
Mathematical

and Computational

Applications

Article

New Stable, Explicit, Shifted-Hopscotch Algorithms for the
Heat Equation

Ádám Nagy 1, Mahmoud Saleh 1, Issa Omle 1 , Humam Kareem 1,2 and Endre Kovács 1,*

����������
�������

Citation: Nagy, Á.; Saleh, M.; Omle,

I.; Kareem, H.; Kovács, E. New Stable,

Explicit, Shifted-Hopscotch

Algorithms for the Heat Equation.

Math. Comput. Appl. 2021, 26, 61.

https://doi.org/10.3390/mca26030061

Received: 28 July 2021

Accepted: 24 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Physics and Electrical Engineering, University of Miskolc, 3515 Miskolc, Hungary;
adam.nagy0310@gmail.com (Á.N.); mhmodsalh84@gmail.com (M.S.); issa.j.omle@gmail.com (I.O.);
20310@uotechnology.edu.iq (H.K.)

2 Department of Mechanical Engineering, University of Technology, 19006 Baghdad, Iraq
* Correspondence: kendre01@gmail.com

Abstract: Our goal was to find more effective numerical algorithms to solve the heat or diffusion
equation. We created new five-stage algorithms by shifting the time of the odd cells in the well-known
odd-even hopscotch algorithm by a half time step and applied different formulas in different stages.
First, we tested 105 = 100,000 different algorithm combinations in case of small systems with random
parameters, and then examined the competitiveness of the best algorithms by testing them in case
of large systems against popular solvers. These tests helped us find the top five combinations, and
showed that these new methods are, indeed, effective since quite accurate and reliable results were
obtained in a very short time. After this, we verified these five methods by reproducing a recently
found non-conventional analytical solution of the heat equation, then we demonstrated that the
methods worked for nonlinear problems by solving Fisher’s equation. We analytically proved that
the methods had second-order accuracy, and also showed that one of the five methods was positivity
preserving and the others also had good stability properties.

Keywords: odd-even hopscotch method; diffusion equation; heat equation; explicit time integration;
stiff equations; unconditional stability

1. Introduction

Heat and mass transport has a central importance in many scientific and engineering
applications. One of the most fundamental ways for these phenomena is the diffusion of
heat or particles, described, in the simplest case, by the following linear parabolic partial
differential equation (PDE), the so-called heat or diffusion equation. If the medium in
which the diffusion takes place is not homogeneous, one can use a more general form.

∂u
∂t

= α ∇2u (1)

cρ
∂u
∂t

= ∇(k∇u) (2)

where, in case of diffusion of particles, u = u
(→

r , t
)

denotes the concentration and α is
the diffusion coefficient. In the case of conductive heat transfer, u is the temperature and
α = k/(cρ) is the thermal diffusivity, while k = k

(→
r , t
)

, c = c
(→

r , t
)

, and ρ = ρ
(→

r , t
)

refer
to the following nonnegative quantities: heat conductivity, specific heat, and mass density,
respectively. These equations and their generalizations, such as the diffusion-convection-
reaction equation [1], can describe the diffusive transport of particles in very different
physical, chemical, and biological systems, such as in semiconductor devices [2] and the
human brain [3]. Furthermore, mathematically similar PDEs can be applied to simulate
damped material flow through porous media, such as moisture [4], ground water, crude

Math. Comput. Appl. 2021, 26, 61. https://doi.org/10.3390/mca26030061 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-1108-0099
https://orcid.org/0000-0002-3901-3410
https://orcid.org/0000-0002-0439-3070
https://doi.org/10.3390/mca26030061
https://doi.org/10.3390/mca26030061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mca26030061
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca26030061?type=check_update&version=1

Math. Comput. Appl. 2021, 26, 61 2 of 23

oil, or natural gas in reservoirs below the Earth’s surface [5]. In this work, we examined
only one nonlinear reaction-diffusion equation, the so-called Fisher’s equation [6], apart
from the original, linear diffusion equation.

The simple diffusion Equation (1) or more sophisticated equations containing a diffu-
sion term have more and more analytical solutions [7–12]. Unfortunately, most of these
solutions consider the parameters like the diffusion coefficient or the heat conductivity as
constants, which do not depend on space, time, or the dependent variable u. There are
counter-examples, such as the work of Zoppou and Knight, in which “analytical solutions
have been derived for the two- and three-dimensional advection-diffusion equation with a
particular form of the spatially variable coefficients” [13]. However, for space-dependent
coefficients in general, one needs to use numerical calculations; therefore, finding effective
numerical methods are still important. This is especially true in the nontrivial case of
systems where the physical properties are extremely different at different points even
in the vicinity of each other [5,14] (p. 15). This often implies that the eigenvalues of
the problem have a range of several orders of magnitude; therefore, the problem can be
severely stiff. When the PDE is spatially discretized, one obtains a system of ordinary
differential equations (ODEs). If the number of variables is very large (which is the case
almost always in three space dimensions), the numerical solution of these systems still
forms a challenge either by explicit or by implicit methods. It is well known that the
traditional explicit methods (such as the Runge–Kutta types) are only conditionally stable,
and very small (sometimes unacceptably small) time step sizes have to be applied. Implicit
methods are typically unconditionally stable (there are exceptions, e.g., the higher order
backward difference methods), but a system of algebraic equations must be solved at each
time-step. These calculations can be still very time consuming (note that the matrix is
generally not tridiagonal) and, therefore, immense efforts have been made to develop
several sophisticated tricks and modifications of the implicit methods (see, e.g., [15] and
the references therein). Currently, the implicit methods with these extensions are usually
proposed to solve these kinds of problems [16–18]. The main obstacle to further progress
in the feasibility of large-scale simulations is that the parallelization of these implicit meth-
ods are nontrivial, albeit, some progress has been achieved [19,20]. However, there is a
tendency towards increasing parallelism in high-performance computing [21,22] due to
the halt of the formerly rapid increase of the CPU clock frequencies in the last decades.

Keeping in mind these facts, we are working on the development of novel, easily paral-
lelizable, explicit, and unconditionally stable methods. One of the most important example
of these is the two-stage odd-even hopscotch (OEH) algorithm, which was introduced
by Gordon [23], then reformulated and analyzed by Gourlay [24–26] (see also [27]). This
method has been modified to increase its reliability and accuracy, but, as far as we know,
always in the direction of a larger extent of implicitness. More concretely, a hierarchy of
algorithms was constructed, from the fully explicit OEH through the line hopscotch to the
alternating direction implicit (ADI) hopscotch, with increasing accuracy at the expense of
programming and running time [25]. These methods were soon applied for the calculation
of the heat flow in a thermal print head by Morris and Nicoll. They found that, in case of
isotropic media, the OEH method is indeed faster than its more implicit versions with the
same accuracy, but in anisotropic cases, the OEH and the line hopscotch give very inaccu-
rate results and the ADI hopscotch is necessary to give a meaningful solution [28]. Later, the
OEH method was applied to many problems, e.g., the incompressible Navier–Stokes Equa-
tions [29], the Frank–Kamenetskii [30] and the Gray–Scott reaction-diffusion equations [31],
and even to the nonlinear Dirac equation [32]. Goede and Boonkkamp applied a vectorized
implementation of the OEH scheme to the two-dimensional system of Burgers’ equations
and found that the vectorization seriously increased the speed and the obtained solver was
very powerful [33]. Recently, Maritim et al. constructed hybrid algorithms containing the
hopscotch, the Crank–Nicolson, the Du Fort Frankel, etc. schemes for the two-dimensional
system of Burgers’ equations, and concluded that their implicit algorithms are stable and
accurate [34,35]. Surprisingly, all modifications of the OEH algorithm increased the level of

Math. Comput. Appl. 2021, 26, 61 3 of 23

implicitness and we found no traces of trying to construct similar schemes while keeping
the fully explicit property. In our previous paper series [36–38], we constructed three new
hopscotch combinations by choosing other formulas instead of the original explicit and
implicit Euler schemes. The tests showed [36] that, for stiff systems, the original OEH
method can produce a so huge inaccuracy for large time step sizes that the relative errors
can reach 104, which, in fact, can be more dangerous than instability if not noticed by
an inexperienced user. We found that two of the three new combinations behaved much
better. In this paper, we extended our research by modifying the underlying space and
time structure as well.

The organization of the paper is as follows. In Section 2 we review the OEH structure
very briefly and introduce the new algorithms, first for the simplest, one dimensional,
equidistant mesh, then, for a general, arbitrary mesh as well. In Section 3, first, we
report very concisely the results of the numerical tests for the first assessment of the 105

methods. Then, in Sections 3.3 and 3.4, we present two numerical experiments in two
space-dimensional stiff systems consisting of a large number of cells. Based on the results,
we selected the top five combinations with the most valuable properties. In Section 3.5
we verify these five methods by comparing the numerical results produced by them to
analytical solutions of the heat equation in one space dimension. The behavior of the
algorithms is examined in the case of Fisher’s equation in Section 3.6. Finally, we analyze
the convergence and stability properties of these methods. Section 4 will be about the
conclusions and our future research goals.

2. The New Methods

First, we recall the original OEH method for the simple one dimensional equation form
of Equation (1). The space and the time variable is discretized by setting nodes according
to the most standard rules: xi = i∆x , i = 0, . . . , N − 1 , tn = nh , n = 0, . . . , T − 1 . To
introduce the OEH algorithm, we defined a so-called bipartite grid, in which the set of
nodes is divided into two similar subsets A and B (with odd and even space index) such
that all nearest neighbors of nodes in subset A belong to subset B and vice versa, like on a
checkerboard. This space structure is in an intimate connection with the time discretization
in the following way. At the first stage of the first time step, the new values of u were
calculated only at the points of A, using the latest available values of the neighbors, i.e.,
the values at the beginning of the time step (see green arrows in Figure 1a). At the second
stage, the remaining node values, which belong to subset B, were calculated, using again
the latest values at subset A, which were now valid at the end of the time step and already
calculated at stage one (red arrows). At the next time step, the roles of subsets A and B
were interchanged, etc., as one can see in Figure 1a.

The original OEH method applied the well-known explicit Euler formula at the first
stage and the implicit Euler formula at the second stage. However, when the second stage
calculations began, the new values of the neighbors un+1

i−1 and un+1
i+1 were known, which

made the implicit formula effectively explicit. We note, again, that earlier we created new
OEH methods by applying different formulas instead of the abovementioned. Now, we
modified not only the formulas, but the underlying space and time structure as well, as
follows.

The calculation started with taking a half-sized time step for the odd nodes (subset
A) using the already calculated un

i values. Then, a full time step was made for the even
nodes (subset B), then for the odd cells and the even nodes again. Finally, a half-size time
step closed the calculation of the values, as one can see in Figure 1b. In each stage, we used
the latest available u values of the neighbors, which meant that the constructed methods
were fully explicit and the previous values did not need to be stored at all. Thus, we had a
structure consisting of five stages, which corresponded to five partial time steps, which
altogether spanned two time steps for odd and even cells, too.

Math. Comput. Appl. 2021, 26, 61 4 of 23

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 3 of 24

implicit algorithms are stable and accurate [34,35]. Surprisingly, all modifications of the

OEH algorithm increased the level of implicitness and we found no traces of trying to

construct similar schemes while keeping the fully explicit property. In our previous paper

series [36–38], we constructed three new hopscotch combinations by choosing other for-

mulas instead of the original explicit and implicit Euler schemes. The tests showed [36]

that, for stiff systems, the original OEH method can produce a so huge inaccuracy for large

time step sizes that the relative errors can reach 104, which, in fact, can be more dangerous

than instability if not noticed by an inexperienced user. We found that two of the three

new combinations behaved much better. In this paper, we extended our research by mod-

ifying the underlying space and time structure as well.

The organization of the paper is as follows. In Section 2 we review the OEH structure

very briefly and introduce the new algorithms, first for the simplest, one dimensional,

equidistant mesh, then, for a general, arbitrary mesh as well. In Section 3, first, we report

very concisely the results of the numerical tests for the first assessment of the 105 methods.

Then, in Sections 3.3 and 3.4, we present two numerical experiments in two space-dimen-

sional stiff systems consisting of a large number of cells. Based on the results, we selected

the top five combinations with the most valuable properties. In Section 3.5 we verify these

five methods by comparing the numerical results produced by them to analytical solu-

tions of the heat equation in one space dimension. The behavior of the algorithms is ex-

amined in the case of Fisher’s equation in Section 3.6. Finally, we analyze the convergence

and stability properties of these methods. Section 4 will be about the conclusions and our

future research goals.

2. The New Methods

First, we recall the original OEH method for the simple one dimensional equation

form of Equation (1). The space and the time variable is discretized by setting nodes ac-

cording to the most standard rules: 0 1ix i x , i ,...,N    , 0 1nt nh , n ,...,T   . To intro-

duce the OEH algorithm, we defined a so-called bipartite grid, in which the set of nodes

is divided into two similar subsets A and B (with odd and even space index) such that all

nearest neighbors of nodes in subset A belong to subset B and vice versa, like on a check-

erboard. This space structure is in an intimate connection with the time discretization in

the following way. At the first stage of the first time step, the new values of u were calcu-

lated only at the points of A, using the latest available values of the neighbors, i.e., the

values at the beginning of the time step (see green arrows in Figure 1a). At the second

stage, the remaining node values, which belong to subset B, were calculated, using again

the latest values at subset A, which were now valid at the end of the time step and already

calculated at stage one (red arrows). At the next time step, the roles of subsets A and B

were interchanged, etc., as one can see in Figure 1a.

Figure 1. The stencil of the odd-even hopscotch structures for two nodes. (a) The original OEH
algorithm. Green arrows represent first-stage operations and data usage while red arrows are for the
second stage. (b) The new, shifted OEH algorithm. Yellow, green, purple, brown, and blue arrows
indicate operations at Stages 1, 2, 3, 4 and 5, respectively.

By applying the well-known central difference formula

∂2

∂x2 f (xi, tj) ≈
f (xi+1,tj)− f (xi ,tj)

∆x +
f (xi−1,tj)− f (xi ,tj)

∆x
∆x

to Equation (1) in one dimension, a system of ordinary differential equations (ODEs) were
obtained for nodes i = 1, . . . , N − 2:

dui
dt

= α
ui−1 − 2ui + ui+1

∆x2 . (3)

The form of this equation for the first and last node depended on the concrete boundary
conditions, which will be discussed later. We defined a matrix M with the following
elements:

mii = −
2α

∆x2 (1 < i < N), mi,i+1 =
α

∆x2 (1 ≤ i < N), mi,i−1 =
α

∆x2 (1 < i ≤ N), (4)

which is tridiagonal in the currently discussed one-dimensional case. Now, equation-
system Equation (3) can be written into a condensed matrix-form:

d
→
u

dt
= M

→
u . (5)

We recall that the following general time discretization

un+1
i − un

i
∆t

=
α

∆x2

[
θ
(
un

i−1 − 2un
i + un

i+1
)
+ (1− θ)

(
un+1

i−1 − 2un+1
i + un+1

i+1

)]
,

leads to the so-called theta method:

un+1
i = un

i + r
[
θ
(
un

i−1 − 2un
i + un

i+1
)
+ (1− θ)

(
un+1

i−1 − 2un+1
i + un+1

i+1

)]
, (6)

where r = αh
∆x2 = −miih

2 > 0 , 0 < i < N − 1 is the usual mesh ratio and θ ∈ [0, 1]. For
θ = 0, 1

2 , and 1 one obtains the implicit Euler, the Crank–Nicolson, and the explicit Euler
(or, more concretely, the forward-time central-space, FTCS) schemes, respectively [39]. If
θ < 1, the theta method is implicit. Now, in our shifted-hopscotch scheme, the neighbors
were always taken into account at the same, latest time level. Thus, we inserted um

i±1 into

Math. Comput. Appl. 2021, 26, 61 5 of 23

Equation (6) instead of un
i±1 and un+1

i±1 , where m = n, n + 1
2 , or n + 1 at the first, middle,

and last stages, respectively (see the colored rows in Figure 1b as well). Now, instead of
Equation (6) we can write

un+1
i = un

i − 2rθun
i − 2r(1− θ)un+1

i + r
(
um

i−1 + um
i+1
)
, (7)

i.e., our final formula reads as follows:

un+1
i =

(1− 2rθ)un
i + r

(
um

i−1 + um
i+1
)

1 + 2r(1− θ)
. (8)

In the case of θ = 0, this formula gives back the UPFD method [40,41] with m = n,
which takes the form for a half and a full time step, respectively:

un+1
i =

un
i +

r
2
(
um

i−1 + um
i+1
)

1 + r
, un+1

i =
un

i + r
(
um

i−1 + um
i+1
)

1 + 2r
. (9)

The other formula we used was the constant neighbor (CNe) method, which was
introduced in our papers [42,43] and now briefly restated here. The starting point is
Equation (3), where an approximation is made: When the new value of a variable un+1

i
was calculated, we neglected the fact that the neighbors un

i−1 and un
i+1 were also changing

during the time step. It means that the values of uj (j 6= i) were considered as constants
(that is why we call it constant-neighbor method), so a set of uncoupled ODEs remained:

dui(t)
dt

= ai + miiui(t), (10)

where the unknowns ui are still functions of the (continuous) time, and a quantity ai is
introduced to collect information about the neighbors of cell i:

ai = ∑
j∈neighbours(i)

mijun
j = α

un
i−1 + un

i+1
∆x2 =

r
h
(
un

i−1 + un
i+1
)
.

These ai quantities were considered as constant during one time step, but must be
recalculated after each time step. The CNe method takes the analytical solution of these
simple Equation (10) at the end of the time step or stage to obtain the new values of the u
variable:

un+1
i = un

i · emiih − ai
mii

(
1− emiih

)
. (11)

At the one-dimensional case, this can be written as follows:

un+1
i = un

i · e− 2r +
un

i−1 + un
i+1

2

(
1− e− 2r

)
. (12)

At this point, we extended the used methods to general cases where, as happens
frequently in real-life problems, the quantities α, k, c, and ρ, describing material properties,
are not constants but functions of the space (and time) variables. The interested reader can
find more details about this treatment for the case of petroleum reservoirs in Chapter 5 of
the book [44]. Let us start with a one-dimensional, still equidistant grid to solve Equation (2).
We again discretized the second-order space derivatives by the central difference formula,
but now k is a function of x and cannot be simply merged with c and ρ. Thus, we have

c(xi)ρ(xi)
∂u
∂t

∣∣∣
xi
= 1

∆x

[
k
(

xi +
∆x
2

)
u(xi+∆x)−u(xi)

∆x + k
(

xi − ∆x
2

)
u(xi−∆x)−u(xi)

∆x

]
.

Now, we change from node to cell variables, and ui, ci, and ρi will be the (average)
temperature, specific heat, and density of cell i, respectively, while ki,i+1 will be the heat

Math. Comput. Appl. 2021, 26, 61 6 of 23

conductivity between cell i and its (right) neighbor. The previous formula will have the
form

dui
dt

=
1

ciρi∆x

(
ki,i+1

ui+1 − ui
∆x

+ ki−1,i
ui−1 − ui

∆x

)
We go on with a still one-dimensional, but non-equidistant, grid with non-uniform

cross section. Let us denote by ∆xi and Ai the length and the (average) cross section of the
cell. One can write the distance between the cell-center of the cell and its arbitrary neighbor
j as dij =

(
∆xi + ∆xj

)
/2, and let us approximate the area of the interface between the two

neighboring cells as Ai,i±1 ≈ Ai ≈ Ai±1. Using these we can write, more generally than
above, that

dui
dt

=
1

ciρi∆xi Ai

(
Ai,i+1ki,i+1

ui+1 − ui
di,i+1

+ Ai,i−1ki,i−1
ui−1 − ui

di,i−1

)
Now, the volume and the heat capacity of the cell is Vi = Ai ∆xi, and Ci = ciρiVi,

respectively, while the inverse thermal resistance between these cells can be approximated
as 1/Rij ≈ kij Aij/dij. It is obvious that this quantity is zero between non-neighboring
cells. Using these new quantities, we obtain the expression for the time derivative of each
cell-variable:

dui
dt

=
ui−1 − ui
Ri−1,iCi

+
ui+1 − ui
Ri+1,iCi

,

which can be easily generalized further to the case with arbitrary number of neighbors:

dui
dt

= ∑
j 6=i

uj − ui

Ri ,jCi
. (13)

Let us introduce the characteristic time or time constant τi of cell i as follows:

τi
.
=

(
∑
j 6=i

1
Ri ,jCi

)−1

=
−1
mii

. (14)

Here, mii is a diagonal element of the matrix M if we write Equation (13) into the
same matrix form as in Equation (5). To restate the used formulas for the general case
Equation (13), we introduce the following notations

ri =
h
τi

and Ai = h∑
j 6=i

mijum
j = h∑

j 6=i

um
j

CiRij
. (15)

Now, the general form of Equation (7) is

un+1
i = un

i − riθun
i − ri(1− θ)un+1

i + h∑
j 6=i

um
j

CiRij
;

thus, the generalized theta method for integer time steps reads as follows:

un+1
i =

(1− riθ)un
i + Ai

1 + ri(1− θ)
. (16)

Similarly, the generalized CNe formula is

un+1
i = un

i · e− ri +
Ai
ri

(
1− e− ri

)
, (17)

and, of course, for halved time steps, ri and Ai must be divided by 2.

Math. Comput. Appl. 2021, 26, 61 7 of 23

For the sake of brevity, we will use a compact notation of the individual combinations,
where five data are given in a bracket and the numbers are the values of the parameter θ,
while the letter ‘C’ is for the CNe constant-neighbor method. For example, (1

4 , 1
2 , C, 1

2 , 3
4)

means the following five-stage algorithm will be selected into the top five algorithm in
Section 3.3 and named as S2.

Example 1. Algorithm S2 (1
4 , 1

2 , C, 1
2 , 3

4), general from.

Stage 1. Take a half time step with the Equation (16) formula with θ = 1
4 for odd cells:

un+1
i =

(
1− ri

8
)
un

i + Ai,half

1 + ri
2

(
1− 1

4

) , Ai,half =
h
2 ∑

j 6=i

um
j

CiRij
.

Stage 2. Take a full time step with the Equation (16) formula with θ = 1
2 for even cells:

un+1
i =

(
1− ri

2
)
un

i + Ai

1 + ri

(
1− 1

2

) , Ai = h∑
j 6=i

um
j

CiRij
.

Stage 3. Take a full time step with the Equation (17) formula for odd cells:

un+1
i = un

i · e− ri +
Ai
ri

(
1− e− ri

)
, Ai = h∑

j 6=i

um
j

CiRij
.

Stage 4. The same as Stage 2.
Stage 1. Take a half time step with the Equation (16) formula with θ = 3

4 for odd cells:

un+1
i =

(
1− 3

8 ri
)
un

i + Ai,half

1 + ri
2
(
1− 3

4
) , Ai,half =

h
2 ∑

j 6=i

um
j

CiRij
.

All other combinations can be constructed in this manner straightforwardly.

3. Results
3.1. General Definitions and Circumstances

If not stated otherwise, we examined 2-dimensional, rectangle-structured lattices
with N = Nx × Nz cells, similar to what can be seen in Figure 2. We solved Equa-
tion (13) subjected to randomly generated initial conditions ui(0) = rand, where rand
is a (pseudo)random number with a uniform distribution in the interval (0, 1), generated
by the MATLAB for each cell. We also generated different random values for the heat
capacities and for the thermal resistances, but with a log-uniform distribution:

Ci = 10(αC−βC×rand) , Rx,i = 10(αRx−βRx×rand) , Rz,i = 10(αRz−βRz×rand), (18)

where the coefficients αC , . . . , βRz in the exponents were concretized later.
We used zero Neumann boundary conditions, i.e., the system was thermally isolated.

This was implemented naturally at the level of Equation (13) since it was enough to omit
those terms of the sum, which had infinite resistivity in the denominator due to the isolated
border. This implied that the system matrix M had one zero eigenvalue, belonging to the
uniform distribution of temperatures, and all other eigenvalues must be negative. Let
us denote by λMIN (λMAX) the (nonzero) smallest (largest) absolute value eigenvalues of
matrix M. The stiffness ratio of the system was defined as λMAX/λMIN. The maximum
possible time step size for the FTCS (explicit Euler) scheme (from the point of view of
stability) was exactly calculated as hFTCS

MAX = |2/λMAX|, above which the solutions were
expected to blow up. This threshold time step hFTCS

MAX (often called CFL limit) was essentially
valid for the second-order explicit Runge–Kutta (RK) methods as well, since, in the case

Math. Comput. Appl. 2021, 26, 61 8 of 23

of them, the border of the stability domain in the negative real axis was the same as for
the first-order RK method [45]. We used these two numbers to characterize the “difficulty
level” of the problem.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 8 of 24

expected to blow up. This threshold time step FTCS
MAXh (often called CFL limit) was essen-

tially valid for the second-order explicit Runge–Kutta (RK) methods as well, since, in the

case of them, the border of the stability domain in the negative real axis was the same as

for the first-order RK method [45]. We used these two numbers to characterize the “diffi-

culty level” of the problem.

Figure 2. Arrangement of the generalized variables. The double-line, red arrows symbolize conduc-

tive (heat) transport through the resistances Rij. The blue line symbolizes thermal isolation at the

boundaries of the system. We emphasize that, although topologically the grid should be rectangular

to keep the explicit nature of the OEH-type methods, the geometrical shape of the cells is not neces-

sarily rectangular.

We calculated the numerical error by comparing our numerical solutions
num
ju with

the reference solution
ref
ju at final time fint . In Section 3.5, the reference solution will be

an analytical solution; otherwise, it is a very accurate numerical solution, which has been

calculated by the ode15s built-in solver of MATLAB with very strict error tolerance. We

used the following three types of (global) error. The first one was the maximum of the

absolute differences:

ref num
j fin j fin

0 j
Error() max () ()

N
L u t u t

 
  . (19)

The second one was the average absolute error:

ref num
1 j fin j fin

0 j

1
Error() () ()

N

L u t u t
N

 

  . (20)

The third one gave the error in terms of energy in case of the heat equation. It took

into account that an error of the solution in a cell with a large volume or heat capacity had

more significance in practice than in a very small cell

ref num
j fin j fin

0 j

j

1
Error() () ()

N

Energy C u t u t
N

 

  . (21)

It is well known that the true solution always follows the maximum and minimum

principles [39] (p. 87). We say a method is positivity preserving if it never violates this

principle, i.e., in our case no value of u was outside of the  0 1, interval. We were inter-

ested in how these errors depend on the time step size in different concrete situations. As

one can see in Figure 1, there were five time steps (five stages) altogether, instead of four

in the shifted hopscotch structure. Therefore, for the sake of honesty, we had to calculate

the effective time step size as 4
EFF 5h h , and the errors were plotted as a function of this

quantity.

We used a desktop computer with an Intel Core i5-9400 as CPU, 16.0 GB RAM, for

the simulations with the MATLAB R2020b software, in which there was a built-in tic-toc

function to measure the running time.

3.2. Preliminary Tests

Figure 2. Arrangement of the generalized variables. The double-line, red arrows symbolize con-
ductive (heat) transport through the resistances Rij. The blue line symbolizes thermal isolation
at the boundaries of the system. We emphasize that, although topologically the grid should be
rectangular to keep the explicit nature of the OEH-type methods, the geometrical shape of the cells is
not necessarily rectangular.

We calculated the numerical error by comparing our numerical solutions unum
j with

the reference solution uref
j at final time tfin. In Section 3.5, the reference solution will be

an analytical solution; otherwise, it is a very accurate numerical solution, which has been
calculated by the ode15s built-in solver of MATLAB with very strict error tolerance. We
used the following three types of (global) error. The first one was the maximum of the
absolute differences:

Error(L∞) = max
0≤j≤N

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣. (19)

The second one was the average absolute error:

Error(L1) =
1
N ∑

0≤j≤N

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣. (20)

The third one gave the error in terms of energy in case of the heat equation. It took
into account that an error of the solution in a cell with a large volume or heat capacity had
more significance in practice than in a very small cell

Error(Energy) =
1
N ∑

0≤j≤N
Cj

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣. (21)

It is well known that the true solution always follows the maximum and minimum
principles [39] (p. 87). We say a method is positivity preserving if it never violates this
principle, i.e., in our case no value of u was outside of the [0, 1] interval. We were interested
in how these errors depend on the time step size in different concrete situations. As one
can see in Figure 1, there were five time steps (five stages) altogether, instead of four in
the shifted hopscotch structure. Therefore, for the sake of honesty, we had to calculate
the effective time step size as hEFF = 4

5 h, and the errors were plotted as a function of this
quantity.

We used a desktop computer with an Intel Core i5-9400 as CPU, 16.0 GB RAM, for
the simulations with the MATLAB R2020b software, in which there was a built-in tic-toc
function to measure the running time.

Math. Comput. Appl. 2021, 26, 61 9 of 23

3.2. Preliminary Tests

We applied the following nine different values for parameter theta: θ ∈ {0, 1
5 , 1

4 , 1
3 ,

1
2 , 2

3 , 3
4 , 4

5 , 1} in Equation (16). It means that, together with the CNe formula, we had 10
different formulas and we inserted all of these into the shifted-hopscotch structure in all
possible combinations. As there were five stages in the structure, we had 105 = 100,000
different algorithm-combinations. We wrote a code, which systematically constructed and
tested all these combinations. After some tests, we chose the few best combinations, and
continued the work only with them. For this, we needed an automatic assessment of the
performance of the combinations. The difficulty was in the fact that methods that are very
inaccurate or even unstable for large time step sizes can be the most accurate for small
time step sizes. Therefore, we chose two different final times, tfin = 0.1 , 10, and calculated
the solution with a large time step size (typically tfin /4), then repeated the calculation for
subsequently halved time step sizes R times until h reached a small value (typically around
2× 10−6). We introduced aggregated relative error (ARE) quantities for each type of errors
defined above, which were calculated for the L∞ error as follows:

ARE(L∞) =
1
R

R

∑
i=1

(log(Error(L∞))OEH − log(Error(L∞))shifted), (22)

which means that ARE(L∞) was the average of the difference between the error of the
original OEH method and the actual shifted combination in terms of orders of magnitude.
Then the code calculated the simple average of these errors:

ARE =
1
3
(ARE(L∞) + ARE(L1) + ARE(Energy)), (23)

and finally sorted the 100,000 combinations in descending order, according to this quantity.
In the obtained list, usually positive ARE values were assigned the first few thousands
of combinations, with the largest ones typically around 2, which means that some com-
binations were roughly two orders of magnitude more accurate than the original OEH
method. We performed this procedure in the case of four different small systems with
Nx×Nz = 2× 2 , 2× 6 , 4× 4 , and 3× 5 . The parameters αC , βC , αRx , βRx , αRz , βRz
of the distribution of the mesh-cells data were chosen to construct test problems with vari-
ous stiffness ratios and hFTCS

MAX, for example, αC = 1, 2, or 3 , βC = 2, 4, or 6. We give the
best 12 combinations in their short form:

(0, 1
2 , 1

2 , 1
2 , 1), (1

2 , 1
2 , 1

2 , 1
2 , 1

2), (0, C, 1
2 , C, 1), (0, C, C, C, 1),

(3
4 , 2

3 , 1
2 , 1/3, 1

4), (1
4 , 1

2 , C, 1
2 , 3

4), (1/3, 2
3 , C, 1/3, 2

3), (C, 1
2 , C, 1

2 , C),
(1

5 , 1
2 , 1

2 , 1
2 , 4

5), (1
4 , 1

2 , 1
2 , 1

2 , 3
4), (1/3, 1

2 , 1
2 , 1

2 , 2
3), (0, 1

2 , 1
2 , C, 1).

(24)

Later, we proved that formulas θ = 1 and CNe preserved positivity of the solution
and, therefore, if only these two formulas are used in a combination, the whole algorithm
will preserve positivity. Since this property is considered valuable [40,46], we repeated
the above experiments for these 25 = 32 combinations (instead of the 100,000 above).
We concluded that the (C, C, C, C, C) combination was the most accurate among these;
therefore, we further investigate d13 combinations altogether. We emphasize that these
are the results of only preliminary (one might say tentative) tests, with the sole purpose of
reducing the huge number of combinations into a manageable number, and we have not
stated anything exactly until this point.

3.3. Case Study I and Comparison with Other Solvers

We examined a grid similar to the one in Figure 2 with isolated boundary, but the sizes
were fixed to Nx = 100 and Nz = 100; thus, the total cell number was 10,000, while the
final time was tfin = 0.1. The exponents introduced above were set to the following values

αC = 2, βC = 4, αRx = αRz = 1, βRx = βRz = 2, (25)

Math. Comput. Appl. 2021, 26, 61 10 of 23

which means that log-uniformly distributed values between 0.01 and 100 were given to the
capacities. The generated system can be characterized by its stiffness ratio and hFTCS

MAX values,
which are 3.1× 107 and 7.3× 10−4, respectively. The performance of new algorithms was
compared with all available MATLAB solvers:

• ode15s, a first- to fifth-order (implicit) numerical differentiation formula with variable
step and variable order (VSVO), developed for solving stiff problems;

• ode23s, a second-order modified (implicit) Rosenbrock formula;
• ode23t, applies (implicit) trapezoidal rule with using free interpolant;
• ode23tb, combines backward differentiation formula and trapezoidal rule;
• ode45, a fourth/fifth-order explicit Runge–Kutta–Dormand–Prince formula;
• ode23, second/third-order explicit Runge–Kutta–Bogacki–Shampine method;
• ode113, first- to 13th- order VSVO Adams–Bashforth–Moulton numerical solver.

For all used MATLAB solvers, tolerances were changed over many orders of magni-
tude, from the maximum value ′AbsTol′ =′ RelTol′ .

= ′Tol′ =103 to the minimum value
′AbsTol′ =′ RelTol′ .

= ′Tol′ =10−5. We also used the following methods for comparison
purposes. The original UPFD, the CNe method, and the Dufort–Frankel (DF) algorithm

un+1
i =

(1− ri)un−1
i + 2Ai

1 + ri
(26)

are explicit unconditionally stable schemes. The DF scheme is a two-step method, which is
not self-starter; thus, we calculated the first time step by two subsequent UPFD steps with
halved time step sizes. Finally, the widely used Crank–Nicolson (CN) is a widely used
implicit scheme: (

I − h
2

M
)

︸ ︷︷ ︸
A

→
u

n+1
=

(
I +

h
2

M
)

︸ ︷︷ ︸
B

→
u

n
,

where I is the unit matrix. The A and B matrixes did not depend on time here, so they
were calculated only once, before the first time step. This scheme was implemented two
different ways: by calculating Y = A−1B before the first time step and then each time step

was just a simple matrix multiplication
→
u

n+1
= Y

→
u

n
, which is denoted by ‘CrN invert’,

and by the
→
u

n+1
= linsolve

(
A, B

→
u

n)
command, which is denoted by ‘CrN lins’. One will

see that this implicit method was still very slow for the actual system size.
We plotted the L∞, the L1, and the energy errors as a function of the effective time

step size hEFF, and, based on this (and on similar data belonging to the more stiff system in
the next subsection), we selected the following top five combinations from those listed in
Equation (24) and after that:

S1 (C, C, C, C, C),
S2 (1

4 , 1
2 , C, 1

2 , 3
4),

S3 (1
4 , 1

2 , 1
2 , 1

2 , 3
4),

S4 (0, 1
2 , 1

2 , 1
2 , 1),

S5 (0, 1
2 , 1

2 , C, 1)

In Figure 3, we present the error functions only for these top five combinations and
some other, known methods, while in Figures 4 and 5 one can see the L∞ and the energy
errors vs. the total running times. Furthermore, Table 1 presents some results that were
obtained by our numerical schemes, the two implementations of the Crank–Nicolson
method and the “ode” routines of MATLAB.

Math. Comput. Appl. 2021, 26, 61 11 of 23
Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 11 of 24

Figure 3. Energy errors as a function of the effective time step size for the first (moderately stiff)

system, in the case of the original OEH method (OEH REF), the original one-stage CNe and UPFD

method, the new algorithms S1–S5, and the Crank–Nicholson method. For the detailed description

of the algorithms, see Sections 2 and 3.2.

Figure 4. Errors as a function of the running time for the first (moderately stiff) system, in the case

of the original OEH method (OEH REF), one-stage CNe and UPFD methods, the Dufort–Frankel

method, the new Algorithms S1–S5, and the Crank–Nicolson with two implementations and differ-

ent MATLAB routines.

Figure 3. Energy errors as a function of the effective time step size for the first (moderately stiff)
system, in the case of the original OEH method (OEH REF), the original one-stage CNe and UPFD
method, the new algorithms S1–S5, and the Crank–Nicholson method. For the detailed description
of the algorithms, see Sections 2 and 3.2.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 11 of 24

Figure 3. Energy errors as a function of the effective time step size for the first (moderately stiff)

system, in the case of the original OEH method (OEH REF), the original one-stage CNe and UPFD

method, the new algorithms S1–S5, and the Crank–Nicholson method. For the detailed description

of the algorithms, see Sections 2 and 3.2.

Figure 4. Errors as a function of the running time for the first (moderately stiff) system, in the case

of the original OEH method (OEH REF), one-stage CNe and UPFD methods, the Dufort–Frankel

method, the new Algorithms S1–S5, and the Crank–Nicolson with two implementations and differ-

ent MATLAB routines.

Figure 4. Errors as a function of the running time for the first (moderately stiff) system, in the case
of the original OEH method (OEH REF), one-stage CNe and UPFD methods, the Dufort–Frankel
method, the new Algorithms S1–S5, and the Crank–Nicolson with two implementations and different
MATLAB routines.

Math. Comput. Appl. 2021, 26, 61 12 of 23
Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 12 of 24

Figure 5. Energy errors as a function of the running time for the first (moderately stiff) system, in

the case of the original OEH method (OEH REF), one-stage CNe and UPFD methods, the Dufort–

Frankel method, the new Algorithms S1–S5, and the Crank–Nicolson with two implementations

and different MATLAB routines.

Table 1. Comparison of different algorithms for the moderately stiff system of 10,000 cells.

Numerical Method Running Time (s) ()LError  1()LError Energy Error

ode15s, 3Tol 10 23.97 10 21.3 10 31.1 10 15.62 10

ode23s, 3Tol 10 34.346 10 44.2 10 53.0 10 11.5 10

ode23t, 8Tol 10 28.49 10 72.9 10 82.0 10 41.0 10

ode23tb, 2Tol 10 24.28 10 44.1 10 52.9 10 41.4 10

ode45, 1Tol 10 12.1 10 33.3 10 56.5 10 32.7 10

ode23, 6Tol 10 12.7 10 73.7 10 99.6 10 54.8 10

ode113, 6Tol 10 11.91 10 76.7 10 104.2 10 61.9 10

S1, 41.25 10h   11.97 10 69.06 10 72.63 10 32.56 10

S2, 31.25 10h   22.02 10 43.39 10 66.93 10 25.08 10

S3, 42.5 10h   11.01 10 51.88 10 73.64 10 33.44 10

S4, 45 10h   25.03 10 41.06 10 61.07 10 31.42 10

S5, 52.5 10h   19.75 10 72.62 10 94.44 10 53.15 10

CrN inv 32.5 10h   11.92 10 55.56 10 63.93 10 21.73 10

CrN lins 32.5 10h   21.35 10 55.56 10 63.93 10 21.73 10

3.4. Case Study II and Comparison with Other Solvers

We tested our new algorithms and the conventional solvers for a harder problem as

well. Thus, new values were set for the α and β exponents:

C3, 6, 3, 1, 4C Rx Rz Rx Rz           . (27)

Figure 5. Energy errors as a function of the running time for the first (moderately stiff) system, in the
case of the original OEH method (OEH REF), one-stage CNe and UPFD methods, the Dufort–Frankel
method, the new Algorithms S1–S5, and the Crank–Nicolson with two implementations and different
MATLAB routines.

Table 1. Comparison of different algorithms for the moderately stiff system of 10,000 cells.

Numerical Method Running Time (s) Error(L∞) Error(L1) Energy Error

ode15s, Tol = 103 3.97× 102 1.3× 10−2 1.1× 10−3 5.62× 101

ode23s, Tol = 103 4.346× 103 4.2× 10−4 3.0× 10−5 1.5× 10−1

ode23t, Tol = 10−8 8.49× 102 2.9× 10−7 2.0× 10−8 1.0× 10−4

ode23tb, Tol = 102 4.28× 102 4.1× 10−4 2.9× 10−5 1.4× 10−4

ode45, Tol = 10−1 2.1× 101 3.3× 10−3 6.5× 10−5 2.7× 10−3

ode23, Tol = 10−6 2.7× 101 3.7× 10−7 9.6× 10−9 4.8× 10−5

ode113, Tol = 10−6 1.91× 101 6.7× 10−7 4.2× 10−10 1.9× 10−6

S1, h = 1.25× 10−4 1.97× 10−1 9.06× 10−6 2.63× 10−7 2.56× 10−3

S2, h = 1.25× 10−3 2.02× 10−2 3.39× 10−4 6.93× 10−6 5.08× 10−2

S3, h = 2.5× 10−4 1.01× 10−1 1.88× 10−5 3.64× 10−7 3.44× 10−3

S4, h = 5× 10−4 5.03× 10−2 1.06× 10−4 1.07× 10−6 1.42× 10−3

S5, h = 2.5× 10−5 9.75× 10−1 2.62× 10−7 4.44× 10−9 3.15× 10−5

CrN inv h = 2.5× 10−3 1.92× 101 5.56× 10−5 3.93× 10−6 1.73× 10−2

CrN lins h = 2.5× 10−3 1.35× 102 5.56× 10−5 3.93× 10−6 1.73× 10−2

Math. Comput. Appl. 2021, 26, 61 13 of 23

3.4. Case Study II and Comparison with Other Solvers

We tested our new algorithms and the conventional solvers for a harder problem as
well. Thus, new values were set for the α and β exponents:

αC = 3, βC = 6, αRx = 3, αRz = 1, βRx = βRz = 4. (27)

This means that the width of the distribution of the capacities and thermal resistances
were increased. Now, the largest capacity was six orders or magnitude larger than the
smallest one. The system acquired some anisotropy as well, since the resistances in the
x direction were two orders of magnitude larger than in the z direction, on average,
Rx,i ∈

[
10−1, 103] , Rz,i ∈

[
10−3, 101]. With this modification we gained a system with

a much higher stiffness ratio, 2.5× 1011, while the maximum allowed time step size for the
standard FTCS was hEE

MAX = 1.6× 10−6. All other parameters and circumstances remained
the same as in Section 3.3. In Figures 6 and 7, energy errors and the L∞ errors are presented
as a function of the time step size and the total running time, respectively, while in Table 2
some results are collected for the same system.

One can see that the implicit MATLAB solvers performed much better than the explicit
ones, unlike in the previous case. As all of our cases had considerable stiffness, the implicit
Crank–Nicolson method was more accurate than our explicit methods, but the difference
was not always large. On the other hand, all implicit methods required much longer time
for running than the unconditionally stable explicit algorithms. However, we remind the
reader that this system of 10,000 cells was still rather small, and, for a growing number of
cells, the implicit methods have an increasing disadvantage. Moreover, the performance of
the standard explicit solvers declined with increasing stiffness, so solving very large and
stiff systems is a very tough problem. In Figure 7, the otherwise very powerful ode45 solver
is represented only by one point (right side of the figure) because, for large tolerances, it
diverged, while for low tolerances, the running of the program was stopped by an error
message. In fact, we did not test our methods in the case of larger systems (with 20,000 or
more cells) because no solvers of MATLAB could produce a reference solution.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 13 of 24

This means that the width of the distribution of the capacities and thermal resistances

were increased. Now, the largest capacity was six orders or magnitude larger than the

smallest one. The system acquired some anisotropy as well, since the resistances in the x

direction were two orders of magnitude larger than in the z direction, on average,

, ,

1 3 3 1, ,10 10 10 10,x i z iR R  
  

  . With this modification we gained a system with a

much higher stiffness ratio, 112.5 10 , while the maximum allowed time step size for the

standard FTCS was EE 6
MAX 1.6 10h   . All other parameters and circumstances remained

the same as in Section 3.3. In Figures 6 and 7, energy errors and the L errors are pre-

sented as a function of the time step size and the total running time, respectively, while in

Table 2 some results are collected for the same system.

Figure 6. Energy errors as a function of the time step size for the second (very stiff) system, in the

case of the original OEH method (OEH REF), the original one-stage CNe, UPFD and the Dufort-

Frankel methods, the new algorithms S1–S5, and the Crank–Nicholson method.

Figure 6. Energy errors as a function of the time step size for the second (very stiff) system, in the case
of the original OEH method (OEH REF), the original one-stage CNe, UPFD and the Dufort-Frankel
methods, the new algorithms S1–S5, and the Crank–Nicholson method.

Math. Comput. Appl. 2021, 26, 61 14 of 23
Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 14 of 24

Figure 7. L errors as a function of the running time for the second (very stiff) system, in the case

of the original OEH method (OEH REF), one-stage CNe and UPFD methods, the Dufort–Frankel

method, the new algorithms S1–S5, and the Crank–Nicolson with two implementations and differ-

ent MATLAB routines.

One can see that the implicit MATLAB solvers performed much better than the ex-

plicit ones, unlike in the previous case. As all of our cases had considerable stiffness, the

implicit Crank–Nicolson method was more accurate than our explicit methods, but the

difference was not always large. On the other hand, all implicit methods required much

longer time for running than the unconditionally stable explicit algorithms. However, we

remind the reader that this system of 10,000 cells was still rather small, and, for a growing

number of cells, the implicit methods have an increasing disadvantage. Moreover, the

performance of the standard explicit solvers declined with increasing stiffness, so solving

very large and stiff systems is a very tough problem. In Figure 7, the otherwise very pow-

erful ode45 solver is represented only by one point (right side of the figure) because, for

large tolerances, it diverged, while for low tolerances, the running of the program was

stopped by an error message. In fact, we did not test our methods in the case of larger

systems (with 20,000 or more cells) because no solvers of MATLAB could produce a ref-

erence solution.

Table 2. Comparison of different algorithms for the very stiff system of 10,000 cells.

Numerical Method Running Time (s) ()LError  1()LError Energy Error

ode15s, 6Tol 10 26.8 10 74.1 10 81.5 10 57.5 10

ode23s, 3Tol 10 35.694 10 44.7 10 42.4 10 11.2 10

ode23t, 3Tol 10 23.1 10 28.1 10 32.1 10 11.06 10

ode23tb, 8Tol 10 32.037 10 72.3 10 81.2 10 55.8 10

ode45, 0Tol 10 39.480 10 28.1 10 51.5 10 27.0 10

ode23, 6Tol 10 35.317 10 61.2 10 102.3 10 61.1 10

ode113, 2Tol 10 36.046 10 48.9 10 71.7 10 47.7 10

Figure 7. L∞ errors as a function of the running time for the second (very stiff) system, in the case
of the original OEH method (OEH REF), one-stage CNe and UPFD methods, the Dufort–Frankel
method, the new algorithms S1–S5, and the Crank–Nicolson with two implementations and different
MATLAB routines.

Table 2. Comparison of different algorithms for the very stiff system of 10,000 cells.

Numerical Method Running Time (s) Error(L∞) Error(L1) Energy Error

ode15s, Tol = 10−6 6.8× 102 4.1× 10−7 1.5× 10−8 7.5× 10−5

ode23s, Tol = 103 5.694× 103 4.7× 10−4 2.4× 10−4 1.2× 10−1

ode23t, Tol = 103 3.1× 102 8.1× 10−2 2.1× 10−3 1.06× 101

ode23tb, Tol = 10−8 2.037× 103 2.3× 10−7 1.2× 10−8 5.8× 10−5

ode45, Tol = 100 9.480× 103 8.1× 10−2 1.5× 10−5 7.0× 10−2

ode23, Tol = 10−6 5.317× 103 1.2× 10−6 2.3× 10−10 1.1× 10−6

ode113, Tol = 10−2 6.046× 103 8.9× 10−4 1.7× 10−7 7.7× 10−4

S1, h = 1.25× 10−4 1.98× 10−1 8.46× 10−2 4.55× 10−4 6.72× 100

S2, h = 5.0× 10−6 4.17× 100 4.81× 10−4 3.69× 10−6 6.65× 10−2

S3, h = 2.5× 10−6 9.85× 100 1.99× 10−4 7.65× 10−7 1.31× 10−2

S4, h = 1.25× 10−4 1.95× 10−1 3.28× 10−3 8.88× 10−6 2.68× 10−3

S5, h = 5× 10−7 4.95× 101 1.55× 10−6 8.71× 10−9 1.69× 10−4

CrN inv h = 5× 10−4 2.66× 101 1.15× 10−1 2.42× 10−4 1.26× 10−2

CrN lins h = 5× 10−4 7.19× 102 1.15× 10−1 2.42× 10−4 1.26× 10−2

Math. Comput. Appl. 2021, 26, 61 15 of 23

3.5. Verification by Comparison to Analytical Results

We considered very recent nontrivial analytical solutions of Equation (1) found by
Barna and Mátyás [10] by a similarity transformation technique. Both of them are given,
on the whole, a real number line for positive values of t, as follows

uexact
1 (x, t) =

x
t3/2 e−

x2
4αt , (28)

and

uexact
2 =

x
t5/2

(
1− x2

6αt

)
e−

x2
4αt . (29)

We reproduced these solutions only in finite space and time intervals x ∈ [x1, x2]
and t ∈ [t0, tfin], where x1 = −5 , x2 = 5 , t0 = 0.5 , tfin = 1. The space interval was
discretized by creating nodes as follows: xj = x1 + j∆x , j = 0, . . . , 1000 , ∆x = 0.01. We
prescribed the appropriate Dirichlet boundary conditions at the two ends of the interval:

u1(x = xb, t) =
xb

t3/2 e−
x2

b
4αt , (30)

and

u2(x = xb, t) =
xb

t5/2

(
1−

x2
b

6αt

)
e−

x2
b

4αt , (31)

where xb ∈ {x1 , x2}. We obtained that the new methods were convergent and the order
of convergence was 2. In Figure 8, the L∞ errors as a function of the effective time step
size hEFF are presented for the case of the u2 solution for the top five algorithms and a
first-order “reference curve” for the original CNe method. We note that very similar curves
were obtained for the u1 solution, as well as for other space and time intervals.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 16 of 24

Figure 8. The L errors as a function of EFFh for the u2 solutions of the heat equation for 1  .

We also present the graphs of the initial function 2 0(, 0.5)u x t  , the analytical solu-

tion  2 fin,exactu x t , and two corresponding numerical solutions for
42 10h   in Figure

9. We emphasize that, at this time step size range, the algorithm S4 was the most accurate,

but we did not present its graph, as it would be completely indistinguishable from the

exact solution.

Figure 9. The graphs of the second solution, where u0 is the initial function 2 0(,)u x t and uref is the

analytical solution at the final time, while S3 and S5 are the corresponding numerical solutions

served by the S3 (¼, ½, ½, ½, ¾) and the S5 (0, ½, ½, C, 1) algorithms for
42 10h   .

Figure 8. The L∞ errors as a function of hEFF for the u2 solutions of the heat equation for α = 1.

We also present the graphs of the initial function u2(x, t0 = 0.5), the analytical
solution uexact

2 (x, tfin), and two corresponding numerical solutions for h = 2× 10−4 in
Figure 9. We emphasize that, at this time step size range, the algorithm S4 was the most

Math. Comput. Appl. 2021, 26, 61 16 of 23

accurate, but we did not present its graph, as it would be completely indistinguishable
from the exact solution.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 16 of 24

Figure 8. The L errors as a function of EFFh for the u2 solutions of the heat equation for 1  .

We also present the graphs of the initial function 2 0(, 0.5)u x t  , the analytical solu-

tion  2 fin,exactu x t , and two corresponding numerical solutions for
42 10h   in Figure

9. We emphasize that, at this time step size range, the algorithm S4 was the most accurate,

but we did not present its graph, as it would be completely indistinguishable from the

exact solution.

Figure 9. The graphs of the second solution, where u0 is the initial function 2 0(,)u x t and uref is the

analytical solution at the final time, while S3 and S5 are the corresponding numerical solutions

served by the S3 (¼, ½, ½, ½, ¾) and the S5 (0, ½, ½, C, 1) algorithms for
42 10h   .

Figure 9. The graphs of the second solution, where u0 is the initial function u2(x, t0) and uref is
the analytical solution at the final time, while S3 and S5 are the corresponding numerical solutions
served by the S3 (1

4 , 1
2 , 1

2 , 1
2 , 3

4) and the S5 (0, 1
2 , 1

2 , C, 1) algorithms for h = 2× 10−4.

3.6. Verification for the Nonlinear Fisher’s Equation

We considered
∂u
∂t

= α ∇2u + βu(1− u),

for α = 1 and solved it, subject to the following initial condition:

u(x, t = 0) =
(

1 + e
√

β
6 x
)−2

.

The analytical solution of this equation was known [11,12] and can be given as

uexact(x, t) =
(

1 + e
√

β
6 x− 5

6 βt
)−2

,

The Dirichlet boundary conditions appropriate to the exact solution were prescribed
at both ends of the interval:

u(x = x0, t) =
(

1 + e
√

β
6 x0− 5

6 βt
)−2

, and u(x = xfin, t) =
(

1 + e
√

β
6 xfin− 5

6 βt
)−2

.

We reproduced this analytical solution in the case of several values of the parameters
β, x0, xfin, tfin, and ∆x, but here we present results only for β = 2, x0 = 0, xfin = 5, tfin = 1,
and ∆x = 0.01. In order to have good stability properties, we took account the effect of the
nonlinear term via the following semi-implicit treatment

unew
i = upred

i + βupred
i (1− unew

i)h,

Math. Comput. Appl. 2021, 26, 61 17 of 23

which can be rearranged into a fully explicit form:

unew
i =

1 + βh

1 + βhupred
i

upred
i ,

where upred
i is the actual value of ui after performing the previous stage calculations, which

deal with the diffusion term. This operation was performed in two extra, separate stages,
where a loop was going through all the nodes (both odd and even). The first extra stage
was after (the original) Stage 2, while the second was after Stage 4, at the same moments in
which the boundary conditions were refreshed.

With this procedure we obtained that the new methods behaved very similarly as in
the linear case. In Figure 10, the L∞ errors as a function of the effective time step size hEFF
are presented for the top five algorithms and the original CNe method. We note that very
similar curves were obtained for other space and time intervals and values of parameter β.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 18 of 24

Figure 10. The L errors as a function of EFFh for the numerical solutions of Fisher’s equation for

1  and 2  .

We emphasize that this subsection is only to demonstrate that these shifted-hop-

scotch methods can be successfully applied for other, possibly nonlinear, equations as

well, and there is some chance that the relative strength of the S1–S5 algorithms is pre-

served. The systematic investigation of the behavior of the new methods in case of non-

linear equations was out of the scope of this paper and plans to be published in future

works.

3.7. Analytical Investigations

We started with the analysis of the convergence properties of the five most advanta-

geous methods in the one-dimensional case for constant values of mesh ratio r: In other

words, when the equidistant spatial discretization was fixed.

Theorem 1. The order of convergence of the S1…S5 shifted hopscotch algorithms is 2 for the Equa-

tion (5) system of linear ODEs:

0, (t 0)
du

Mu u u
dt

   , (32)

where M is defined in Equation (4) and
0u is an arbitrary vector.

The proof is presented in the Appendix A. Now, we turn our attention to the question

of stability. First, we examined the two types of formulas (the UPFD and the CNe), about

which we already stated that they are positivity preserving.

Lemma 1. The new 1n
iu  values are the convex combinations of the old n

iu values in Equations

(9), (11) and (17) formulas, as well as in the Equation (16) formula for 0  .

The proofs of these statements are very easy, and they are given in our previous pa-

pers (see Theorem 2 in [37] for the UPFD and also Theorem 2 in [43] for the CNe). We also

recalled a lemma on the associativity of convex combinations [47] (p. 28).

Figure 10. The L∞ errors as a function of hEFF for the numerical solutions of Fisher’s equation for
α = 1 and β = 2.

We emphasize that this subsection is only to demonstrate that these shifted-hopscotch
methods can be successfully applied for other, possibly nonlinear, equations as well, and
there is some chance that the relative strength of the S1–S5 algorithms is preserved. The
systematic investigation of the behavior of the new methods in case of nonlinear equations
was out of the scope of this paper and plans to be published in future works.

3.7. Analytical Investigations

We started with the analysis of the convergence properties of the five most advanta-
geous methods in the one-dimensional case for constant values of mesh ratio r: In other
words, when the equidistant spatial discretization was fixed.

Math. Comput. Appl. 2021, 26, 61 18 of 23

Theorem 1. The order of convergence of the S1 . . . S5 shifted hopscotch algorithms is 2 for the
Equation (5) system of linear ODEs:

d
→
u

dt
= M

→
u ,

→
u (t = 0) =

→
u

0
, (32)

where M is defined in Equation (4) and
→
u

0
is an arbitrary vector.

The proof is presented in the Appendix A. Now, we turn our attention to the question
of stability. First, we examined the two types of formulas (the UPFD and the CNe), about
which we already stated that they are positivity preserving.

Lemma 1. The new un+1
i values are the convex combinations of the old un

i values in Equations (9),
(11) and (17) formulas, as well as in the Equation (16) formula for θ = 0.

The proofs of these statements are very easy, and they are given in our previous papers
(see Theorem 2 in [37] for the UPFD and also Theorem 2 in [43] for the CNe). We also
recalled a lemma on the associativity of convex combinations [47] (p. 28).

Lemma 2. A convex combination x = ∑ aixi of convex combinations xi = ∑ bijyij is again a
convex combination:

x = ∑ ∑
(
aibij

)
yij

for any yij ∈ Rn.

Corollary 1. All shifted hopscotch algorithms containing only the CNe and the UPFD formulas
mentioned in Lemma 1, the new un+2

i values are the convex combinations of the old un
i values.

This immediately implies that all algorithms mentioned in Corollary 1, especially S1
(C, C, C, C, C), followed the minimum and maximum principle, and, therefore, preserved
positivity, which is a much stronger property than unconditional stability.

We examined the stability of the S2–S5 algorithms through their eigenvalues. We
constructed the five stages of these algorithms in a matrix form. If we denote these matrices
by M1, . . . , M5, respectively, the matrix of a two-step, five-stage algorithm can be written

as H = M5(M4(M3(M2M1))), and
→
u

n+2
= H

→
u

n
. We calculated and plotted the absolute

values of the eigenvalues of this matrix H as a function of the mesh ratio r for several
values of N, and found that the largest one was always exactly 1, which implies that no
perturbation vector

→
ε could grow unboundedly. In Figure 11, we present here only the

eigenvalue functions of S4 (0, 1
2 , 1

2 , 1
2 , 1), which produced the largest errors for large time

step sizes (see, e.g., the top right corner of Figure 8) and, therefore, one might question its
stability first. These results verify that the S2 . . . S4 methods were unconditionally stable,
even if they could not be considered as exact analytical proofs.

Math. Comput. Appl. 2021, 26, 61 19 of 23

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 19 of 24

Lemma 2. A convex combination i ix a x of convex combinations i ij ijx b y is again a

convex combination:

 i ij ijx a b y

for any
n

ijy 
.

Corollary 1. All shifted hopscotch algorithms containing only the CNe and the UPFD formulas

mentioned in Lemma 1, the new 2n
iu  values are the convex combinations of the old n

iu values.

This immediately implies that all algorithms mentioned in Corollary 1, especially S1

(C, C, C, C, C), followed the minimum and maximum principle, and, therefore, preserved

positivity, which is a much stronger property than unconditional stability.

We examined the stability of the S2–S5 algorithms through their eigenvalues. We

constructed the five stages of these algorithms in a matrix form. If we denote these matri-

ces by M1,…, M5, respectively, the matrix of a two-step, five-stage algorithm can be written

as    5 4 3 2 1H M M M M M , and 2n nu Hu  . We calculated and plotted the absolute

values of the eigenvalues of this matrix H as a function of the mesh ratio r for several

values of N, and found that the largest one was always exactly 1, which implies that no

perturbation vector  could grow unboundedly. In Figure 11, we present here only the

eigenvalue functions of S4 (0, ½, ½, ½, 1), which produced the largest errors for large time

step sizes (see, e.g., the top right corner of Figure 8) and, therefore, one might question its

stability first. These results verify that the S2…S4 methods were unconditionally stable,

even if they could not be considered as exact analytical proofs.

(a) (b)

Figure 11. The graphs of the eigenvalues of H vs. mesh ratio functions for the S4 (0, ½, ½, ½, 1) algorithm for N = 20. (a)

 0 10r , (b)  10 1000r , .

4. Discussion and Summary

In this article, we constructed and tested novel numerical algorithms to solve the non-

stationary diffusion (or heat) equation. The new algorithms were fully explicit time-inte-

grators obtained by applying half and full time steps in the odd-even hopscotch structure.

All of the algorithms consisted of five stages, but they were one-step methods in the sense

that when the new values of the unknown function u were calculated, only the most re-

cently calculated u values were used. Thus, the methods could be implemented such that

Figure 11. The graphs of the eigenvalues of H vs. mesh ratio functions for the S4 (0, 1
2 , 1

2 , 1
2 , 1) algorithm for N = 20. (a)

r ∈ [0, 10] (b) r ∈ [10, 1000].

4. Discussion and Summary

In this article, we constructed and tested novel numerical algorithms to solve the
non-stationary diffusion (or heat) equation. The new algorithms were fully explicit time-
integrators obtained by applying half and full time steps in the odd-even hopscotch
structure. All of the algorithms consisted of five stages, but they were one-step methods in
the sense that when the new values of the unknown function u were calculated, only the
most recently calculated u values were used. Thus, the methods could be implemented such
that only one array of storage was required for the u variable, which means that the memory
requirement was very low. We applied the conventional theta method with nine different
values of θ and the non-conventional CNe method to construct 105 combinations and chose
the top five of them via numerical experiments. We showed concrete results of these five
algorithms in the case of two 2-dimensional stiff systems containing 10,000 cells with highly
inhomogeneous, randomly generated parameters and discontinuous initial conditions.
These experiments suggest that the proposed methods are, indeed, competitive, as they can
give fairly accurate results orders of magnitude faster than the well-optimized MATLAB
routines or the Crank–Nicolson method, and they are also significantly more accurate
for stiff systems than the UPFD, the Dufort–Frankel, or the original odd-even hopscotch
method. We think that, if high accuracy is required, the S4 (0, 1

2 , 1
2 , 1

2 , 1) combination can be
proposed; however, when preserving positivity is crucial, the S1 (C, C, C, C, C) algorithm
should be used.

We verified these new algorithms by reproducing a recently found nontrivial analytical
solution of the heat equation, and then also showed that the nonlinear Fisher’s equation
can be solved by them. We proved analytically that the new methods are second order
for fixed spatial discretization. It must be noted that the original explicit Euler, UPFD,
and CNe formulas are only first order and the shifted-hopscotch structure made their
combinations second order. On the other hand, the original theta method for θ = 1

2 (which
is the trapezoidal rule) is second order, but it is either an implicit method (the CN scheme)
or, if made explicit by a predictor step, it requires an extra (predictor) stage and, at the same
time, becomes only conditionally stable. At the end of the paper, we conveyed evidence
about the good stability properties of the new methods.

In our next papers we would like to extend our investigations in order to find even
more effective algorithms and perform more comprehensive tests to clarify which are
the best under specific circumstances. Then, we also plan to apply the methods for more
complicated, mostly nonlinear equations, as well as in case of real-life engineering problems
such as heat transfer by conduction and radiation in buildings or machine tools. We

Math. Comput. Appl. 2021, 26, 61 20 of 23

already started the application of the methods to equations where additional terms are
present besides the diffusion term, such as the advection-diffusion and the Kardar–Parisi–
Zhang equations, but these investigations are still at an embryonic stage. In principle,
the shifted hopscotch structure and the concrete proposed methods can be adapted to
hyperbolic equations like the Euler equations as well, but we have doubts about their
stability properties under those circumstances.

Author Contributions: Conceptualization, E.K. and H.K.; methodology, E.K. and M.S.; software, Á.N.
and I.O.; validation, E.K., H.K. and I.O.; formal analysis, M.S.; investigation, Á.N., I.O. and H.K.; re-
sources, E.K.; data curation, Á.N.; writing—original draft preparation, E.K. and M.S.; writing—review
and editing, E.K. and Á.N.; visualization, Á.N. and I.O.; supervision, E.K.; project administration,
E.K. and Á.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available at the following link: http://dx.doi.org/10.17632
/sdxrxf68jg.1#folder-649cdd07-097d-43de-b61b-87a74f9b2eec (accessed on 24 August 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Theorem 1. First, we give the general form of the new vector elements un+2
i

expressed by the old elements un
j for odd and even cells far from the boundaries for the top

5 algorithms.

S1 (C, C, C, C, C), i is odd:

un+2
i =



1
8
(
3e−8r − 3e−7r + 3e−6r + e−5r + e−4r − e−3r + e−2r + 3e−r)un

i
+
(
− 5

16 e−8r + 1
4 e−7r − 1

8 e−6r − 1
4 e−5r + 1

4 e−3r + 1
8 e−2r − 1

4 e−r + 5
16

)(
un

i−1 + un
i+1
)

+
(

1
4 e−8r − 1

4 e−7r + 1
4 e−5r − 1

4 e−4r − 1
4 e−3r + 1

4 e−r
)(

un
i−2 + un

i+2
)

+
(
− 5

32 e−8r + 3
16 e−7r + 1

16 e−6r − 1
16 e−5r + 1

16 e−3r − 1
16 e−2r − 3

16 e−r + 5
32

)(
un

i−3 + un
i+3
)

+ 1
16
(
e−2r − 1

)3
(e−r − 1)e−r(un

i−4 + un
i+4
)
− 1

32
(
e−2r − 1

)3
(e−r − 1)2(un

i−5 + un
i+5
)


(A1)

S1 (C, C, C, C, C), i is even:

un+2
i = 1

8


(
3e−7r + e−6r − e−5r + e−4r + e−3r + 3e−2r − 3e−r + 3

)
un

i −
(
3e−7r − e−5r + e−3r − 3e−r)(un

i−1 + un
i+1
)

+2
(
e−7r − e−5r − e−4r + e−3r − e−r + 1

)(
un

i−2 + un
i+2
)
− e−r(e−2r − 1

)3(un
i−3 + un

i+3
)

+ 1
2
(
e−2r − 1

)3
(e−r − 1)

(
un

i−4 + un
i+4
)

 (A2)

S2 (1
4 , 1

2 , C, 1
2 , 3

4), i is odd:

un+2
i = 1

(4+r)(1+r)2(4+3r)


(r− 4)

(
2e−2rr3 − e−2rr2 + r3 − e−2rr− 5r2 − 4e−2r − 4r

)
un

i
+ 1

2
(
(−r4 + 16r3 − 3r2 + 16r− 16)e−2r + r4 + 16r3 + 3r2 + 16r + 16

)(
un

i−1 + un
i+1
)

+ 1
2
(
(−4 + r)r((r2 − 3r + 4)e−2r − r2 − 5r− 4)

)(
un

i−2 + un
i+2
)

+
(
4r2(e−2rr− 2e−2r + r + 2)

)(
un

i−3 + un
i+3
)

+r3(e−2r − 1)(−4 + r)
(
un

i−4 + un
i+4
)
− 2r4(e−2r − 1)

(
un

i−5 + un
i+5
)

 (A3)

S2 (1
4 , 1

2 , C, 1
2 , 3

4), i is even:

un+2
i = 1

(1+r)2(4+3r)


(
(r3 + 5r2 − 4r)e−2r + 2r3 + r2 − r + 4

)
un

i +
r
2 (r− 4)(e−2rr− 2e−2r − r− 2)

(
un

i−1 + un
i+1
)

− 1
2 r(e−2rr2 − 5e−2rr− r2 + 4e−2r − 3r− 4)

(
un

i−2 + un
i+2
)

+ 1
2 r2(e−2r − 1)(r− 4)

(
un

i−3 + un
i+3
)
− r3(e−2r − 1)

(
un

i−4 + un
i+4
)

 (A4)

http://dx.doi.org/10.17632/sdxrxf68jg.1#folder-649cdd07-097d-43de-b61b-87a74f9b2eec
http://dx.doi.org/10.17632/sdxrxf68jg.1#folder-649cdd07-097d-43de-b61b-87a74f9b2eec

Math. Comput. Appl. 2021, 26, 61 21 of 23

S3 (1
4 , 1

2 , 1
2 , 1

2 , 3
4), i is odd:

un+2
i = 1

(4+r)(1+r)3(4+3r)

 (4− r)(r4 + r3 + 9r2 + r + 4)un
i + r(r4 + 19r2 + 32)

(
un

i−1 + un
i+1
)

r2(4− r)(r2 + r + 8)
(
un

i−2 + un
i+2
)
+ 24r3(un

i−3 + un
i+3
)
− 2r4(r− 4)

(
un

i−4 + un
i+4
)

+4r5(un
i−5 + un

i+5
)

 (A5)

S3 (1
4 , 1

2 , 1
2 , 1

2 , 3
4), i is even:

un+2
i =

1

(1 + r)3(4 + 3r)

[(
r4 − r3 + 9r2 − r + 4

)
un

i + (4− r)(r3 + 2r)
(
un

i−1 + un
i+1
)

+r2(r2 − r + 8)
(
un

i−2 + un
i+2
)
+ r3(4− r)

(
un

i−3 + un
i+3
)
+ 2r4(un

i−4 + un
i+4
)] (A6)

S4 (0, 1
2 , 1

2 , 1
2 , 1), i is odd:

un+2
i =

1

(1 + r)4

[(
2r2 + 1

)
un

i +
r
2
(
r2 + 4

)(
un

i−1 + un
i+1
)
+ 2r2(un

i−2 + un
i+2
)
− r3

4
(
r2 − 6

)(
un

i−3 + un
i+3
)

+ r4

2
(
un

i−4 + un
i+4
)
+ r5

4
(
un

i−5 + un
i+5
)]

(A7)

S4 (0, 1
2 , 1

2 , 1
2 , 1), i is even:

un+2
i = 1

(1+r)4

[(
2r2 + 1

)
un

i + r(r2 + 2)
(
un

i−1 + un
i+1
)
+ 2r2(un

i−2 + un
i+2
)
+ r3(un

i−3 + un
i+3
)
+ r4(un

i−4 + un
i+4
)]

(A8)

S5 (0, 1
2 , 1

2 , C, 1), i is odd:

un+2
i = 1

(1+r)3


1
2
(
(2r2 − r)e−2r + 2r2 − r + 2

)
un

i +
r
8
(
(r3 + 2r2 − 5r + 4)e−2r + r3 − 3r + 12

)(
un

i−1 + un
i+1
)

− r
4

(
(r− 1)2e−2r + r2 − 4r− 1

)(
un

i−2 + un
i+2
)
+ r2

8
(
2e−2rr− 2r2 − 3e−2r + 4r + 3

)(
un

i−3 + un
i+3
)

− r3

4 (e
−2r − 1)

(
un

i−4 + un
i+4
)
− r4

8 (e
−2r − 1)

(
un

i−5 + un
i+5
)

 (A9)

S5 (0, 1
2 , 1

2 , C, 1), i is even:

un+2
i = 1

(1+r)3

[
1
2
(
(2− r)e−2r + 3r

)
un

i +
1
2
(
(2r− 1)e−2r + 2r2 + 1

)(
un

i−1 + un
i+1
)
− r2

2 (e
−2r − 1)

(
un

i−3 + un
i+3
)

+ r
4
(
(r2 + 2r− 3)e−2r + r2 + 3

)(
un

i−2 + un
i+2
)
− r3

4 (e
−2r − 1)

(
un

i−4 + un
i+4
)]

(A10)

We have to show that the zeroth-, first-, and second-order local errors are zero, i.e.,
the numerical solution is identical to the exact solution of the PDE initial value problem
Equation (A1) up to second order. We will use the usual series expansion up to second
order

e−x = 1− x +
x2

2!
+ O

(
x3
)

(A11)

The exact solution at the end of a doubled time step is the following:

→
u

n+2
= e2Mh→u

n
=

(
1 + 2Mh + 4M2 h2

2
+ O

(
h3
))→

u
n
.

After some simple algebraic calculations, we obtain:

un+2
i =

(
2r2
)

un
i−2 +

(
2r− 8r2

)
un

i−1 +
(

1− 4r + 12r2
)

un
i +

(
2r− 8r2

)
un

i+1 +
(

2r2
)

un
i+2 + O

(
r3
)

. (A12)

Now we calculate the coefficients of Equation (A1) up to the second order:

un+2
i =

(
1− 4r + 12r2

)
un

i +
(

2r− 8r2
)(

un
i−1 + un

i+1
)
+
(

2r2
)(

un
i−2 + un

i+2
)
+

4

∑
i=1

Oi

(
r3
)

. (A13)

Math. Comput. Appl. 2021, 26, 61 22 of 23

Substituting these terms into Equation (A1) we obtain

1
8
(
3e−8r − 3e−7r + 3e−6r + e−5r + e−4r − e−3r + e−2r + 3e−r) = 1− 4r + 12r2 + O1

(
r3)(

− 5
16 e−8r + 1

4 e−7r − 1
8 e−6r − 1

4 e−5r + 1
4 e−3r + 1

8 e−2r − 1
4 e−r + 5

16

)
= 2r− 8r2 + O2

(
r3)(

1
4 e−8r − 1

4 e−7r + 1
4 e−5r − 1

4 e−4r − 1
4 e−3r + 1

4 e−r
)
= 2r2 + O3

(
r3)(

− 5
32 e−8r + 3

16 e−7r + 1
16 e−6r − 1

16 e−5r + 1
16 e−3r − 1

16 e−2r − 3
16 e−r + 5

32

)
= O4

(
r3)

(A14)

It can be immediately seen that this expression is identical to the analytical solution
Equation (A12) up to second order. Equation (A2) can be handled similarly to obtain
the same expression as in Equation (A12) or (A14), which proves the theorem for the S1
algorithm. For the S2 . . . S5 methods we use the power series expansion (1 + x)−1 =
1− x + x2 − . . ., so we have

1

(1 + r)2 = 1− 2r + 3r2 + O
(

r3
)

,
1

4 + 3r
=

1
4

(
1− 3

4
r +

9
16

r2 + O
(

r3
))

,

etc. These expressions can be substituted back to Equations (A3) and (A4) to obtain
Equation (A14) again. In the same manner, we proved the second-order property of
algorithms S3 . . . S5, which is not detailed here, being even more trivial than the case of S1
and S2. �

References
1. Zhong, J.; Zeng, C.; Yuan, Y.; Zhang, Y.; Zhang, Y. Numerical solution of the unsteady diffusion-convection-reaction equation

based on improved spectral Galerkin method. AIP Adv. 2018, 8, 045314. [CrossRef]
2. Blaj, G.; Kenney, C.J.; Segal, J.; Haller, G. Analytical Solutions of Transient Drift-Diffusion in P–N Junction Pixel Sensors. arXiv

2017, arXiv:1706.01429.
3. Le Bihan, D. Diffusion MRI: What water tells us about the brain. EMBO Mol. Med. 2014, 6, 569–573. [CrossRef] [PubMed]
4. Gasparin, S.; Berger, J.; Dutykh, D.; Mendes, N. Stable explicit schemes for simulation of nonlinear moisture transfer in porous

materials. J. Build. Perform. Simul. 2018, 11, 129–144. [CrossRef]
5. Zimmerman, R.W. The Imperial College Lectures in Petroleum Engineering; World Scientific Publishing: Singapore; London, UK,

2018; ISBN 9781786345004.
6. Fisher, R.A. The Wave of Advance of Advantageous Genes. Ann. Eugen. 1937, 7, 355–369. [CrossRef]
7. Mojtabi, A.; Deville, M.O. One-dimensional linear advection-diffusion equation: Analytical and finite element solutions. Comput.

Fluids 2015, 107, 189–195. [CrossRef]
8. Barna, I.F.; Bognár, G.; Guedda, M.; Mátyás, L.; Hriczó, K. Analytic self-similar solutions of the Kardar–Parisi–Zhang interface

growing equation with various noise terms. Math. Model. Anal. 2020, 25, 241–256. [CrossRef]
9. Barna, I.F.; Kersner, R. Heat conduction: A telegraph-type model with self-similar behavior of solutions. J. Phys. A Math. Theor.

2010, 43, 375210. [CrossRef]
10. Mátyás, L.; Barna, I.F. General self-similar solutions of diffusion equation and related constructions. arXiv 2021, arXiv:2104.09128.
11. Bastani, M.; Salkuyeh, D.K. A highly accurate method to solve Fisher’s equation. Pramana J. Phys. 2012, 78, 335–346. [CrossRef]
12. Agbavon, K.M.; Appadu, A.R.; Khumalo, M. On the numerical solution of Fisher’s equation with coefficient of diffusion term

much smaller than coefficient of reaction term. Adv. Differ. Eq. 2019, 146. [CrossRef]
13. Zoppou, C.; Knight, J.H. Analytical solution of a spatially variable coefficient advection-diffusion equation in up to three

dimensions. Appl. Math. Model. 1999, 23, 667–685. [CrossRef]
14. Lienhard, J.H., IV; Lienhard, J.H., V. A Heat Transfer Textbook, 4th ed.; Phlogiston Press: Cambridge, MA, USA, 2017; ISBN

9780971383524.
15. Cusini, M. Dynamic Multilevel Methods for Simulation of Multiphase Flow in Heterogeneous Porous Media; Delft University of

Technology: Delft, The Netherlands, 2019.
16. Appau, P.O.; Dankwa, O.K.; Brantson, E.T. A comparative study between finite difference explicit and implicit method for

predicting pressure distribution in a petroleum reservoir. Int. J. Eng. Sci. Technol. 2019, 11, 23–40. [CrossRef]
17. Moncorgé, A.; Tchelepi, H.A.; Jenny, P. Modified sequential fully implicit scheme for compositional flow simulation. J. Comput.

Phys. 2017, 337, 98–115. [CrossRef]
18. Chou, C.S.; Zhang, Y.T.; Zhao, R.; Nie, Q. Numerical methods for stiff reaction-diffusion systems. Discret. Contin. Dyn. Syst. Ser. B

2007, 7, 515–525. [CrossRef]
19. Gumel, A.B.; Ang, W.T.; Twizell, E.H. Efficient parallel algorithm for the two-dimensional diffusion equation subject to specifica-

tion of mass. Int. J. Comput. Math. 1997, 64, 153–163. [CrossRef]
20. Xue, G.; Feng, H. A new parallel algorithm for solving parabolic equations. Adv. Differ. Eq. 2018, 2018, 1–6. [CrossRef]

http://doi.org/10.1063/1.5023332
http://doi.org/10.1002/emmm.201404055
http://www.ncbi.nlm.nih.gov/pubmed/24705876
http://doi.org/10.1080/19401493.2017.1298669
http://doi.org/10.1111/j.1469-1809.1937.tb02153.x
http://doi.org/10.1016/j.compfluid.2014.11.006
http://doi.org/10.3846/mma.2020.10459
http://doi.org/10.1088/1751-8113/43/37/375210
http://doi.org/10.1007/s12043-011-0243-8
http://doi.org/10.1186/s13662-019-2080-x
http://doi.org/10.1016/S0307-904X(99)00005-0
http://doi.org/10.4314/ijest.v11i4.3
http://doi.org/10.1016/j.jcp.2017.02.032
http://doi.org/10.3934/dcdsb.2007.7.515
http://doi.org/10.1080/00207169708804580
http://doi.org/10.1186/s13662-018-1617-8

Math. Comput. Appl. 2021, 26, 61 23 of 23

21. Gagliardi, F.; Moreto, M.; Olivieri, M.; Valero, M. The international race towards Exascale in Europe. CCF Trans. High Perform.
Comput. 2019, 3–13. [CrossRef]

22. Reguly, I.Z.; Mudalige, G.R. Productivity, performance, and portability for computational fluid dynamics applications. Comput.
Fluids 2020, 199, 104425. [CrossRef]

23. Gordon, P. Nonsymmetric Difference Equations. J. Soc. Ind. Appl. Math. 1965, 13, 667–673. [CrossRef]
24. Gourlay, A.R. Hopscotch: A Fast Second-order Partial Differential Equation Solver. IMA J. Appl. Math. 1970, 6, 375–390. [CrossRef]
25. Gourlay, A.R.; McGuire, G.R. General Hopscotch Algorithm for the Numerical Solution of Partial Differential Equations. IMA J.

Appl. Math. 1971, 7, 216–227. [CrossRef]
26. Gourlay, A.R. Some recent methods for the numerical solution of time-dependent partial differential equations. Proc. R. Soc. Lond.

A Math. Phys. Sci. 1971, 323, 219–235. [CrossRef]
27. Hundsdorfer, W.H.; Verwer, J.G. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations; Springer: Berlin,

Germany, 2003.
28. Morris, J.L.; Nicoll, I.F. Hopscotch methods for an anisotropic thermal print head problem. J. Comput. Phys. 1973, 13, 316–337.

[CrossRef]
29. ten Thije Boonkkamp, J.H.M. The Odd-Even Hopscotch Pressure Correction Scheme for the Incompressible Navier–Stokes

Equations. SIAM J. Sci. Stat. Comput. 1988, 9, 252–270. [CrossRef]
30. Harley, C. Hopscotch method: The numerical solution of the Frank–Kamenetskii partial differential equation. Appl. Math. Comput.

2010, 217, 4065–4075. [CrossRef]
31. Al-Bayati, A.; Manaa, S.; Al-Rozbayani, A. Comparison of Finite Difference Solution Methods for Reaction Diffusion System in

Two Dimensions. AL-Rafidain J. Comput. Sci. Math. 2011, 8, 21–36. [CrossRef]
32. Xu, J.; Shao, S.; Tang, H. Numerical methods for nonlinear Dirac equation. J. Comput. Phys. 2013, 245, 131–149. [CrossRef]
33. de Goede, E.D.; ten Thije Boonkkamp, J.H.M. Vectorization of the Odd–Even Hopscotch Scheme and the Alternating Direction

Implicit Scheme for the Two-Dimensional Burgers Equations. SIAM J. Sci. Stat. Comput. 1990, 11, 354–367. [CrossRef]
34. Maritim, S.; Rotich, J.K.; Bitok, J.K. Hybrid hopscotch Crank–Nicholson-Du Fort and Frankel (HP-CN-DF) method for solving

two dimensional system of Burgers’ equation. Appl. Math. Sci. 2018, 12, 935–949. [CrossRef]
35. Maritim, S.; Rotich, J.K. Hybrid Hopscotch Method for Solving Two Dimensional System of Burgers’ Equation. Int. J. Sci. Res.

2018, 8, 492–497.
36. Saleh, M.; Nagy, Á.; Kovács, E. Construction and investigation of new numerical algorithms for the heat equation: Part 1.

Multidiszcip. Tudományok 2020, 10, 323–338. [CrossRef]
37. Saleh, M.; Nagy, Á.; Kovács, E. Construction and investigation of new numerical algorithms for the heat equation: Part 2.

Multidiszcip. Tudományok 2020, 10, 339–348. [CrossRef]
38. Saleh, M.; Nagy, Á.; Kovács, E. Construction and investigation of new numerical algorithms for the heat equation: Part 3.

Multidiszcip. Tudományok 2020, 10, 349–360. [CrossRef]
39. Holmes, M.H. Introduction to Numerical Methods in Differential Equations; Springer: New York, NY, USA, 2007.
40. Chen-Charpentier, B.M.; Kojouharov, H.V. An unconditionally positivity preserving scheme for advection-diffusion reaction

equations. Math. Comput. Model. 2013, 57, 2177–2185. [CrossRef]
41. Appadu, A.R. Performance of UPFD scheme under some different regimes of advection, diffusion and reaction. Int. J. Numer.

Methods Heat Fluid Flow 2017, 27, 1412–1429. [CrossRef]
42. Kovács, E. New Stable, Explicit, First Order Method to Solve the Heat Conduction Equation. J. Comput. Appl. Mech. 2020, 15, 3–13.

[CrossRef]
43. Kovács, E. A class of new stable, explicit methods to solve the non-stationary heat equation. Numer. Methods Partial Differ. Eq.

2020, 37, 2469–2489. [CrossRef]
44. Munka, M.; Pápay, J. 4D Numerical Modeling of Petroleum Reservoir Recovery; Akadémiai Kiadó: Budapest, Hungary, 2001; ISBN

963-05-7843-3.
45. Muñoz-Matute, J.; Calo, V.M.; Pardo, D.; Alberdi, E.; van der Zee, K.G. Explicit-in-time goal-oriented adaptivity. Comput. Methods

Appl. Mech. Eng. 2019, 347, 176–200. [CrossRef]
46. Appadu, A.R. Analysis of the unconditionally positive finite difference scheme for advection-diffusion-reaction equations with

different regimes. In Proceedings of the AIP Conference Proceedings; American Institute of Physics Inc.: College Park, MD, USA,
2016; Volume 1738, p. 030005.

47. Hiriart-Urruty, J.-B.; Lemaréchal, C. Fundamentals of Convex Analysis; Springer: Berlin, Germany, 2001.

http://doi.org/10.1007/s42514-019-00002-y
http://doi.org/10.1016/j.compfluid.2020.104425
http://doi.org/10.1137/0113044
http://doi.org/10.1093/imamat/6.4.375
http://doi.org/10.1093/imamat/7.2.216
http://doi.org/10.1098/rspa.1971.0099
http://doi.org/10.1016/0021-9991(73)90039-9
http://doi.org/10.1137/0909016
http://doi.org/10.1016/j.amc.2010.10.020
http://doi.org/10.33899/csmj.2011.163605
http://doi.org/10.1016/j.jcp.2013.03.031
http://doi.org/10.1137/0911021
http://doi.org/10.12988/ams.2018.8798
http://doi.org/10.35925/j.multi.2020.4.36
http://doi.org/10.35925/j.multi.2020.4.37
http://doi.org/10.35925/j.multi.2020.4.38
http://doi.org/10.1016/j.mcm.2011.05.005
http://doi.org/10.1108/HFF-01-2016-0038
http://doi.org/10.32973/jcam.2020.001
http://doi.org/10.1002/num.22730
http://doi.org/10.1016/j.cma.2018.12.028

	Introduction
	The New Methods
	Results
	General Definitions and Circumstances
	Preliminary Tests
	Case Study I and Comparison with Other Solvers
	Case Study II and Comparison with Other Solvers
	Verification by Comparison to Analytical Results
	Verification for the Nonlinear Fisher’s Equation
	Analytical Investigations

	Discussion and Summary
	
	References

