.3325 0.29875 0.18 0.1575 0.2225 0.37875 0.4875 0.57125 0.425 0.41 0.57875 0.825 1.12125 0.83375 0.59375
65–69 0.2425 0.21375 0.17625 0.1275 0.13 0.18875 0.25875 0.4125 0.30125 0.21375 0.24125 0.47375 0.695 0.90125 0.66125
70+ 0.31625 0.35875 0.3625 0.25 0.315 0.35875 0.37625 0.4375 0.56125 0.685 0.70875 0.72375 0.89 1.05 1.45

Table A2. Mossong data with 4 age groups.

4 Categories 0–19 20–39 40–59 60+

0–19 36.78125 10.04875 9.35875 3.33875
20–39 12.24125 27.5325 17.4075 7.16625
40–59 10.27875 15.68625 20.6675 8.5375
60+ 3.01625 4.1375 6.1475 8.19625

Appendix B. NGM Submatrices

Transmission matrix:

Ti,j =



0 0 0 0 z1C11 p1/p1 z1C12 p1/p2 z1C13 p1/p3 z1C14 p1/p4 z2C11 p1/p1 z2C12 p1/p2 z2C13 p1/p3 z2C14 p1/p4
0 0 0 0 z1C21 p1/p1 z1C22 p1/p2 z1C23 p1/p3 z1C24 p1/p4 z2C21 p1/p1 z2C22 p1/p2 z2C23 p1/p3 z2C24 p1/p4
0 0 0 0 z1C31 p1/p1 z1C32 p1/p2 z1C33 p1/p3 z1C34 p1/p4 z2C31 p1/p1 z2C32 p1/p2 z2C33 p1/p3 z2C34 p1/p4
0 0 0 0 z1C41 p1/p1 z1C42 p1/p2 z1C43 p1/p3 z1C44 p1/p4 z2C41 p1/p1 z2C42 p1/p2 z2C43 p1/p3 z2C44 p1/p4
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


Transition matrix:

Mi,j =



−α 0 0 0 0 0 0 0 0 0 0 0
0 −α 0 0 0 0 0 0 0 0 0 0
0 0 −α 0 0 0 0 0 0 0 0 0
0 0 0 −α 0 0 0 0 0 0 0 0

(1 − k) 0 0 0 −γ 0 0 0 0 0 0 0
0 (1 − k) 0 0 0 −γ 0 0 0 0 0 0
0 0 (1 − k) 0 0 0 −γ 0 0 0 0 0
0 0 0 (1 − k) 0 0 0 −γ 0 0 0 0
k 0 0 0 0 0 0 0 −γ 0 0 0
0 k 0 0 0 0 0 0 0 −γ 0 0
0 0 k 0 0 0 0 0 0 0 −γ 0
0 0 0 k 0 0 0 0 0 0 0 −γ
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Appendix C. COVID-19 Statistics

Figure A1. COVID-19 cases and deaths statistics [WHO, 22 July 2021].

Figure A2. COVID-19 death statistics by age [CDC, 22 July 2021].
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